1
|
Zhao YX, Sun YY, Li LY, Li XF, Li HD, Chen X, Xia R, Yang YL, Jiang XY, Zuo LQ, Meng XM, Wang H, Huang C, Li J. Rab11b promotes M1-like macrophage polarization by restraining autophagic degradation of NLRP3 in alcohol-associated liver disease. Acta Pharmacol Sin 2025; 46:134-146. [PMID: 38992121 PMCID: PMC11695811 DOI: 10.1038/s41401-024-01333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/02/2024] [Indexed: 07/13/2024] Open
Abstract
Macrophage polarization is vital to mounting a host defense or repairing tissue in various liver diseases. Excessive activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is related to the orchestration of inflammation and alcohol-associated liver disease (ALD) pathology. Rab GTPases play critical roles in regulating vesicular transport. In this study we investigated the role of Rab11b in ALD, aiming to identify effective therapeutic targets. Here, we first demonstrated a decreased expression of Rab11b in macrophages from ALD mice. Knockdown of Rab11b by macrophage-specific adeno-associated virus can alleviate alcohol induced liver inflammation, injury and steatosis. We found that LPS and alcohol stimulation promoted Rab11b transferring from the nucleus to the cytoplasm in bone marrow-derived macrophages (BMDM) cells. Rab11b specifically activated the NLRP3 inflammasome in BMDMs and RAW264.7 cells to induce M1 macrophage polarization. Rab11b overexpression in BMDMs inhibited autophagic flux, leading to the suppression of LC3B-mediated NLRP3 degradation. We conclude that impaired Rab11b could alleviate alcohol-induced liver injury via autophagy-mediated NLRP3 degradation.
Collapse
Affiliation(s)
- Yu-Xin Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Ying-Yin Sun
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Feng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xin Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Ran Xia
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Ying-Li Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China
| | - Xin-Yu Jiang
- The Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, China
| | - Long-Quan Zuo
- Department of Pharmacy, Hospital of Armed Police of Anhui Province, Hefei, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
- Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Hu S, Li R, Gong D, Hu P, Xu J, Ai Y, Zhao X, Hu C, Xu M, Liu C, Chen S, Fan J, Zhao Z, Zhang Z, Wu H, Xu Y. Atf3-mediated metabolic reprogramming in hepatic macrophage orchestrates metabolic dysfunction-associated steatohepatitis. SCIENCE ADVANCES 2024; 10:eado3141. [PMID: 39047111 PMCID: PMC11268416 DOI: 10.1126/sciadv.ado3141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is regulated by complex interplay between the macrophages and surrounding cells in the liver. Here, we show that Atf3 regulates glucose-fatty acid cycle in macrophages attenuates hepatocyte steatosis, and fibrogenesis in hepatic stellate cells (HSCs). Overexpression of Atf3 in macrophages protects against the development of MASH in Western diet-fed mice, whereas Atf3 ablation has the opposite effect. Mechanistically, Atf3 improves the reduction of fatty acid oxidation induced by glucose via forkhead box O1 (FoxO1) and Cd36. Atf3 inhibits FoxO1 activity via blocking Hdac1-mediated FoxO1 deacetylation at K242, K245, and K262 and increases Zdhhc4/5-mediated CD36 palmitoylation at C3, C7, C464, and C466; furthermore, macrophage Atf3 decreases hepatocytes lipogenesis and HSCs activation via retinol binding protein 4 (Rbp4). Anti-Rbp4 can prevent MASH progression that is induced by Atf3 deficiency in macrophages. This study identifies Atf3 as a regulator of glucose-fatty acid cycle. Targeting macrophage Atf3 or Rbp4 may be a plausible therapeutic strategy for MASH.
Collapse
Affiliation(s)
- Shuwei Hu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Frontier Innovation Center, Fudan University, Shanghai 200032, China
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Rui Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dongxu Gong
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Pei Hu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jitu Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yingjie Ai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaojie Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chencheng Hu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Minghuan Xu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenxi Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shuyu Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jie Fan
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhigang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Huijuan Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Frontier Innovation Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Ping D, Peng Y, Hu X, Liu C. Macrophage cytotherapy on liver cirrhosis. Front Pharmacol 2023; 14:1265935. [PMID: 38161689 PMCID: PMC10757375 DOI: 10.3389/fphar.2023.1265935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Macrophages, an essential cell population involved in mediating innate immunity in the host, play a crucial role on the development of hepatic cirrhosis. Extensive studies have highlighted the potential therapeutic benefits of macrophage therapy in treating hepatic cirrhosis. This review aims to provide a comprehensive overview of the various effects and underlying mechanisms associated with macrophage therapy in the context of hepatic cirrhosis.
Collapse
Affiliation(s)
- Dabing Ping
- Institute of Liver Diseases, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xudong Hu
- Department of Biology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| |
Collapse
|
4
|
Jaber FL, Sharma Y, Gupta S. Hepatocyte Transplantation Rebalances Cytokines for Hepatic Regeneration in Rats with Ataxia Telangiectasia Mutated Pathway-Related Acute Liver Failure. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:27-38. [PMID: 36309105 PMCID: PMC9768683 DOI: 10.1016/j.ajpath.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/08/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Inadequate DNA damage response related to ataxia telangiectasia mutated gene restricts hepatic regeneration in acute liver failure. Resolving mechanistic gaps in liver damage and repair requires additional animal models that are unconstrained by ultrarapid and unpredictable mortalities or substantial divergences from human pathology. This study used Fischer 344 rats primed with the antitubercular drug, rifampicin, plus phenobarbitone, and monocrotaline, a DNA adduct-forming alkaloid. Rifampicin and monocrotaline can cause liver failure in people. This regimen resulted in hepatic oxidative stress, necrosis, DNA double-strand breaks, liver test abnormalities, altered serum cytokine expression, and mortality. Healthy donor hepatocytes were transplanted ectopically in the peritoneal cavity to study whether they could supply metabolic support and rebalance inflammatory or protective cytokines affecting liver regeneration events. Hepatocyte transplantation increased candidate cytokine levels (granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon-γ, IL-10, and IL-12), leading to Atm, Stat3, and Akt signaling in hepatocytes and nonparenchymal cells, lowering of inflammation, and improvements in intermediary metabolism, DNA repair, and hepatocyte proliferation. Such control of DNA damage and inflammation, along with stimulation of hepatic growth, offers paradigms for cell signaling to restore hepatic homeostasis and regeneration in acute liver failure. Further studies of molecular pathways of high pathobiological impact will advance the knowledge of liver regeneration.
Collapse
Affiliation(s)
- Fadi-Luc Jaber
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yogeshwar Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York; Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Diabetes Center, Albert Einstein College of Medicine, Bronx, New York; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York; Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, Bronx, New York; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
5
|
Kupffer Cells as a Target for Immunotherapy. J 2022. [DOI: 10.3390/j5040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kupffer cells (KCs) are resident macrophages in the liver. Recent studies have revealed that KCs are closely related to inflammatory liver diseases, including nonalcoholic liver diseases (NAFLD). From this point of view, KC transplantation can be a candidate for immunotherapy against inflammatory diseases. Similar to general macrophages, KCs show several different phenotypes according to their environment. Activated KCs are involved in either proinflammatory responses or anti-inflammatory responses. Thus, to manipulate KCs for immunotherapy, it is crucial to control the direction of KC activation. Here, we summarize the outlook and the issues hindering immunotherapy using KC transplantation.
Collapse
|
6
|
Plasschaert RN, DeAndrade MP, Hull F, Nguyen Q, Peterson T, Yan A, Loperfido M, Baricordi C, Barbarossa L, Yoon JK, Dogan Y, Unnisa Z, Schindler JW, van Til NP, Biasco L, Mason C. High-throughput analysis of hematopoietic stem cell engraftment after intravenous and intracerebroventricular dosing. Mol Ther 2022; 30:3209-3225. [PMID: 35614857 PMCID: PMC9552809 DOI: 10.1016/j.ymthe.2022.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/15/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022] Open
Abstract
Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) has shown clear neurological benefit in rare diseases, which is achieved through the engraftment of genetically modified microglia-like cells (MLCs) in the brain. Still, the engraftment dynamics and the nature of engineered MLCs, as well as their potential use in common neurogenerative diseases, have remained largely unexplored. Here, we comprehensively characterized how different routes of administration affect the biodistribution of genetically engineered MLCs and other HSPC derivatives in mice. We generated a high-resolution single-cell transcriptional map of MLCs and discovered that they could clearly be distinguished from macrophages as well as from resident microglia by the expression of a specific gene signature that is reflective of their HSPC ontogeny and irrespective of their long-term engraftment history. Lastly, using murine models of Parkinson's disease and frontotemporal dementia, we demonstrated that MLCs can deliver therapeutically relevant levels of transgenic protein to the brain, thereby opening avenues for the clinical translation of HSPC-GT to the treatment of major neurological diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Aimin Yan
- AVROBIO, Inc, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - Niek P van Til
- AVROBIO, Inc, Cambridge, MA 02139, USA; Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, VU University, and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Luca Biasco
- AVROBIO, Inc, Cambridge, MA 02139, USA; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Chris Mason
- AVROBIO, Inc, Cambridge, MA 02139, USA; Advanced Centre for Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
7
|
Duan L, Sanchez-Guerrero G, Jaeschke H, Ramachandran A. Activation of the adenosine A2B receptor even beyond the therapeutic window of N-acetylcysteine accelerates liver recovery after an acetaminophen overdose. Food Chem Toxicol 2022; 163:112911. [PMID: 35292334 PMCID: PMC9018526 DOI: 10.1016/j.fct.2022.112911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023]
Abstract
Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the USA. The short therapeutic window of the current antidote, N-acetylcysteine (NAC) highlights the need for novel late acting therapeutics. The neuronal guidance cue netrin-1 provides delayed protection against APAP hepatotoxicity through the adenosine A2B receptor (A2BAR). The clinical relevance of this mechanism was investigated here by administration of the A2BAR agonist BAY 60-6583, after an APAP overdose (300 or 600 mg/kg) in fasted male and female C57BL/6J mice with assessment of liver injury 6 or 24 h after APAP in comparison to NAC. BAY 60-6583 treatment 1.5 h after APAP overdose (600 mg/kg) protected against liver injury at 6 h by preserving mitochondrial function despite JNK activation and its mitochondrial translocation. Gender independent protection was sustained when BAY 60-6583 was given 6 h after APAP overdose (300 mg/kg), when NAC administration did not show benefit. This protection was accompanied by enhanced infiltration of macrophages with the reparative anti-inflammatory phenotype by 24 h, accompanied by a decrease in neutrophil infiltration. Thus, our data emphasize the remarkable therapeutic utility of using an A2BAR agonist, which provides delayed protection long after the standard of care NAC ceased to be effective.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Giselle Sanchez-Guerrero
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
8
|
Lin WL, Mizobuchi M, Kawahigashi M, Nakahashi O, Maekawa Y, Sakai T. Functional kupffer cells migrate to the liver from the intraperitoneal cavity. Biochem Biophys Rep 2021; 27:101103. [PMID: 34458593 PMCID: PMC8379421 DOI: 10.1016/j.bbrep.2021.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 08/11/2021] [Indexed: 11/23/2022] Open
Abstract
We established a method of KC transplantation by intraperitoneal (i.p.) injection using EGFP-expressing cells (EGFP-KCs) and normal KCs. The novel method is easier and less invasive than conventional methods so that it is not only technically advantageous but also ethically preferable for experiments using animals. We demonstrated that KCs migrated to the liver following i.p. Injection. Engraftment in the liver was not observed for peritoneal macrophages (pMPs). This suggests that KCs migrate to the liver via a sorting mechanism. KC injection decreased the KC number at 24 h and then recovered the KCs at 10 days to a normal level. Additionally, recovery to the normal level by KC injection was observed in mice with KC depletion induced by GdCl3. These results suggest that a regulatory mechanism exists for controlling the number of KCs.
Collapse
Affiliation(s)
- Wen-Ling Lin
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Mizuki Mizobuchi
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Mina Kawahigashi
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Otoki Nakahashi
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yuuki Maekawa
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Takashi Sakai
- Institute for Health Sciences, Tokushima Bunri University, 180 Nishihama-bouji, Yamashiro-cho, Tokushima, 770-8514, Japan
| |
Collapse
|
9
|
Ait Ahmed Y, Fu Y, Rodrigues RM, He Y, Guan Y, Guillot A, Ren R, Feng D, Hidalgo J, Ju C, Lafdil F, Gao B. Kupffer cell restoration after partial hepatectomy is mainly driven by local cell proliferation in IL-6-dependent autocrine and paracrine manners. Cell Mol Immunol 2021; 18:2165-2176. [PMID: 34282300 PMCID: PMC8429713 DOI: 10.1038/s41423-021-00731-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Kupffer cells (KCs), which are liver-resident macrophages, originate from the fetal yolk sac and represent one of the largest macrophage populations in the body. However, the current data on the origin of the cells that restore macrophages during liver injury and regeneration remain controversial. Here, we address the question of whether liver macrophage restoration results from circulating monocyte infiltration or local KC proliferation in regenerating livers after partial hepatectomy (PHx) and uncover the underlying mechanisms. By using several strains of genetically modified mice and performing immunohistochemical analyses, we demonstrated that local KC proliferation mainly contributed to the restoration of liver macrophages after PHx. Peak KC proliferation was impaired in Il6-knockout (KO) mice and restored after the administration of IL-6 protein, whereas KC proliferation was not affected in Il4-KO or Csf2-KO mice. The source of IL-6 was identified using hepatocyte- and myeloid-specific Il6-KO mice and the results revealed that both hepatocytes and myeloid cells contribute to IL-6 production after PHx. Moreover, peak KC proliferation was also impaired in myeloid-specific Il6 receptor-KO mice after PHx, suggesting that IL-6 signaling directly promotes KC proliferation. Studies using several inhibitors to block the IL-6 signaling pathway revealed that sirtuin 1 (SIRT1) contributed to IL-6-mediated KC proliferation in vitro. Genetic deletion of the Sirt1 gene in myeloid cells, including KCs, impaired KC proliferation after PHx. In conclusion, our data suggest that KC repopulation after PHx is mainly driven by local KC proliferation, which is dependent on IL-6 and SIRT1 activation in KCs.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Université Paris-Est-Créteil, Créteil, France
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Adrien Guillot
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Ruixue Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Juan Hidalgo
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fouad Lafdil
- Université Paris-Est-Créteil, Créteil, France.
- INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France.
- Institut Universitaire de France (IUF), Paris, France.
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Viswanathan P, Sharma Y, Jaber FL, Tchaikovskaya T, Gupta S. Transplanted hepatocytes rescue mice in acetaminophen-induced acute liver failure through paracrine signals for hepatic ATM and STAT3 pathways. FASEB J 2021; 35:e21471. [PMID: 33683737 DOI: 10.1096/fj.202002421r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/29/2022]
Abstract
Acute liver failure constitutes a devastating condition that needs novel cell and molecular therapies. To elicit synergisms in cell types of therapeutic interest, we studied hepatocytes and liver sinusoidal endothelial in mice with acetaminophen-induced acute liver failure. The context of regenerative signals was examined by transplants in peritoneal cavity because it possesses considerable capacity and allows soluble signals to enter the systemic circulation. Whereas transplanted hepatocytes and liver sinusoidal endothelial cells engrafted in peritoneal cavity, only the former could rescue mice in liver failure by improving injury outcomes, activating hepatic DNA damage repair, and inducing liver regeneration. The cytokines secreted by donor hepatocytes or liver sinusoidal endothelial cells differed and in hepatocytes from mice undergoing acetaminophen toxicity major cytokines were even rendered deficient (eg, G-CSF, VEGF, and others). Significantly, recapitulating hepatotoxicity-related DNA damage response in cultured cells identified impairments in ATM and JAK/STAT3 intersections since replacing cytokines produced less from injured hepatocytes restored these pathways to avoid acetaminophen hepatotoxicity. Similarly, hepatocyte transplantation in acute liver failure restored ATM and JAK/STAT3 pathways to advance DNA damage/repair and liver regeneration. The unexpected identification of novel hepatic G-CSF receptor expression following injury allowed paradigmatic studies of G-CSF supplementation to confirm the centrality of this paracrine ATM and STAT3 intersection. Remarkably, DNA damage/repair and hepatic regeneration directed by G-CSF concerned rebalancing of regulatory gene networks overseeing inflammation, metabolism, and cell viability. We conclude that healthy donor hepatocytes offer templates for generating specialized cell types to replace metabolic functions and regenerative factors in liver failure.
Collapse
Affiliation(s)
- Preeti Viswanathan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA.,Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yogeshwar Sharma
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fadi-Luc Jaber
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tatyana Tchaikovskaya
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanjeev Gupta
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.,Diabetes Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA.,Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
11
|
Duan L, Woolbright BL, Jaeschke H, Ramachandran A. Late Protective Effect of Netrin-1 in the Murine Acetaminophen Hepatotoxicity Model. Toxicol Sci 2021; 175:168-181. [PMID: 32207522 DOI: 10.1093/toxsci/kfaa041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acetaminophen (APAP) overdose-induced acute liver failure is an important clinical problem in the United States and the current antidote N-acetylcysteine, has a short early therapeutic window. Since most patients present late to the clinic, there is need for novel late-acting therapeutic options. Though the neuronal guidance cue netrin-1, has been shown to promote hepatic repair and regeneration during liver ischemia/reperfusion injury, its effect in APAP-induced hepatotoxicity is unknown. In the quest for a late-acting therapeutic intervention in APAP-induced liver injury, we examined the role of netrin-1 in a mouse model of APAP overdose. Male C57BL/6J mice were cotreated with exogenous netrin-1 or vehicle control, along with 300 mg/kg APAP and euthanized at 6, 12, and 24 h. Significant elevations in alanine aminotransferase indicative of liver injury were seen in control mice at 6 h and this was not affected by netrin-1 administration. Also, netrin-1 treatment did not influence mitochondrial translocation of phospho-JNK, or peroxynitrite formation indicating that there was no interference with APAP-induced injury processes. Interestingly however, netrin-1 administration attenuated liver injury at 24 h, as seen by alanine aminotransferase levels and histology, at which time significant elevations in the netrin-1 receptor, adenosine A2B receptor (A2BAR) as well as macrophage infiltration was evident. Removal of resident macrophages with clodronate liposomes or treatment with the A2BAR antagonist PSB1115 blocked the protective effects of netrin-1. Thus, our data indicate a previously unrecognized role for netrin-1 in attenuation of APAP hepatotoxicity by enhancing recovery and regeneration, which is mediated through the A2BAR and involves resident liver macrophages.
Collapse
Affiliation(s)
- Luqi Duan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
12
|
Li W, He F. Infusion of Kupffer Cells Expanded in Vitro Ameliorated Liver Fibrosis in a Murine Model of Liver Injury. Cell Transplant 2021; 30:9636897211004090. [PMID: 33784833 PMCID: PMC8020097 DOI: 10.1177/09636897211004090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transfer of exogenous macrophages represents an alternative technique to treat
liver fibrosis. At present, bone marrow-derived monocytes and stem cells are the
main sources for exogenous macrophages. Kupffer cells (KCs) are the resident
macrophages in the liver and play a critical role in the liver homeostasis and
diseases. It is unclear whether infusion of KCs can treat liver fibrosis. In
this study, we observed that granulocyte-macrophage colony stimulating factor
(GM-CSF) could improve the purity of cultured KCs and significantly up-regulate
the expression of Cluster of Differentiation 11b (CD11b). The most important
point is that GM-CSF could significantly promote the proliferation of KCs
in vitro. KCs expanded in vitro still had
the potential of M1/M2 polarization and phagocytosis. Furthermore, infusion of
these KCs could ameliorate liver fibrosis induced by carbon tetrachloride
(CCl4) in mice. Together, our results suggest that KCs are likely
to be another source for macrophage therapy.
Collapse
Affiliation(s)
- Weina Li
- School of Basic Medicine, 12644Fourth Military Medical University, Xi'an, China
| | - Fei He
- School of Medicine, Faculty of Life Science and Medicine, 12657Northwest University, Xi'an, China
| |
Collapse
|
13
|
Elchaninov A, Lokhonina A, Nikitina M, Vishnyakova P, Makarov A, Arutyunyan I, Poltavets A, Kananykhina E, Kovalchuk S, Karpulevich E, Bolshakova G, Sukhikh G, Fatkhudinov T. Comparative Analysis of the Transcriptome, Proteome, and miRNA Profile of Kupffer Cells and Monocytes. Biomedicines 2020; 8:biomedicines8120627. [PMID: 33352881 PMCID: PMC7766432 DOI: 10.3390/biomedicines8120627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophage populations in most mammalian organs consist of cells of different origin. Resident macrophages originate from erythromyeloid precursors of the yolk sac wall; maintenance of the numbers of such macrophages in postnatal ontogenesis is practically independent of bone marrow haematopoiesis. The largest populations of the resident macrophages of embryonic origin are found in the central nervous system (microglia) and liver (Kupffer cells). In contrast, skin dermis and mucous membranes become predominantly colonized by bone marrow-derived monocytes that show pronounced functional and phenotypic plasticity. In the present study, we compared Kupffer cells and monocytes using the immunophenotype, gene expression profile, proteome, and pool of microRNA. The observed differences did not consider the resident liver macrophages as purely M2 macrophages or state that monocytes have purely M1 features. Monocytes show signs of high plasticity and sensitivity to pathogen-associated molecular patterns (e.g., high levels of transcription for Tlr 2, 4, 7, and 8). In contrast, the resident liver macrophages were clearly involved in the regulation of specific organ functions (nitrogen metabolism, complement system protein synthesis).
Collapse
Affiliation(s)
- Andrey Elchaninov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Correspondence:
| | - Anastasia Lokhonina
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Maria Nikitina
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| | - Polina Vishnyakova
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Andrey Makarov
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Irina Arutyunyan
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Anastasiya Poltavets
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Evgenia Kananykhina
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| | - Sergey Kovalchuk
- Laboratory of Bioinformatic Methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Evgeny Karpulevich
- Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, 109004 Moscow, Russia;
- Genome Engineering Laboratory, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Galina Bolshakova
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| | - Gennady Sukhikh
- Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.L.); (P.V.); (A.M.); (I.A.); (A.P.); (G.S.)
| | - Timur Fatkhudinov
- Histology Department, Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (E.K.); (G.B.)
| |
Collapse
|
14
|
Zhao J, Kim JW, Zhou Z, Qi J, Tian W, Lim CW, Han KM, Kim B. Macrophage-Inducible C-Type Lectin Signaling Exacerbates Acetaminophen-Induced Liver Injury by Promoting Kupffer Cell Activation in Mice. Mol Pharmacol 2020; 99:92-103. [PMID: 33262251 DOI: 10.1124/molpharm.120.000043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Overdose of acetaminophen (APAP) has become one of the most frequent causes of acute liver failure. Macrophage-inducible C-type lectin (Mincle) acts as a key moderator in immune responses by recognizing spliceosome-associated protein 130 (SAP130), which is an endogenous ligand released by necrotic cells. This study aims to explore the function of Mincle in APAP-induced hepatotoxicity. Wild-type (WT) and Mincle knockout (KO) mice were used to induce acute liver injury by injection of APAP. The hepatic expressions of Mincle, SAP130, and Mincle signaling intermediate (Syk) were markedly upregulated after the APAP challenge. Mincle KO mice showed attenuated injury in the liver, as shown by reduced pathologic lesions, decreased alanine aminotransferase and aspartate aminotransferase levels, downregulated levels of inflammatory cytokines, and decreased neutrophil infiltration. Consistently, inhibition of Syk signaling by GS9973 alleviated APAP hepatotoxicity. Most importantly, Kupffer cells (KCs) were found as the major cellular source of Mincle. The depletion of KCs abolished the detrimental role of Mincle, and the adoptive transfer of WT KC to Mincle KO mice partially reversed the hyporesponsiveness to hepatotoxicity induced by APAP. Furthermore, the expression levels of interleukin (IL)-1β and neutrophil-attractant CXC chemokines were substantially lower in KCs isolated from APAP-treated Mincle KO mice compared with those from WT mice. Similar results were found in primary Mincle KO KCs treated with a ligand of Mincle (trehalose-6,6-dibehenate) or in conditioned media obtained from APAP-treated hepatocytes. Collectively, Mincle can regulate the inflammatory response of KCs, which is necessary for the complete progression of hepatotoxicity induced by APAP. SIGNIFICANCE STATEMENT: Acetaminophen (APAP) overdose is becoming a main cause of drug-induced acute liver damage in the developed world. This study showed that macrophage-inducible C-type lectin (Mincle) deletion or inhibition of Mincle downstream signaling attenuates APAP hepatotoxicity. Furthermore, Mincle as a modulator of Kupffer cell activation contributes to the full process of hepatotoxicity induced by APAP. This mechanism will offer valuable insights to overcome the limitation of APAP hepatotoxicity treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Jong-Won Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Zixiong Zhou
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Jing Qi
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Weishun Tian
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Chae Woong Lim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Kang Min Han
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| | - Bumseok Kim
- Biosafety Research Institute and College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, Republic of Korea (J.Z., J.-W.K., Z.Z., J.Q., W.T., C.W.L., B.K.); Department of Pathology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea (K.M.H.); and College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China (J.Z.)
| |
Collapse
|
15
|
iPSC-Derived Liver Organoids: A Journey from Drug Screening, to Disease Modeling, Arriving to Regenerative Medicine. Int J Mol Sci 2020; 21:ijms21176215. [PMID: 32867371 PMCID: PMC7503935 DOI: 10.3390/ijms21176215] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation is the most common treatment for patients suffering from liver failure that is caused by congenital diseases, infectious agents, and environmental factors. Despite a high rate of patient survival following transplantation, organ availability remains the key limiting factor. As such, research has focused on the transplantation of different cell types that are capable of repopulating and restoring liver function. The best cellular mix capable of engrafting and proliferating over the long-term, as well as the optimal immunosuppression regimens, remain to be clearly well-defined. Hence, alternative strategies in the field of regenerative medicine have been explored. Since the discovery of induced pluripotent stem cells (iPSC) that have the potential of differentiating into a broad spectrum of cell types, many studies have reported the achievement of iPSCs differentiation into liver cells, such as hepatocytes, cholangiocytes, endothelial cells, and Kupffer cells. In parallel, an increasing interest in the study of self-assemble or matrix-guided three-dimensional (3D) organoids have paved the way for functional bioartificial livers. In this review, we will focus on the recent breakthroughs in the development of iPSCs-based liver organoids and the major drawbacks and challenges that need to be overcome for the development of future applications.
Collapse
|
16
|
Rossetto A, De Re V, Steffan A, Ravaioli M, Miolo G, Leone P, Racanelli V, Uzzau A, Baccarani U, Cescon M. Carcinogenesis and Metastasis in Liver: Cell Physiological Basis. Cancers (Basel) 2019; 11:E1731. [PMID: 31694274 PMCID: PMC6895858 DOI: 10.3390/cancers11111731] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) incidence is rising. This paper summarises the current state of knowledge and recent discoveries in the cellular and physiological mechanisms leading to the development of liver cancer, especially HCC, and liver metastases. After reviewing normal hepatic cytoarchitecture and immunological characteristics, the paper addresses the pathophysiological factors that cause liver damage and predispose to neoplasia. Particular attention is given to chronic liver diseases, metabolic syndrome and the impact of altered gut microbiota, disrupted circadian rhythm and psychological stress. Improved knowledge of the multifactorial aetiology of HCC has important implications for the prevention and treatment of this cancer and of liver metastases in general.
Collapse
Affiliation(s)
- Anna Rossetto
- Department of Organ Insufficiency and Transplantation, General Surgery and Transplantation, University Hospital of Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy; (M.R.); (M.C.)
| | - Valli De Re
- Immunopatologia e Biomarcatori Oncologici/Bio-proteomics Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Agostino Steffan
- Immunopatologia e Biomarcatori Oncologici/Bio-proteomics Facility, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Matteo Ravaioli
- Department of Organ Insufficiency and Transplantation, General Surgery and Transplantation, University Hospital of Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy; (M.R.); (M.C.)
| | - Gianmaria Miolo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, G. Baccelli Section of Internal Medicine, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, G. Baccelli Section of Internal Medicine, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Alessandro Uzzau
- Program of Oncology Surgery, Dipartimento di Area Medica, University of Udine, 33100 Udine, Italy;
| | - Umberto Baccarani
- Surgery and Transplantation, Dipartimento di Area Medica, University of Udine, 33100 Udine, Italy;
| | - Matteo Cescon
- Department of Organ Insufficiency and Transplantation, General Surgery and Transplantation, University Hospital of Bologna, Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy; (M.R.); (M.C.)
| |
Collapse
|
17
|
Zhang W, Liu L, Su H, Liu Q, Shen J, Dai H, Zheng W, Lu Y, Zhang W, Bei Y, Shen P. Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix. Br J Cancer 2019; 121:837-845. [PMID: 31570753 PMCID: PMC6889154 DOI: 10.1038/s41416-019-0578-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/19/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
Abstract
Background The extracellular matrix (ECM) is essential for malignant tumour progression, as it is a physical barrier to various kinds of anticancer therapies. Matrix metalloproteinase (MMPs) can degrade almost all ECM components, and macrophages are an important source of MMPs. Studies using macrophages to treat tumours have shown that macrophages can enter tumour tissue to play a regulatory role. Methods We modified macrophages with a designed chimeric antigen receptor (CAR), which could be activated after recognition of the tumour antigen HER2 to trigger the internal signalling of CD147 and increase the expression of MMPs. Results Although CAR-147 macrophage treatment did not affect tumour cell growth in vitro compared with control treatment. However, we found that the infusion of CAR-147 macrophages significantly inhibited HER2-4T1 tumour growth in BALB/c mice. Further investigation showed that CAR-147 macrophages could reduce tumour collagen deposition and promote T-cell infiltration into tumours, which were consistent with expectations. Interestingly, the levels of the inflammatory cytokines TNF-α and IL-6, which are key factors in cytokine release syndrome, were significantly decreased in the peripheral blood in CAR-147 macrophage-transfused mice. Conclusion Our data suggest that targeting the ECM by engineered macrophages would be an effective treatment strategy for solid tumours.
Collapse
Affiliation(s)
- Wenlong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - Ling Liu
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - HuiFang Su
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - Qin Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, PR China
| | - Jie Shen
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 210008, Nanjing, PR China
| | - Hanren Dai
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - Yan Lu
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China
| | - Weijie Zhang
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 210008, Nanjing, Jiangsu, China
| | - Yuncheng Bei
- College of Life Sciences, Peking University, 100871, Beijing, PR China.
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, MOE Key Laboratory of Model Animal for Disease Study, School of Life Sciences, Nanjing University, 210046, Nanjing, PR China.
| |
Collapse
|
18
|
Ogawa K, Tsurutani M, Hashimoto A, Soeda M. Simple propagation method for resident macrophages by co-culture and subculture, and their isolation from various organs. BMC Immunol 2019; 20:34. [PMID: 31533615 PMCID: PMC6749721 DOI: 10.1186/s12865-019-0314-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Background Resident macrophages (Mø) originating from yolk sac Mø and/or foetal monocytes colonise tissues/organs during embryonic development. They persist into adulthood by self-renewal at a steady state, independent of adult monocyte inputs, except for those in the intestines and dermis. Thus, many resident Mø can be propagated in vitro under optimal conditions; however, there are no specific in vitro culture methods available for the propagation of resident Mø from diverse tissues/organs. Results We provided a simple method for propagating resident Mø derived from the liver, spleen, lung, and brain of ICR male mice by co-culture and subculture along with the propagation of other stromal cells of the respective organs in standard culture media and successfully demonstrated the propagation of resident Mø colonising these organs. We also proposed a simple method for segregating Mø from stromal cells according to their adhesive property on bacteriological Petri dishes, which enabled the collection of more than 97.6% of the resident Mø from each organ. Expression analyses of conventional Mø markers by flow cytometry showed similar expression patterns among the Mø collected from the organs. Conclusion This is the first study to clearly provide a practical Mø propagation method applicable to resident Mø of diverse tissues and organs. Thus, this novel practical Mø propagation method can offer broad applications for the use of resident Mø of diverse tissues and organs.
Collapse
Affiliation(s)
- Kazushige Ogawa
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan.
| | - Mayu Tsurutani
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Aya Hashimoto
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan
| | - Miharu Soeda
- Laboratory of Veterinary Anatomy, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano, Osaka, 598-8531, Japan
| |
Collapse
|
19
|
Elchaninov AV, Fatkhudinov TK, Vishnyakova PA, Lokhonina AV, Sukhikh GT. Phenotypical and Functional Polymorphism of Liver Resident Macrophages. Cells 2019; 8:E1032. [PMID: 31491903 PMCID: PMC6769646 DOI: 10.3390/cells8091032] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Liver diseases are one of the main causes of mortality. In this regard, the development of new ways of reparative processes stimulation is relevant. Macrophages play a leading role in the regulation of liver homeostasis in physiological conditions and in pathology. In this regard, the development of new liver treatment methods is impossible without taking into account this cell population. Resident macrophages of the liver, Kupffer cells, represent a unique cell population, first of all, due to their development. Most of the liver macrophages belong to the self-sustaining macrophage cell population, whose origin is not bone marrow. In addition, Kupffer cells are involved in such processes as regulation of hepatocyte proliferation and apoptosis, remodeling of the intercellular matrix, lipid metabolism, protective function, etc. Such a broad spectrum of liver macrophage functions indicates their high functional plasticity. The review summarizes recent data on the development, phenotypic and functional plasticity, and participation in the reparative processes of liver macrophages: resident macrophages (Kupffer cells) and bone marrow-derived macrophages.
Collapse
Affiliation(s)
- Andrey V Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Ministry of Healthcare of The Russian Federation, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997, Russia.
| | - Timur Kh Fatkhudinov
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia.
| | - Polina A Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| | - Anastasia V Lokhonina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
- Histology, Embryology and Cytology Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia.
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia.
| |
Collapse
|
20
|
Li B, Liu YM, Yan Y, Yang N, Gao J, Jiang T, Shang XQ, Tian FM, Ding JB, Ma XM. Effect of different types of macrophages on hepatic fibrosis in Echinococcus Granulosus mice. Biomed Pharmacother 2019; 117:109178. [DOI: 10.1016/j.biopha.2019.109178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/11/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
|
21
|
Yadav N, Jaber FL, Sharma Y, Gupta P, Viswanathan P, Gupta S. Efficient Reconstitution of Hepatic Microvasculature by Endothelin Receptor Antagonism in Liver Sinusoidal Endothelial Cells. Hum Gene Ther 2018; 30:365-377. [PMID: 30266073 DOI: 10.1089/hum.2018.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Reconstitution of healthy endothelial cells in vascular beds offers opportunities for mechanisms in tissue homeostasis, organ regeneration, and correction of deficient functions. Liver sinusoidal endothelial cells express unique functions, and their transplantation is relevant for disease models and for cell therapy. As molecular targets for improving transplanted cell engraftment and proliferation will be highly significant, this study determined whether ETA/B receptor antagonism by the drug bosentan could overcome cell losses due to cell transplantation-induced cytotoxicity. Cell engraftment and proliferation assays were performed with healthy wild-type liver sinusoidal endothelial cells transplanted into the liver of dipeptidylpeptidase IV knockout mice. Transplanted cells were identified in tissues by enzyme histochemistry. Cells with prospective ETA/B antagonism engrafted significantly better in hepatic sinusoids. Moreover, these cells underwent multiple rounds of division under liver repopulation conditions. The gains of ETA/B antagonism resulted from benefits in cell viability and membrane integrity. Also, in bosentan-treated cells, mitochondrial homeostasis was better maintained with less oxidative stress and DNA damage after injuries. Intracellular effects of ETA/B antagonism were transduced by conservation of ataxia telangiectasia mutated protein, which directs DNA damage response. Therefore, ETA/B antagonism in donor cells will advance vascular reconstitution. Extensive experience with ETA/B antagonists will facilitate translation in people.
Collapse
Affiliation(s)
- Neelam Yadav
- 1 Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,2 Department of Biochemistry, Dr. RML Avadh University, Faizabad, India
| | - Fadi Luc Jaber
- 1 Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Yogeshwar Sharma
- 1 Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Priya Gupta
- 1 Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Preeti Viswanathan
- 3 Department of Pediatrics, Albert Einstein College of Medicine and Children's Hospital at Montefiore, Bronx, New York
| | - Sanjeev Gupta
- 1 Department of Medicine, Albert Einstein College of Medicine, Bronx, New York.,4 Department of Pathology, Albert Einstein College of Medicine, Bronx, New York.,5 Marion Bessin Liver Research Center, Diabetes Center, Irwin S. and Sylvia Chanin Institute for Cancer Research, and Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
22
|
Sharma Y, Liu J, Kristian KE, Follenzi A, Gupta S. In Atp7b-/- Mice Modeling Wilson's Disease Liver Repopulation With Bone Marrow-Derived Myofibroblasts or Inflammatory Cells and Not Hepatocytes Is Deleterious. Gene Expr 2018; 19:15-24. [PMID: 30029699 PMCID: PMC6290324 DOI: 10.3727/105221618x15320123457380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In Wilson's disease, Atp7b mutations impair copper excretion with liver or brain damage. Healthy transplanted hepatocytes repopulate the liver, excrete copper, and reverse hepatic damage in animal models of Wilson's disease. In Fah-/- mice with tyrosinemia and α-1 antitrypsin mutant mice, liver disease is resolved by expansions of healthy hepatocytes derived from transplanted healthy bone marrow stem cells. This potential of stem cells has not been defined for Wilson's disease. In diseased Atp7b-/- mice, we reconstituted bone marrow with donor cells expressing green fluorescent protein reporter from healthy transgenic mice. Mature hepatocytes originating from donor bone marrow were identified by immunostaining for green fluorescence protein and bile canalicular marker, dipeptidylpeptidase-4. Mesenchymal and inflammatory cell markers were used for other cells from donor bone marrow cells. Gene expression, liver tests, and tissues were analyzed for outcomes in Atp7b-/- mice. After bone marrow transplantation in Atp7b-/- mice, donor-derived hepatocytes containing bile canaliculi appeared within weeks. Despite this maturity, donor-derived hepatocytes neither divided nor expanded. The liver of Atp7b-/- mice was not repopulated by donor-derived hepatocytes: Atp7b mRNA remained undetectable; liver tests, copper content, and fibrosis actually worsened. Restriction of proliferation in hepatocytes accompanied oxidative DNA damage. By contrast, donor-derived mesenchymal and inflammatory cells extensively proliferated. These contributed to fibrogenesis through greater expression of inflammatory cytokines. In Wilson's disease, donor bone marrow-derived cells underwent different fates: hepatocytes failed to proliferate; inflammatory cells proliferated to worsen disease outcomes. This will help guide stem cell therapies for conditions with proinflammatory or profibrogenic microenvironments.
Collapse
Affiliation(s)
- Yogeshwar Sharma
- *Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghua Liu
- †Department of Obstetrics and Gynecology, Shanghai Public Health Clinical Center, Shanghai, P.R. China
| | | | - Antonia Follenzi
- §Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- ¶Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Sanjeev Gupta
- *Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- §Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- #Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, and Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
23
|
Ma P, Han H, Qin H. Reply to: "Studies of macrophage therapy for cirrhosis - From mice to men". J Hepatol 2018; 68:1091-1093. [PMID: 29317296 DOI: 10.1016/j.jhep.2017.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/04/2022]
Affiliation(s)
- Pengfei Ma
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China; Department of Hepatobiliary Surgery, PLA Navy General Hospital, Beijing, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Hongyan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
24
|
Benten D, Kluwe J, Wirth JW, Thiele ND, Follenzi A, Bhargava KK, Palestro CJ, Koepke M, Tjandra R, Volz T, Lutgehetmann M, Gupta S. A humanized mouse model of liver fibrosis following expansion of transplanted hepatic stellate cells. J Transl Med 2018; 98:525-536. [PMID: 29352225 PMCID: PMC6526950 DOI: 10.1038/s41374-017-0010-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) are major contributors to liver fibrosis, as hepatic injuries may cause their transdifferentiation into myofibroblast-like cells capable of producing excessive extracellular matrix proteins. Also, HSCs can modulate engraftment of transplanted hepatocytes and contribute to liver regeneration. Therefore, understanding the biology of human HSCs (hHSCs) is important, but effective methods have not been available to address their fate in vivo. To investigate whether HSCs could engraft and repopulate the liver, we transplanted GFP-transduced immortalized hHSCs into immunodeficient NOD/SCID mice. Biodistribution analysis with radiolabeled hHSCs showed that after intrasplenic injection, the majority of transplanted cells rapidly translocated to the liver. GFP-immunohistochemistry demonstrated that transplanted hHSCs engrafted alongside hepatic sinusoids. Prior permeabilization of the sinusoidal endothelial layer with monocrotaline enhanced engraftment of hHSCs. Transplanted hHSCs remained engrafted without relevant proliferation in the healthy liver. However, after CCl4 or bile duct ligation-induced liver damage, transplanted hHSCs expanded and contributed to extracellular matrix production, formation of bridging cell-septae and cirrhosis-like hepatic pseudolobules. CCl4-induced injury recruited hHSCs mainly to zone 3, whereas after bile duct ligation, hHSCs were mainly in zone 1 of the liver lobule. Transplanted hHSCs neither transdifferentiated into other cell types nor formed tumors in these settings. In conclusion, a humanized mouse model was generated by transplanting hHSCs, which proliferated during hepatic injury and inflammation, and contributed to liver fibrosis. The ability to repopulate the liver with transplanted hHSCs will be particularly significant for mechanistic studies of cell-cell interactions and fibrogenesis within the liver.
Collapse
Affiliation(s)
- Daniel Benten
- Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany. .,Helios Klinikum Duisburg, Duisburg, Germany.
| | - Johannes Kluwe
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jan W. Wirth
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Nina D. Thiele
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Follenzi
- Department of HealthSciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Kuldeep K. Bhargava
- Division of Nuclear Medicine and Molecular Imaging, Long Island Jewish Health Center, NorthWell Health, New Hyde Park, NY, USA
| | - Christopher J. Palestro
- Division of Nuclear Medicine and Molecular Imaging, Long Island Jewish Health Center, NorthWell Health, New Hyde Park, NY, USA
| | - Michael Koepke
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Reni Tjandra
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lutgehetmann
- Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sanjeev Gupta
- Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
25
|
Imarisio C, Alchera E, Bangalore Revanna C, Valente G, Follenzi A, Trisolini E, Boldorini R, Carini R. Oxidative and ER stress-dependent ASK1 activation in steatotic hepatocytes and Kupffer cells sensitizes mice fatty liver to ischemia/reperfusion injury. Free Radic Biol Med 2017; 112:141-148. [PMID: 28739531 DOI: 10.1016/j.freeradbiomed.2017.07.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Steatosis intensifies hepatic ischemia/reperfusion (I/R) injury increasing hepatocyte damage and hepatic inflammation. This study evaluates if this process is associated to a differential response of steatotic hepatocytes (HP) and Kupffer cells (KC) to I/R injury and investigates the molecular mechanisms involved. Control or steatotic (treated with 50 μmol palmitic acid, PA) mouse HP or KC were exposed to hypoxia/reoxygenation (H/R). C57BL/6 mice fed 9 week with control or High Fat diet underwent to partial hepatic IR. PA increased H/R damage of HP and further activated the ASK1-JNK axis stimulated by ER stress during H/R. PA also induced the production of oxidant species (OS), and OS prevention nullified the capacity of PA to increase H/R damage and ASK1/JNK stimulation. ASK1 inhibition prevented JNK activation and entirely protected HP damage. In KC, PA directly activated ER stress, ASK1 and p38 MAPK and increased H/R damage. However, in contrast to HP, ASK1 inhibition further increased H/R damage by preventing p38 MAPK activation. In mice liver, steatosis induced the expression of activated ASK1 in only KC, whereas I/R exposure of steatotic liver activated ASK1 expression also in HP. "In vivo", ASK1 inhibition prevented ASK1, JNK and p38 MAPK activation and protected I/R damage and expression of inflammatory markers. CONCLUSIONS Lipids-induced ASK1 stimulation differentially affects HP and KC by promoting cytotoxic or protective signals. ASK1 increases H/R damage of HP by stimulating JNK and protects KC activating p38MAPK. These data support the potentiality of the therapeutic employment of ASK1 inhibitors that can antagonize the damaging effects of I/R upon fatty liver surgery by the contextual reduction of HP death and of KC-mediated reactions.
Collapse
Affiliation(s)
- Chiara Imarisio
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Elisa Alchera
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | | | - Guido Valente
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy.
| | - Antonia Follenzi
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Elena Trisolini
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Renzo Boldorini
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Rita Carini
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| |
Collapse
|
26
|
Ma PF, Gao CC, Yi J, Zhao JL, Liang SQ, Zhao Y, Ye YC, Bai J, Zheng QJ, Dou KF, Han H, Qin HY. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol 2017; 67:770-779. [PMID: 28596109 DOI: 10.1016/j.jhep.2017.05.022] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/26/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Macrophages play vital roles in chronic liver injury, and have been tested as a tool for cytotherapy in liver fibrosis. However, macrophages possess ontogenic and functional heterogeneities. Some subsets are pro-fibrotic, whereas others are anti-fibrotic. This study aimed to clarify which macrophage subset is efficient for cytotherapy in liver fibrosis and to elucidate the underlying mechanisms. METHODS Liver fibrosis was induced in mice by carbon tetrachloride injection or bile duct ligation. Bone-marrow-derived macrophages (BMDMs) were polarized into M0, M1, or M2 macrophages, respectively. BMDMs were infused into mice through the tail vein at different stages of fibrogenesis. Fibrosis progression, hepatic cell populations, and related molecular changes were evaluated. RESULTS Both M0 and M1 BMDMs significantly ameliorated liver fibrosis, but M1 exhibited stronger therapeutic effects than M0. M2 macrophages were not effective on liver fibrosis. M1 macrophages reduced the number and activation of hepatic stellate cells (HSCs), which could be attributed at least partly to increased HSC apoptosis. M1 macrophages enhanced the recruitment of endogenous macrophages into fibrotic liver, which displayed the phenotype of Ly6Clo restorative macrophages and produced matrix metalloproteinases (MMPs) and hepatic growth factor (HGF) to enhance collagen degradation and hepatocyte proliferation, respectively. M1 macrophages also increased the number of total and activated natural killer (NK) cells in the fibrotic liver, which released TNF-related apoptosis-inducing ligand (TRAIL), inducing HSC apoptosis. CONCLUSIONS M1 macrophages, which modulate the immune microenvironment to recruit and modify the activation of endogenous macrophages and NK cells, are effective for cytotherapy in experimental liver fibrosis. Lay summary: M1 Bone marrow-derived macrophages (BMDMs) exhibit a stronger therapeutic effect by modulating the hepatic microenvironment to recruit and modify the activation of endogenous macrophages and natural killer (NK) cells, which likely lead to hepatic stellate cells (HSCs) apoptosis and hampered fibrogenesis.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Chun-Chen Gao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Yi
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jun-Long Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Shi-Qian Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Chen Ye
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jian Bai
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Qi-Jun Zheng
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ke-Feng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Hua Han
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Hong-Yan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
27
|
Merlin S, Cannizzo ES, Borroni E, Bruscaggin V, Schinco P, Tulalamba W, Chuah MK, Arruda VR, VandenDriessche T, Prat M, Valente G, Follenzi A. A Novel Platform for Immune Tolerance Induction in Hemophilia A Mice. Mol Ther 2017; 25:1815-1830. [PMID: 28552407 DOI: 10.1016/j.ymthe.2017.04.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Hemophilia A (HA) is an X-linked bleeding disease caused by factor VIII (FVIII) deficiency. We previously demonstrated that FVIII is produced specifically in liver sinusoid endothelial cells (LSECs) and to some degree in myeloid cells, and thus, in the present work, we seek to restrict the expression of FVIII transgene to these cells using cell-specific promoters. With this approach, we aim to limit immune response in a mouse model by lentiviral vector (LV)-mediated gene therapy encoding FVIII. To increase the target specificity of FVIII expression, we included miRNA target sequences (miRTs) (i.e., miRT-142.3p, miRT-126, and miRT-122) to silence expression in hematopoietic cells, endothelial cells, and hepatocytes, respectively. Notably, we report, for the first time, therapeutic levels of FVIII transgene expression at its natural site of production, which occurred without the formation of neutralizing antibodies (inhibitors). Moreover, inhibitors were eradicated in FVIII pre-immune mice through a regulatory T cell-dependent mechanism. In conclusion, targeting FVIII expression to LSECs and myeloid cells by using LVs with cell-specific promoter minimized off-target expression and immune responses. Therefore, at least for some transgenes, expression at the physiologic site of synthesis can enhance efficacy and safety, resulting in long-term correction of genetic diseases such as HA.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Elvira Stefania Cannizzo
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Valentina Bruscaggin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Piercarla Schinco
- Azienda Ospedaliera Universitaria Città della Salute e della Scienza, 10126 Torino, Italy
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Valder R Arruda
- The Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Guido Valente
- Department of Translational Medicine, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy.
| |
Collapse
|