1
|
Kühl F, Brand K, Lichtinghagen R, Huber R. GSK3-Driven Modulation of Inflammation and Tissue Integrity in the Animal Model. Int J Mol Sci 2024; 25:8263. [PMID: 39125833 PMCID: PMC11312333 DOI: 10.3390/ijms25158263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, GSK3 is accepted as an enzyme strongly involved in the regulation of inflammation by balancing the pro- and anti-inflammatory responses of cells and organisms, thus influencing the initiation, progression, and resolution of inflammatory processes at multiple levels. Disturbances within its broad functional scope, either intrinsically or extrinsically induced, harbor the risk of profound disruptions to the regular course of the immune response, including the formation of severe inflammation-related diseases. Therefore, this review aims at summarizing and contextualizing the current knowledge derived from animal models to further shape our understanding of GSK3α and β and their roles in the inflammatory process and the occurrence of tissue/organ damage. Following a short recapitulation of structure, function, and regulation of GSK3, we will focus on the lessons learned from GSK3α/β knock-out and knock-in/overexpression models, both conventional and conditional, as well as a variety of (predominantly rodent) disease models reflecting defined pathologic conditions with a significant proportion of inflammation and inflammation-related tissue injury. In summary, the literature suggests that GSK3 acts as a crucial switch driving pro-inflammatory and destructive processes and thus contributes significantly to the pathogenesis of inflammation-associated diseases.
Collapse
Affiliation(s)
| | | | | | - René Huber
- Institute of Clinical Chemistry and Laboratory Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.K.); (K.B.); (R.L.)
| |
Collapse
|
2
|
Carneiro BA, Cavalcante L, Mahalingam D, Saeed A, Safran H, Ma WW, Coveler AL, Powell S, Bastos B, Davis E, Sahai V, Mikrut W, Longstreth J, Smith S, Weisskittel T, Li H, Borden BA, Harvey RD, Sahebjam S, Cervantes A, Koukol A, Mazar AP, Steeghs N, Kurzrock R, Giles FJ, Munster P. Phase I Study of Elraglusib (9-ING-41), a Glycogen Synthase Kinase-3β Inhibitor, as Monotherapy or Combined with Chemotherapy in Patients with Advanced Malignancies. Clin Cancer Res 2024; 30:522-531. [PMID: 37982822 DOI: 10.1158/1078-0432.ccr-23-1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/21/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE The safety, pharmacokinetics, and efficacy of elraglusib, a glycogen synthase kinase-3β (GSK-3β) small-molecule inhibitor, as monotherapy or combined with chemotherapy, in patients with relapsed or refractory solid tumors or hematologic malignancies was studied. PATIENTS AND METHODS Elraglusib (intravenously twice weekly in 3-week cycles) monotherapy dose escalation was followed by dose escalation with eight chemotherapy regimens (gemcitabine, doxorubicin, lomustine, carboplatin, irinotecan, gemcitabine/nab-paclitaxel, paclitaxel/carboplatin, and pemetrexed/carboplatin) in patients previously exposed to the same chemotherapy. RESULTS Patients received monotherapy (n = 67) or combination therapy (n = 171) elraglusib doses 1 to 15 mg/kg twice weekly. The initial recommended phase II dose (RP2D) of elraglusib was 15 mg/kg twice weekly and was defined, without dose-limiting toxicity observation, due to fluid volumes necessary for drug administration. The RP2D was subsequently reduced to 9.3 mg/kg once weekly to reduce elraglusib-associated central/peripheral vascular access catheter blockages. Other common elraglusib-related adverse events (AE) included transient visual changes and fatigue. Grade ≥3 treatment-emergent AEs occurred in 55.2% and 71.3% of patients on monotherapy and combination therapy, respectively. Part 1 monotherapy (n = 62) and part 2 combination (n = 138) patients were evaluable for response. In part 1, a patient with melanoma had a complete response, and a patient with acute T-cell leukemia/lymphoma had a partial response (PR). In part 2, seven PRs were observed, and the median progression-free survival and overall survival were 2.1 [95% confidence interval (CI), 2-2.6] and 6.9 (95% CI, 5.7-8.4) months, respectively. CONCLUSIONS Elraglusib had a favorable toxicity profile as monotherapy and combined with chemotherapy and was associated with clinical benefit supporting further clinical evaluation in combination with chemotherapy.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Legorreta Cancer Center, Brown University and Lifespan Cancer Institute, Providence, Rhode Island
| | | | | | - Anwaar Saeed
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Howard Safran
- Legorreta Cancer Center, Brown University and Lifespan Cancer Institute, Providence, Rhode Island
| | | | | | - Steven Powell
- Sanford Health, University of South Dakota Medical Center, Sioux Falls, South Dakota
| | - Bruno Bastos
- Miami Cancer Institute at Baptist Health, Miami, Florida
| | | | | | | | | | | | | | - Hu Li
- Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Brittany A Borden
- Legorreta Cancer Center, Brown University and Lifespan Cancer Institute, Providence, Rhode Island
| | | | | | - Andrés Cervantes
- Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | | | | | | | | | | | - Pamela Munster
- University of California San Francisco, San Francisco, California
| |
Collapse
|
3
|
Keshava S, Owens S, Qin W, Jeffers A, Kyei P, Komatsu S, Kleam J, Ikebe M, Idell S, Tucker TA. The mTORC2/SGK1/NDRG1 Signaling Axis Is Critical for the Mesomesenchymal Transition of Pleural Mesothelial Cells and the Progression of Pleural Fibrosis. Am J Respir Cell Mol Biol 2024; 70:50-62. [PMID: 37607215 PMCID: PMC10768834 DOI: 10.1165/rcmb.2023-0131oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023] Open
Abstract
Progressive lung scarring because of persistent pleural organization often results in pleural fibrosis (PF). This process affects patients with complicated parapneumonic pleural effusions, empyema, and other pleural diseases prone to loculation. In PF, pleural mesothelial cells undergo mesomesenchymal transition (MesoMT) to become profibrotic, characterized by increased expression of α-smooth muscle actin and matrix proteins, including collagen-1. In our previous study, we showed that blocking PI3K/Akt signaling inhibits MesoMT induction in human pleural mesothelial cells (HPMCs) (1). However, the downstream signaling pathways leading to MesoMT induction remain obscure. Here, we investigated the role of mTOR complexes (mTORC1/2) in MesoMT induction. Our studies show that activation of the downstream mediator mTORC1/2 complex is, likewise, a critical component of MesoMT. Specific targeting of mTORC1/2 complex using pharmacological inhibitors such as INK128 and AZD8055 significantly inhibited transforming growth factor β (TGF-β)-induced MesoMT markers in HPMCs. We further identified the mTORC2/Rictor complex as the principal contributor to MesoMT progression induced by TGF-β. Knockdown of Rictor, but not Raptor, attenuated TGF-β-induced MesoMT in these cells. In these studies, we further show that concomitant activation of the SGK1/NDRG1 signaling cascade is essential for inducing MesoMT. Targeting SGK1 and NDRG1 with siRNA and small molecular inhibitors attenuated TGF-β-induced MesoMT in HPMCs. Additionally, preclinical studies in our Streptococcus pneumoniae-mediated mouse model of PF showed that inhibition of mTORC1/2 with INK128 significantly attenuated the progression of PF in subacute and chronic injury. In conclusion, our studies demonstrate that mTORC2/Rictor-mediated activation of SGK1/NDRG1 is critical for MesoMT induction and that targeting this pathway could inhibit or even reverse the progression of MesoMT and PF.
Collapse
Affiliation(s)
| | - Shuzi Owens
- Department of Cellular and Molecular Biology, and
| | - Wenyi Qin
- Department of Cellular and Molecular Biology, and
| | | | - Perpetual Kyei
- Biotechnology Graduate Program, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | | | - Joshua Kleam
- Department of Cellular and Molecular Biology, and
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, and
| | - Steven Idell
- Texas Lung Injury Institute
- Department of Cellular and Molecular Biology, and
| | - Torry A. Tucker
- Texas Lung Injury Institute
- Department of Cellular and Molecular Biology, and
| |
Collapse
|
4
|
Ji L, Xu S, Luo H, Zeng F. Insights from DOCK2 in cell function and pathophysiology. Front Mol Biosci 2022; 9:997659. [PMID: 36250020 PMCID: PMC9559381 DOI: 10.3389/fmolb.2022.997659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Dedicator of cytokinesis 2 (DOCK2) can activate the downstream small G protein Rac and regulate cytoskeletal reorganization. DOCK2 is essential for critical physiological processes such as migration, activation, proliferation, and effects of immune cells, including lymphocytes, neutrophils, macrophages, and dendritic cells. For example, DOCK2 is involved in the development and activation of T and B lymphocytes by affecting synapse formation and inhibiting the development of the Th2 lineage by downregulating IL-4Rα surface expression. Not only that, DOCK2 may be a molecular target for controlling cardiac transplant rejection and Alzheimer’s disease (AD). Patients with defects in the DOCK2 gene also exhibit a variety of impaired cellular functions, such as chemotactic responses of lymphocytes and reactive oxygen species (ROS) production by neutrophils. To date, DOCK2 has been shown to be involved in the development of various diseases, including AD, pneumonia, myocarditis, colitis, tumors, etc. DOCK2 plays different roles in these diseases and the degree of inflammatory response has a different impact on the progression of disease. In this paper, we present a review of recent advances in the function of DOCK2 in various immune cells and its role in various diseases.
Collapse
Affiliation(s)
- Lulin Ji
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Shuquan Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Haiqing Luo
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| | - Fanwei Zeng
- Organoid Research Center, Xiamen Broad Creation Biotechnology Co., Ltd., Xiamen, China
- Research and Development Center, Xiamen Mogengel Biotechnology Co., Ltd., Xiamen, China
- *Correspondence: Fanwei Zeng, ; Haiqing Luo, ; Lulin Ji,
| |
Collapse
|
5
|
Sakai T, Choo YY, Sato O, Ikebe R, Jeffers A, Idell S, Tucker T, Ikebe M. Myo5b Transports Fibronectin-Containing Vesicles and Facilitates FN1 Secretion from Human Pleural Mesothelial Cells. Int J Mol Sci 2022; 23:ijms23094823. [PMID: 35563212 PMCID: PMC9101030 DOI: 10.3390/ijms23094823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 12/13/2022] Open
Abstract
Pleural mesothelial cells (PMCs) play a central role in the progression of pleural fibrosis. As pleural injury progresses to fibrosis, PMCs transition to mesenchymal myofibroblast via mesothelial mesenchymal transition (MesoMT), and produce extracellular matrix (ECM) proteins including collagen and fibronectin (FN1). FN1 plays an important role in ECM maturation and facilitates ECM-myofibroblast interaction, thus facilitating fibrosis. However, the mechanism of FN1 secretion is poorly understood. We report here that myosin 5b (Myo5b) plays a critical role in the transportation and secretion of FN1 from human pleural mesothelial cells (HPMCs). TGF-β significantly increased the expression and secretion of FN1 from HPMCs and facilitates the close association of Myo5B with FN1 and Rab11b. Moreover, Myo5b directly binds to GTP bound Rab11b (Rab11b-GTP) but not GDP bound Rab11b. Myo5b or Rab11b knockdown via siRNA significantly attenuated the secretion of FN1 without changing FN1 expression. TGF-β also induced Rab11b-GTP formation, and Rab11b-GTP but not Rab11b-GDP significantly activated the actin-activated ATPase activity of Myo5B. Live cell imaging revealed that Myo5b- and FN1-containing vesicles continuously moved together in a single direction. These results support that Myo5b and Rab11b play an important role in FN1 transportation and secretion from HPMCs, and consequently may contribute to the development of pleural fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mitsuo Ikebe
- Correspondence: ; Tel.: +1-(903)-877-7785; Fax: +1-(903)-877-5438
| |
Collapse
|
6
|
Jung BG, Samten B, Dean K, Wallace RJ, Brown-Elliott BA, Tucker T, Idell S, Philley JV, Vankayalapati R. Early IL-17A production helps establish Mycobacterium intracellulare infection in mice. PLoS Pathog 2022; 18:e1010454. [PMID: 35363832 PMCID: PMC9007361 DOI: 10.1371/journal.ppat.1010454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/13/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) infection is common in patients with structural lung damage. To address how NTM infection is established and causes lung damage, we established an NTM mouse model by intranasal inoculation of clinical isolates of M. intracellulare. During the 39-week course of infection, the bacteria persistently grew in the lung and caused progressive granulomatous and fibrotic lung damage with mortality exceeding 50%. Lung neutrophils were significantly increased at 1 week postinfection, reduced at 2 weeks postinfection and increased again at 39 weeks postinfection. IL-17A was increased in the lungs at 1-2 weeks of infection and reduced at 3 weeks postinfection. Depletion of neutrophils during early (0-2 weeks) and late (32-34 weeks) infection had no effect on mortality or lung damage in chronically infected mice. However, neutralization of IL-17A during early infection significantly reduced bacterial burden, fibrotic lung damage, and mortality in chronically infected mice. Since it is known that IL-17A regulates matrix metalloproteinases (MMPs) and that MMPs contribute to the pathogenesis of pulmonary fibrosis, we determined the levels of MMPs in the lungs of M. intracellulare-infected mice. Interestingly, MMP-3 was significantly reduced by anti-IL-17A neutralizing antibody. Moreover, in vitro data showed that exogenous IL-17A exaggerated the production of MMP-3 by lung epithelial cells upon M. intracellulare infection. Collectively, our findings suggest that early IL-17A production precedes and promotes organized pulmonary M. intracellulare infection in mice, at least in part through MMP-3 production.
Collapse
Affiliation(s)
- Bock-Gie Jung
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Buka Samten
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Kristin Dean
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Richard J. Wallace
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Barbara A. Brown-Elliott
- Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Torry Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
- The Texas Lung Injury Institute, Tyler, Texas, United States of America
| | - Julie V. Philley
- Department of Medicine, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| |
Collapse
|
7
|
Komatsu S, Fan L, Idell S, Shetty S, Ikebe M. Caveolin-1-Derived Peptide Reduces ER Stress and Enhances Gelatinolytic Activity in IPF Fibroblasts. Int J Mol Sci 2022; 23:ijms23063316. [PMID: 35328736 PMCID: PMC8950460 DOI: 10.3390/ijms23063316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by an excess deposition of extracellular matrix in the pulmonary interstitium. Caveolin-1 scaffolding domain peptide (CSP) has been found to mitigate pulmonary fibrosis in several animal models. However, its pathophysiological role in IPF is obscure, and it remains critical to understand the mechanism by which CSP protects against pulmonary fibrosis. We first studied the delivery of CSP into cells and found that it is internalized and accumulated in the Endoplasmic Reticulum (ER). Furthermore, CSP reduced ER stress via suppression of inositol requiring enzyme1α (IRE1α) in transforming growth factor β (TGFβ)-treated human IPF lung fibroblasts (hIPF-Lfs). Moreover, we found that CSP enhanced the gelatinolytic activity of TGFβ-treated hIPF-Lfs. The IRE1α inhibitor; 4µ8C also augmented the gelatinolytic activity of TGFβ-treated hIPF-Lfs, supporting the concept that CSP induced inhibition of the IRE1α pathway. Furthermore, CSP significantly elevated expression of MMPs in TGFβ-treated hIPF-Lfs, but conversely decreased the secretion of collagen 1. Similar results were observed in two preclinical murine models of PF, bleomycin (BLM)- and adenovirus expressing constitutively active TGFβ (Ad-TGFβ)-induced PF. Our findings provide new insights into the mechanism by which lung fibroblasts contribute to CSP dependent protection against lung fibrosis.
Collapse
|
8
|
Odia Y, Cavalcante L, Safran H, Powell SF, Munster PN, Ma WW, Carneiro BA, Bastos BR, Mikrut S, Mikrut W, Giles FJ, Sahebjam S. Malignant glioma subset from actuate 1801: Phase I/II study of 9-ING-41, GSK-3β inhibitor, monotherapy or combined with chemotherapy for refractory malignancies. Neurooncol Adv 2022; 4:vdac012. [PMID: 35402914 PMCID: PMC8989389 DOI: 10.1093/noajnl/vdac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background GSK3β serine/threonine kinase regulates metabolism and glycogen biosynthesis. GSK3β overexpression promotes progression and resistance through NF-κB and p53 apoptotic pathways. GSK3β inhibits immunomodulation by downregulating PD-L1 and LAG-3 checkpoints and increasing NK and T-cell tumor killing. 9-ING-41, a small-molecule, selective GSK3β inhibitor, showed preclinical activity in chemo-resistant PDX glioblastoma models, including enhanced lomustine antitumor effect. Methods Refractory malignancies (n = 162) were treated with 9-ING-41 monotherapy (n = 65) or combined with 8 cytotoxic regimens after prior exposure (NCT03678883). Recurrent gliomas (n = 18) were treated with 9-ING-41 IV TIW q21day cycles at 3.3, 5, 9.3, 15 mg/kg, as monotherapy or combined with lomustine 30 mg/m² PO weekly q84day cycles. Primary objective was safety. Results RP2D of 15 mg/kg IV TIW was confirmed across all 9 regimens, no accentuated chemotherapy toxicity noted. Glioma subtypes included: 13 glioblastoma, 2 anaplastic astrocytomas, 1 anaplastic oligodendroglioma, 1 astrocytoma. Median age 52 (30-69) years; 6 female, 12 male; median ECOG 1 (0-2); median recurrences 3 (1-6). All received upfront radiation/temozolomide (18/18), plus salvage nitrosoureas (15/18), bevacizumab (8/18), TTFields (6/18), or immunotherapy (4/18). IDH/mutation(3/18); 1p19q/codeletion(1/18); MGMT/methylated(1/18). Four received 9-ING-41 monotherapy, 14 concurrent with lomustine. No severe toxicities were attributed to 9-ING-41, only mild vision changes (9/18, 50%), or infusion reactions (4/18, 22%). Lomustine-related toxicities: G3/4 thrombocytopenia (3/14, 21%), G1/2 fatigue (4/14, 28%). Median days on therapy was 55 (4-305); 1 partial response (>50%) was noted. Median OS was 5.5 (95% CI: 2.8-11.4) months and PFS-6 was 16.7%. Conclusion 9-ING-41 plus/minus lomustine is safe and warrants further study in glioma patients.
Collapse
Affiliation(s)
- Yazmin Odia
- Department of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA,Corresponding Author: Yazmin Odia, MD MS FAAN, Chief of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 North Kendall Drive, Miami, FL 33176, USA ()
| | | | - Howard Safran
- Department of Hematology Oncology, Cancer Center at Brown University, Lifespan Cancer Institute, Providence, Rhode Island, USA
| | | | - Pamela N Munster
- Department of Hematology Oncology, University of California San Francisco, San Francisco, California, USA
| | - Wen Wee Ma
- Department of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Benedito A Carneiro
- Department of Hematology Oncology, Cancer Center at Brown University, Lifespan Cancer Institute, Providence, Rhode Island, USA
| | - Bruno R Bastos
- Department of Neuro-Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | | | | | | | - Solmaz Sahebjam
- Department of Neuro-Oncology, Moffitt Cancer Center & Research Institute, University of South Florida, Tampa, Florida, USA,Present affiliation: National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Tucker TA, Idell S. Update on Novel Targeted Therapy for Pleural Organization and Fibrosis. Int J Mol Sci 2022; 23:ijms23031587. [PMID: 35163509 PMCID: PMC8835949 DOI: 10.3390/ijms23031587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/22/2022] Open
Abstract
Pleural injury and subsequent loculation is characterized by acute injury, sustained inflammation and, when severe, pathologic tissue reorganization. While fibrin deposition is a normal part of the injury response, disordered fibrin turnover can promote pleural loculation and, when unresolved, fibrosis of the affected area. Within this review, we present a brief discussion of the current IPFT therapies, including scuPA, for the treatment of pathologic fibrin deposition and empyema. We also discuss endogenously expressed PAI-1 and how it may affect the efficacy of IPFT therapies. We further delineate the role of pleural mesothelial cells in the progression of pleural injury and subsequent pleural remodeling resulting from matrix deposition. We also describe how pleural mesothelial cells promote pleural fibrosis as myofibroblasts via mesomesenchymal transition. Finally, we discuss novel therapeutic targets which focus on blocking and/or reversing the myofibroblast differentiation of pleural mesothelial cells for the treatment of pleural fibrosis.
Collapse
|
10
|
Karandashova S, Florova G, Idell S, Komissarov AA. From Bedside to the Bench—A Call for Novel Approaches to Prognostic Evaluation and Treatment of Empyema. Front Pharmacol 2022; 12:806393. [PMID: 35126140 PMCID: PMC8811368 DOI: 10.3389/fphar.2021.806393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Empyema, a severe complication of pneumonia, trauma, and surgery is characterized by fibrinopurulent effusions and loculations that can result in lung restriction and resistance to drainage. For decades, efforts have been focused on finding a universal treatment that could be applied to all patients with practice recommendations varying between intrapleural fibrinolytic therapy (IPFT) and surgical drainage. However, despite medical advances, the incidence of empyema has increased, suggesting a gap in our understanding of the pathophysiology of this disease and insufficient crosstalk between clinical practice and preclinical research, which slows the development of innovative, personalized therapies. The recent trend towards less invasive treatments in advanced stage empyema opens new opportunities for pharmacological interventions. Its remarkable efficacy in pediatric empyema makes IPFT the first line treatment. Unfortunately, treatment approaches used in pediatrics cannot be extrapolated to empyema in adults, where there is a high level of failure in IPFT when treating advanced stage disease. The risk of bleeding complications and lack of effective low dose IPFT for patients with contraindications to surgery (up to 30%) promote a debate regarding the choice of fibrinolysin, its dosage and schedule. These challenges, which together with a lack of point of care diagnostics to personalize treatment of empyema, contribute to high (up to 20%) mortality in empyema in adults and should be addressed preclinically using validated animal models. Modern preclinical studies are delivering innovative solutions for evaluation and treatment of empyema in clinical practice: low dose, targeted treatments, novel biomarkers to predict IPFT success or failure, novel delivery methods such as encapsulating fibrinolysin in echogenic liposomal carriers to increase the half-life of plasminogen activator. Translational research focused on understanding the pathophysiological mechanisms that control 1) the transition from acute to advanced-stage, chronic empyema, and 2) differences in outcomes of IPFT between pediatric and adult patients, will identify new molecular targets in empyema. We believe that seamless bidirectional communication between those working at the bedside and the bench would result in novel personalized approaches to improve pharmacological treatment outcomes, thus widening the window for use of IPFT in adult patients with advanced stage empyema.
Collapse
Affiliation(s)
- Sophia Karandashova
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| | - Galina Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Andrey A. Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
- *Correspondence: Andrey A. Komissarov,
| |
Collapse
|
11
|
Elkomy MH, Khallaf RA, Mahmoud MO, Hussein RRS, El-Kalaawy AM, Abdel-Razik ARH, Aboud HM. Intratracheally Inhalable Nifedipine-Loaded Chitosan-PLGA Nanocomposites as a Promising Nanoplatform for Lung Targeting: Snowballed Protection via Regulation of TGF-β/β-Catenin Pathway in Bleomycin-Induced Pulmonary Fibrosis. Pharmaceuticals (Basel) 2021; 14:ph14121225. [PMID: 34959627 PMCID: PMC8707652 DOI: 10.3390/ph14121225] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Pulmonary fibrosis is a serious ailment that may progress to lung remodeling and demolition, where the key participants in its incidence are fibroblasts responding to growth factors and cellular calcium swinging. Calcium channel blockers, like nifedipine (NFD), may represent auspicious agents in pulmonary fibrosis treatment. Unfortunately, NFD bears complicated pharmacodynamics and a diminished systemic bioavailability. Thus, the current study aimed to develop a novel, non-invasive nanoplatform for NFD for direct/effective pulmonary targeting via intratracheal instillation. A modified solvent emulsification–evaporation method was adopted for the fabrication of NFD-nanocomposites, integrating poly(D,L-lactide-co-glycolide) (PLGA), chitosan (CTS), and polyvinyl alcohol, and optimized for different physiochemical properties according to the 32 full factorial design. Additionally, the aerodynamic behavior of the nanocomposites was scrutinized through cascade impaction. Moreover, the pharmacokinetic investigations were conducted in rats. Furthermore, the optimum formulation was tested in bleomycin-induced pulmonary fibrosis in rats, wherein fibrotic and oxidative stress parameters were measured. The optimum nanocomposites disclosed a nanosized spherical morphology (226.46 nm), a high entrapment efficiency (61.81%) and a sustained release profile over 24 h (50.4%). As well, it displayed a boosted in vitro lung deposition performance with a mass median aerodynamic diameter of 1.12 µm. Pharmacokinetic studies manifested snowballed bioavailability of the optimal nanocomposites by 3.68- and 2.36-fold compared to both the oral and intratracheal suspensions, respectively. The intratracheal nanocomposites revealed a significant reduction in lung fibrotic and oxidative stress markers notably analogous to normal control besides repairing abnormality in TGF-β/β-catenin pathway. Our results conferred a compelling proof-of-principle that NFD-CTS-PLGA nanocomposites can function as a promising nanoparadigm for pulmonary fibrosis management.
Collapse
Affiliation(s)
- Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.A.K.); (H.M.A.)
- Correspondence: ; Tel.: +966-56-096-7705
| | - Rasha A. Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.A.K.); (H.M.A.)
| | - Mohamed O. Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Raghda R. S. Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Clinical Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 12055, Egypt
| | - Asmaa M. El-Kalaawy
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | | | - Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.A.K.); (H.M.A.)
| |
Collapse
|
12
|
Cui H, Liu G. DOCK-t(w)o Pleural Fibrosis. Am J Respir Cell Mol Biol 2021; 66:117-119. [PMID: 34758277 PMCID: PMC8845136 DOI: 10.1165/rcmb.2021-0411ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Huachun Cui
- University of alabama at birmingham, Birmingham, Alabama, United States
| | - Gang Liu
- University of Alabama at Birmingham, Birmingham, Alabama, United States;
| |
Collapse
|
13
|
Qian G, Adeyanju O, Roy S, Sunil C, Jeffers A, Guo X, Ikebe M, Idell S, Tucker TA. DOCK2 Promotes Pleural Fibrosis by Modulating Mesothelial to Mesenchymal Transition. Am J Respir Cell Mol Biol 2021; 66:171-182. [PMID: 34710342 DOI: 10.1165/rcmb.2021-0175oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mesothelial to mesenchymal transition (MesoMT) is one of the crucial mechanisms underlying pleural fibrosis, which results in restrictive lung disease. DOCK2 plays important roles in immune functions, however, its role in pleural fibrosis particularly MesoMT remains unknown. We found that DOCK2 and the MesoMT maker α-SMA were significantly elevated and colocalized in the thickened pleura of patients with nonspecific pleuritis, suggesting the involvement of DOCK2 in the pathogenesis of MesoMT and pleural fibrosis. Likewise, data from three different pleural fibrosis models (TGF-β, carbon black/bleomycin, and streptococcal empyema) consistently demonstrated DOCK2 upregulation and its colocalization with α-SMA in the pleura. In addition, induced DOCK2 colocalized with the mesothelial marker calretinin, implicating DOCK2 in the regulation of MesoMT. Our in vivo data also showed that DOCK2 knockout mice were protected from Streptococcus pneumoniae induced pleural fibrosis, impaired lung compliance, and collagen deposition. To determine the involvement of DOCK2 in MesoMT, we treated primary human pleural mesothelial cells with the potent MesoMT inducer TGF-β. TGF-β significantly induced DOCK2 expression in a time-dependent manner, along with α-SMA, collagen 1, and fibronectin. Furthermore, DOCK2 knockdown significantly attenuated TGF-β induced α-SMA, collagen 1 and fibronectin expression, suggesting the importance of DOCK2 in TGF-β induced MesoMT. DOCK2 knockdown also inhibited TGF-β induced Snail upregulation, which may account for its role in regulating MesoMT. Taken together, the current study provides evidence that DOCK2 contributes to the pathogenesis of pleural fibrosis by mediating MesoMT and deposition of neomatrix and may represent a novel target for its prevention or treatment.
Collapse
Affiliation(s)
- Guoqing Qian
- The University of Texas Health Science Center at Tyler, 12341, Department of Cellular and Molecular Biology, Tyler, Texas, United States;
| | - Oluwaseun Adeyanju
- The University of Texas Health Science Center at Tyler, 12341, Department of Cellular and Molecular Biology, Tyler, Texas, United States
| | - Saptarshi Roy
- The University of Texas Health Science Center at Tyler, 12341, Department of Cellular and Molecular Biology, Tyler, Texas, United States
| | - Christudas Sunil
- The University of Texas Health Science Center at Tyler, 12341, Department of Cellular and Molecular Biology, Tyler, Texas, United States
| | - Ann Jeffers
- The University of Texas Health Science Center at Tyler, 12341, Department of Cellular and Molecular Biology, Tyler, Texas, United States
| | - Xia Guo
- The University of Texas Health Science Center at Tyler, 12341, Department of Cellular and Molecular Biology, Tyler, Texas, United States
| | - Mitsuo Ikebe
- The University of Texas Health Science Center at Tyler, 12341, Department of Cellular and Molecular Biology, Tyler, Texas, United States
| | - Steven Idell
- The University of Texas Health Science Center at Tyler, 12341, Texas Lung Injury Institute, Tyler, Texas, United States
| | - Torry A Tucker
- The University of Texas Health Science Center at Tyler, 12341, Texas Lung Injury Institute, Tyler, Texas, United States
| |
Collapse
|
14
|
TGF-β regulation of the uPA/uPAR axis modulates mesothelial-mesenchymal transition (MesoMT). Sci Rep 2021; 11:21210. [PMID: 34707211 PMCID: PMC8551303 DOI: 10.1038/s41598-021-99520-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022] Open
Abstract
Pleural fibrosis (PF) is a chronic and progressive lung disease which affects approximately 30,000 people per year in the United States. Injury and sustained inflammation of the pleural space can result in PF, restricting lung expansion and impairing oxygen exchange. During the progression of pleural injury, normal pleural mesothelial cells (PMCs) undergo a transition, termed mesothelial mesenchymal transition (MesoMT). While multiple components of the fibrinolytic pathway have been investigated in pleural remodeling and PF, the role of the urokinase type plasminogen activator receptor (uPAR) is unknown. We found that uPAR is robustly expressed by pleural mesothelial cells in PF. Downregulation of uPAR by siRNA blocked TGF-β mediated MesoMT. TGF-β was also found to significantly induce uPA expression in PMCs undergoing MesoMT. Like uPAR, uPA downregulation blocked TGF-β mediated MesoMT. Further, uPAR is critical for uPA mediated MesoMT. LRP1 downregulation likewise blunted TGF-β mediated MesoMT. These findings are consistent with in vivo analyses, which showed that uPAR knockout mice were protected from S. pneumoniae-mediated decrements in lung function and restriction. Histological assessments of pleural fibrosis including pleural thickening and α-SMA expression were likewise reduced in uPAR knockout mice compared to WT mice. These studies strongly support the concept that uPAR targeting strategies could be beneficial for the treatment of PF.
Collapse
|
15
|
Herzog R, Sacnun JM, González-Mateo G, Bartosova M, Bialas K, Wagner A, Unterwurzacher M, Sobieszek IJ, Daniel-Fischer L, Rusai K, Pascual-Antón L, Kaczirek K, Vychytil A, Schmitt CP, López-Cabrera M, Alper SL, Aufricht C, Kratochwill K. Lithium preserves peritoneal membrane integrity by suppressing mesothelial cell αB-crystallin. Sci Transl Med 2021; 13:13/608/eaaz9705. [PMID: 34433641 DOI: 10.1126/scitranslmed.aaz9705] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/30/2021] [Accepted: 08/04/2021] [Indexed: 01/18/2023]
Abstract
Life-saving renal replacement therapy by peritoneal dialysis (PD) is limited in use and duration by progressive impairment of peritoneal membrane integrity and homeostasis. Preservation of peritoneal membrane integrity during chronic PD remains an urgent but long unmet medical need. PD therapy failure results from peritoneal fibrosis and angiogenesis caused by hypertonic PD fluid (PDF)-induced mesothelial cytotoxicity. However, the pathophysiological mechanisms involved are incompletely understood, limiting identification of therapeutic targets. We report that addition of lithium chloride (LiCl) to PDF is a translatable intervention to counteract PDF-induced mesothelial cell death, peritoneal membrane fibrosis, and angiogenesis. LiCl improved mesothelial cell survival in a dose-dependent manner. Combined transcriptomic and proteomic characterization of icodextrin-based PDF-induced mesothelial cell injury identified αB-crystallin as the mesothelial cell protein most consistently counter-regulated by LiCl. In vitro and in vivo overexpression of αB-crystallin triggered a fibrotic phenotype and PDF-like up-regulation of vascular endothelial growth factor (VEGF), CD31-positive cells, and TGF-β-independent activation of TGF-β-regulated targets. In contrast, αB-crystallin knockdown decreased VEGF expression and early mesothelial-to-mesenchymal transition. LiCl reduced VEGF release and counteracted fibrosis- and angiogenesis-associated processes. αB-crystallin in patient-derived mesothelial cells was specifically up-regulated in response to PDF and increased in peritoneal mesothelial cells from biopsies from pediatric patients undergoing PD, correlating with markers of angiogenesis and fibrosis. LiCl-supplemented PDF promoted morphological preservation of mesothelial cells and the submesothelial zone in a mouse model of chronic PD. Thus, repurposing LiCl as a cytoprotective PDF additive may offer a translatable therapeutic strategy to combat peritoneal membrane deterioration during PD therapy.
Collapse
Affiliation(s)
- Rebecca Herzog
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Juan Manuel Sacnun
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria.,Zytoprotec GmbH, 1090 Vienna, Austria
| | - Guadalupe González-Mateo
- Tissue and Organ Homeostasis, Molecular Biology Centre Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Maria Bartosova
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Katarzyna Bialas
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Zytoprotec GmbH, 1090 Vienna, Austria
| | - Anja Wagner
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Unterwurzacher
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Isabel J Sobieszek
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Lisa Daniel-Fischer
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Krisztina Rusai
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Lucía Pascual-Antón
- Tissue and Organ Homeostasis, Molecular Biology Centre Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Klaus Kaczirek
- Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Vychytil
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Claus Peter Schmitt
- Division of Pediatric Nephrology, Center for Pediatric and Adolescent Medicine, University of Heidelberg, 69120 Heidelberg, Germany
| | - Manuel López-Cabrera
- Tissue and Organ Homeostasis, Molecular Biology Centre Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Seth L Alper
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Aufricht
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria. .,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
16
|
Diaz A, Martin-Jimenez C, Xu Y, Merino P, Woo Y, Torre E, Yepes M. Urokinase-type plasminogen activator-mediated crosstalk between N-cadherin and β-catenin promotes wound healing. J Cell Sci 2021; 134:jcs255919. [PMID: 34085693 PMCID: PMC8214757 DOI: 10.1242/jcs.255919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/26/2021] [Indexed: 11/20/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA; encoded by Plau) is a serine proteinase that, in the central nervous system, induces astrocytic activation. β-Catenin is a protein that links the cytoplasmic tail of cadherins to the actin cytoskeleton, thus securing the formation of cadherin-mediated cell adhesion complexes. Disruption of cell-cell contacts leads to the detachment of β-catenin from cadherins, and β-catenin is then degraded by the proteasome following its phosphorylation by GSK3β. Here, we show that astrocytes release uPA following a scratch injury, and that this uPA promotes wound healing via a plasminogen-independent mechanism. We found that uPA induces the detachment of β-catenin from the cytoplasmic tail of N-cadherin (NCAD; also known as CDH2) by triggering its phosphorylation at Tyr654. Surprisingly, this is not followed by degradation of β-catenin because uPA also induces the phosphorylation of the low density lipoprotein receptor-related protein 6 (LRP6) at Ser1490, which then blocks the kinase activity of GSK3β. Our work indicates that the ensuing cytoplasmic accumulation of β-catenin is followed by its nuclear translocation and β-catenin-triggered transcription of the receptor for uPA (Plaur), which in turn is required for uPA to induce astrocytic wound healing.
Collapse
Affiliation(s)
- Ariel Diaz
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Cynthia Martin-Jimenez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yang Xu
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Paola Merino
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Yena Woo
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Enrique Torre
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
| | - Manuel Yepes
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| |
Collapse
|
17
|
Qin W, Jeffers A, Owens S, Chauhan P, Komatsu S, Qian G, Guo X, Ikebe M, Idell S, Tucker TA. NOX1 Promotes Mesothelial-Mesenchymal Transition through Modulation of Reactive Oxygen Species-mediated Signaling. Am J Respir Cell Mol Biol 2021; 64:492-503. [PMID: 33513310 PMCID: PMC8008807 DOI: 10.1165/rcmb.2020-0077oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/29/2021] [Indexed: 11/24/2022] Open
Abstract
Pleural organization may occur after empyema or complicated parapneumonic effusion and can result in restrictive lung disease with pleural fibrosis (PF). Pleural mesothelial cells (PMCs) may contribute to PF through acquisition of a profibrotic phenotype, mesothelial-mesenchymal transition (MesoMT), which is characterized by increased expression of α-SMA (α-smooth muscle actin) and other myofibroblast markers. Although MesoMT has been implicated in the pathogenesis of PF, the role of the reactive oxygen species and the NOX (nicotinamide adenine dinucleotide phosphate oxidase) family in pleural remodeling remains unclear. Here, we show that NOX1 expression is enhanced in nonspecific human pleuritis and is induced in PMCs by THB (thrombin). 4-Hydroxy-2-nonenal, an indicator of reactive oxygen species damage, was likewise increased in our mouse model of pleural injury. NOX1 downregulation blocked THB- and Xa (factor Xa)-mediated MesoMT, as did pharmacologic inhibition of NOX1 with ML-171. NOX1 inhibition also reduced phosphorylation of Akt, p65, and tyrosine 216-GSK-3β, signaling molecules previously shown to be implicated in MesoMT. Conversely, ML-171 did not reverse established MesoMT. NOX4 downregulation attenuated TGF-β- and THB-mediated MesoMT. However, NOX1 downregulation did not affect NOX4 expression. NOX1- and NOX4-deficient mice were also protected in our mouse model of Streptococcus pneumoniae-mediated PF. These data show that NOX1 and NOX4 are critical determinants of MesoMT.
Collapse
Affiliation(s)
- Wenyi Qin
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Shuzi Owens
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Prashant Chauhan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
18
|
Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol 2021; 12:607204. [PMID: 33854496 PMCID: PMC8039516 DOI: 10.3389/fimmu.2021.607204] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
Affiliation(s)
- Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Cordani
- instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) Nanociencia, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Manuel Lopez-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular “Severo Ochoa”-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
19
|
Tucker TA, Idell S. The Contribution of the Urokinase Plasminogen Activator and the Urokinase Receptor to Pleural and Parenchymal Lung Injury and Repair: A Narrative Review. Int J Mol Sci 2021; 22:ijms22031437. [PMID: 33535429 PMCID: PMC7867090 DOI: 10.3390/ijms22031437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022] Open
Abstract
Pleural and parenchymal lung injury have long been characterized by acute inflammation and pathologic tissue reorganization, when severe. Although transitional matrix deposition is a normal part of the injury response, unresolved fibrin deposition can lead to pleural loculation and scarification of affected areas. Within this review, we present a brief discussion of the fibrinolytic pathway, its components, and their contribution to injury progression. We review how local derangements of fibrinolysis, resulting from increased coagulation and reduced plasminogen activator activity, promote extravascular fibrin deposition. Further, we describe how pleural mesothelial cells contribute to lung scarring via the acquisition of a profibrotic phenotype. We also discuss soluble uPAR, a recently identified biomarker of pleural injury, and its diagnostic value in the grading of pleural effusions. Finally, we provide an in-depth discussion on the clinical importance of single-chain urokinase plasminogen activator (uPA) for the treatment of loculated pleural collections.
Collapse
Affiliation(s)
| | - Steven Idell
- Correspondence: ; Tel.: +1-903-877-7556; Fax: +1-903-877-7316
| |
Collapse
|
20
|
Zheng H, Yang Z, Xin Z, Yang Y, Yu Y, Cui J, Liu H, Chen F. Glycogen synthase kinase-3β: a promising candidate in the fight against fibrosis. Theranostics 2020; 10:11737-11753. [PMID: 33052244 PMCID: PMC7545984 DOI: 10.7150/thno.47717] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/12/2020] [Indexed: 02/07/2023] Open
Abstract
Fibrosis exists in almost all organs/tissues of the human body, plays an important role in the occurrence and development of diseases and is also a hallmark of the aging process. However, there is no effective prevention or therapeutic method for fibrogenesis. As a serine/threonine (Ser/Thr)-protein kinase, glycogen synthase kinase-3β (GSK-3β) is a vital signaling mediator that participates in a variety of biological events and can inhibit extracellular matrix (ECM) accumulation and the epithelial-mesenchymal transition (EMT) process, thereby exerting its protective role against the fibrosis of various organs/tissues, including the heart, lung, liver, and kidney. Moreover, we further present the upstream regulators and downstream effectors of the GSK-3β pathway during fibrosis and comprehensively summarize the roles of GSK-3β in the regulation of fibrosis and provide several potential targets for research. Collectively, the information reviewed here highlights recent advances vital for experimental research and clinical development, illuminating the possibility of GSK-3β as a novel therapeutic target for the management of tissue fibrosis in the future.
Collapse
Affiliation(s)
- Hanxue Zheng
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zhenlong Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuan Yu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jihong Cui
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Hongbo Liu
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Fulin Chen
- Lab of Tissue Engineering, Faculty of Life Sciences, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi'an 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| |
Collapse
|
21
|
Roca C, Campillo NE. Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2016–2019). Expert Opin Ther Pat 2020; 30:863-872. [DOI: 10.1080/13543776.2020.1815706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carlos Roca
- Structural and Chemical Biology, Centro De Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Nuria E. Campillo
- Structural and Chemical Biology, Centro De Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| |
Collapse
|
22
|
Tucker T, Tsukasaki Y, Sakai T, Mitsuhashi S, Komatsu S, Jeffers A, Idell S, Ikebe M. Myocardin Is Involved in Mesothelial-Mesenchymal Transition of Human Pleural Mesothelial Cells. Am J Respir Cell Mol Biol 2020; 61:86-96. [PMID: 30605348 DOI: 10.1165/rcmb.2018-0121oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pleural fibrosis is characterized by severe inflammation of the pleural space and pleural reorganization. Subsequent thickening of the visceral pleura contributes to lung stiffness and impaired lung function. Pleural mesothelial cells (PMCs) can become myofibroblasts via mesothelial-mesenchymal transition (MesoMT) and contribute to pleural organization, fibrosis, and rind formation. However, the mechanisms that underlie MesoMT remain unclear. Here, we investigated the role of myocardin in the induction of MesoMT. Transforming growth factor β (TGF-β) and thrombin induced MesoMT and markedly upregulated the expression of myocardin, but not myocardin-related transcription factor A (MRTF-A) or MRTF-B, in human PMCs (HPMCs). TGF-β stimulation notably induced the nuclear translocation of myocardin in HPMCs, whereas nuclear translocation of MRTF-A and MRTF-B was not observed. Several genes under the control of myocardin were upregulated in cells undergoing MesoMT, an effect that was accompanied by a dramatic cytoskeletal reorganization of HPMCs consistent with a migratory phenotype. Myocardin gene silencing blocked TGF-β- and thrombin-induced MesoMT. Although myocardin upregulation was blocked, MRTF-A and MRTF-B were unchanged. Myocardin, α-SMA, calponin, and smooth muscle myosin were notably upregulated in the thickened pleura of carbon black/bleomycin and empyema mouse models of fibrosing pleural injury. Similar results were observed in human nonspecific pleuritis. In a TGF-β mouse model of pleural fibrosis, PMC-specific knockout of myocardin protected against decrements in lung function. Further, TGF-β-induced pleural thickening was abolished by PMC-specific myocardin knockout, which was accompanied by a marked reduction of myocardin, calponin, and α-SMA expression compared with floxed-myocardin controls. These novel results show that myocardin participates in the development of MesoMT in HPMCs and contributes to the pathogenesis of pleural organization and fibrosis.
Collapse
Affiliation(s)
- Torry Tucker
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Yoshikazu Tsukasaki
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Shinya Mitsuhashi
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Satoshi Komatsu
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
23
|
Jeffers A, Qin W, Owens S, Koenig KB, Komatsu S, Giles FJ, Schmitt DM, Idell S, Tucker TA. Glycogen Synthase Kinase-3β Inhibition with 9-ING-41 Attenuates the Progression of Pulmonary Fibrosis. Sci Rep 2019; 9:18925. [PMID: 31831767 PMCID: PMC6908609 DOI: 10.1038/s41598-019-55176-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with a median survival of 3 years after diagnosis. Although the etiology of IPF is unknown, it is characterized by extensive alveolar epithelial cell apoptosis and proliferation of myofibroblasts in the lungs. While the origins of these myofibroblast appear to be diverse, fibroblast differentiation contributes to expansion of myofibroblasts and to disease progression. We found that agents that contribute to neomatrix formation and remodeling in pulmonary fibrosis (PF); TGF-β, Factor Xa, thrombin, plasmin and uPA all induced fibroblast/myofibroblast differentiation. These same mediators enhanced GSK-3β activation via phosphorylation of tyrosine-216 (p-Y216). Inhibition of GSK-3β signaling with the novel inhibitor 9-ING-41 blocked the induction of myofibroblast markers; α-SMA and Col-1 and reduced morphological changes of myofibroblast differentiation. In in vivo studies, the progression of TGF-β and bleomycin mediated PF was significantly attenuated by 9-ING-41 administered at 7 and 14 days respectively after the establishment of injury. Specifically, 9-ING-41 treatment significantly improved lung function (compliance and lung volumes; p < 0.05) of TGF-β adenovirus treated mice compared to controls. Similar results were found in mice with bleomycin-induced PF. These studies clearly show that activation of the GSK-3β signaling pathway is critical for the induction of myofibroblast differentiation in lung fibroblasts ex vivo and pulmonary fibrosis in vivo. The results offer a strong premise supporting the continued investigation of the GSK-3β signaling pathway in the control of fibroblast-myofibroblast differentiation and fibrosing lung injury. These data provide a strong rationale for extension of clinical trials of 9-ING-41 to patients with IPF.
Collapse
Affiliation(s)
- Ann Jeffers
- The Texas Lung Injury Institute, Tyler, TX, USA.,Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Wenyi Qin
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Shuzi Owens
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Kathleen B Koenig
- The Texas Lung Injury Institute, Tyler, TX, USA.,Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | | | | | - Steven Idell
- The Texas Lung Injury Institute, Tyler, TX, USA.,Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Torry A Tucker
- The Texas Lung Injury Institute, Tyler, TX, USA. .,Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| |
Collapse
|
24
|
Girard RA, Chauhan PS, Tucker TA, Allen T, Kaur J, Jeffers A, Koenig K, Florova G, Komissarov AA, Gaidenko TA, Chamiso MB, Fowler J, Morris DE, Sarva K, Singh KP, Idell S, Idell RD. Increased expression of plasminogen activator inhibitor-1 (PAI-1) is associated with depression and depressive phenotype in C57Bl/6J mice. Exp Brain Res 2019; 237:3419-3430. [PMID: 31734788 DOI: 10.1007/s00221-019-05682-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023]
Abstract
Plasminogen activator inhibitor 1 (PAI-1), which is elevated in numerous disease states, has been implicated as a stress-related protein involved in the pathogenesis of depression. We measured PAI-1 in the plasma of healthy and depressed individuals and assessed plasminogen activator (PA) expression and regulation by PAI-1 in cultured normal human astrocytes (NHA). Elevated plasma PAI-1 levels were found in depressed patients. Brain tissues from depressed individuals also showed stronger expression of hippocampal PAI-1 by confocal imaging in comparison to healthy individuals. Using a lipopolysaccharide-induced inflammatory model of depression in mice, we measured PAI-1 in murine plasma and brain, by ELISA and immunohistochemistry, respectively. Similar elevations were seen in plasma but not in brain homogenates of mice exposed to LPS. We further correlated the findings with depressive behavior. Ex vivo experiments with NHA treated with proinflammatory cytokines implicated in the pathogenesis of depression showed increased PAI-1 expression. Furthermore, these studies suggest that urokinase-type plasminogen activator may serve as an astrocyte PA reservoir, able to promote cleavage of brain-derived neurotrophic factor (BDNF) during stress or inflammation. In summary, our findings confirm that derangements of PAI-1 variably occur in the brain in association with the depressive phenotype. These derangements may impede the availability of active, mature (m)BDNF and thereby promote a depressive phenotype.
Collapse
Affiliation(s)
- René A Girard
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Prashant S Chauhan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Tim Allen
- Department of Pathology, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Jaswinder Kaur
- Department of Pathology, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Kathleen Koenig
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Galina Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Andrey A Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Tatiana A Gaidenko
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Mignote B Chamiso
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - James Fowler
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Danna E Morris
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Krishna Sarva
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Karan P Singh
- Department of Epidemiology and Biostatistics, School of Rural and Community Health, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, 75708, USA
| | - Richard D Idell
- Department of Behavioral Health, Child and Adolescent Psychiatry, The University of Texas Health Science Center at Tyler, 11937 US Highway 271, Tyler, TX, 75708, USA.
| |
Collapse
|
25
|
Rogan MR, Patterson LL, Wang JY, McBride JW. Bacterial Manipulation of Wnt Signaling: A Host-Pathogen Tug-of-Wnt. Front Immunol 2019; 10:2390. [PMID: 31681283 PMCID: PMC6811524 DOI: 10.3389/fimmu.2019.02390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
The host-pathogen interface is a crucial battleground during bacterial infection in which host defenses are met with an array of bacterial counter-mechanisms whereby the invader aims to make the host environment more favorable to survival and dissemination. Interestingly, the eukaryotic Wnt signaling pathway has emerged as a key player in the host and pathogen tug-of-war. Although studied for decades as a regulator of embryogenesis, stem cell maintenance, bone formation, and organogenesis, Wnt signaling has recently been shown to control processes related to bacterial infection in the human host. Wnt signaling pathways contribute to cell cycle control, cytoskeleton reorganization during phagocytosis and cell migration, autophagy, apoptosis, and a number of inflammation-related events. Unsurprisingly, bacterial pathogens have evolved strategies to manipulate these Wnt-associated processes in order to enhance infection and survival within the human host. In this review, we examine the different ways human bacterial pathogens with distinct host cell tropisms and lifestyles exploit Wnt signaling for infection and address the potential of harnessing Wnt-related mechanisms to combat infectious disease.
Collapse
Affiliation(s)
- Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jennifer Y. Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
26
|
Komatsu S, Wang L, Seow CY, Ikebe M. p116 Rip promotes myosin phosphatase activity in airway smooth muscle cells. J Cell Physiol 2019; 235:114-127. [PMID: 31347175 DOI: 10.1002/jcp.28949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022]
Abstract
Myosin phosphatase-Rho interacting protein (p116Rip ) was originally found as a RhoA-binding protein. Subsequent studies by us and others revealed that p116Rip facilitates myosin light chain phosphatase (MLCP) activity through direct and indirect manners. However, it is unclear how p116Rip regulates myosin phosphatase activity in cells. To elucidate the role of p116Rip in cellular contractile processes, we suppressed the expression of p116Rip by RNA interference in human airway smooth muscle cells (HASMCs). We found that knockdown of p116Rip in HASMCs led to increased di-phosphorylated MLC (pMLC), that is phosphorylation at both Ser19 and Thr18. This was because of a change in the interaction between MLCP and myosin, but not an alteration of RhoA/ROCK signaling. Attenuation of Zipper-interacting protein kinase (ZIPK) abolished the increase in di-pMLC, suggesting that ZIPK is involved in this process. Moreover, suppression of p116Rip expression in HASMCs substantially increased the histamine-induced collagen gel contraction. We also found that expression of the p116Rip was decreased in the airway smooth muscle tissue from asthmatic patients compared with that from non-asthmatic patients, suggesting a potential role of p116Rip expression in asthma pathogenesis.
Collapse
Affiliation(s)
- Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Lu Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
27
|
Endothelin-1 Induces Mesothelial Mesenchymal Transition and Correlates with Pleural Fibrosis in Tuberculous Pleural Effusions. J Clin Med 2019; 8:jcm8040426. [PMID: 30925731 PMCID: PMC6517891 DOI: 10.3390/jcm8040426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/18/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Endothelin (ET)-1 is involved in various fibrotic diseases. However, its implication in pleural fibrosis remains unknown. We aimed to study the profibrotic role of ET-1 in tuberculous pleural effusion (TBPE). The pleural effusion ET-1 levels were measured among 68 patients including transudative pleural effusion (TPE, n = 12), parapneumonic pleural effusion (PPE, n = 20), and TBPE (n = 36) groups. Pleural fibrosis, defined as radiological residual pleural thickening (RPT) and shadowing, was measured at 12-month follow-up. Additionally, the effect of ET-1 on mesothelial mesenchymal transition (MMT) and extracellular matrix (ECM) producion in human pleural mesothelial cells (PMCs) was assessed. Our findings revealed that effusion ET-1 levels were significantly higher in TBPE than in TPE and PPE, and were markedly higher in TBPE patients with RPT >10 mm than those with RPT ≤10 mm. ET-1 levels correlated substantially with residual pleural shadowing and independently predicted RPT >10 mm in TBPE. In PMCs, ET-1 time-dependently induced MMT with upregulation of α-smooth muscle actin and downregulation of E-cadherin, and stimulated ECM production; furthermore, ET receptor antagonists effectively abrogated these effects. In conclusion, ET-1 induces MMT and ECM synthesis in human PMCs and correlates with pleural fibrosis in TBPE. This study confers a novel insight into the pathogenesis and potential therapies for fibrotic pleural diseases.
Collapse
|
28
|
Mesothelial to mesenchyme transition as a major developmental and pathological player in trunk organs and their cavities. Commun Biol 2018; 1:170. [PMID: 30345394 PMCID: PMC6191446 DOI: 10.1038/s42003-018-0180-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
The internal organs embedded in the cavities are lined by an epithelial monolayer termed the mesothelium. The mesothelium is increasingly implicated in driving various internal organ pathologies, as many of the normal embryonic developmental pathways acting in mesothelial cells, such as those regulating epithelial-to-mesenchymal transition, also drive disease progression in adult life. Here, we summarize observations from different animal models and organ systems that collectively point toward a central role of epithelial-to-mesenchymal transition in driving tissue fibrosis, acute scarring, and cancer metastasis. Thus, drugs targeting pathways of mesothelium’s transition may have broad therapeutic benefits in patients suffering from these diseases. Tim Koopmans and Yuval Rinkevich review recent findings linking the mesothelium’s embryonic programs that drive epithelial-to-mesenchyme transition with adult pathologies, such as fibrosis, acute scarring, and cancer metastasis. They highlight new avenues for drug development that would target pathways of the mesothelium’s mesenchymal transition.
Collapse
|
29
|
Sontake V, Kasam RK, Sinner D, Korfhagen TR, Reddy GB, White ES, Jegga AG, Madala SK. Wilms' tumor 1 drives fibroproliferation and myofibroblast transformation in severe fibrotic lung disease. JCI Insight 2018; 3:121252. [PMID: 30135315 DOI: 10.1172/jci.insight.121252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/11/2018] [Indexed: 12/29/2022] Open
Abstract
Wilms' tumor 1 (WT1) is a critical transcriptional regulator of mesothelial cells during lung development but is downregulated in postnatal stages and adult lungs. We recently showed that WT1 is upregulated in both mesothelial cells and mesenchymal cells in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a fatal fibrotic lung disease. Although WT1-positive cell accumulation leading to severe fibrotic lung disease has been studied, the role of WT1 in fibroblast activation and pulmonary fibrosis remains elusive. Here, we show that WT1 functions as a positive regulator of fibroblast activation, including fibroproliferation, myofibroblast transformation, and extracellular matrix (ECM) production. Chromatin immunoprecipitation experiments indicate that WT1 binds directly to the promoter DNA sequence of α-smooth muscle actin (αSMA) to induce myofibroblast transformation. In support, the genetic lineage tracing identifies WT1 as a key driver of mesothelial-to-myofibroblast and fibroblast-to-myofibroblast transformation. Importantly, the partial loss of WT1 was sufficient to attenuate myofibroblast accumulation and pulmonary fibrosis in vivo. Further, our coculture studies show that WT1 upregulation leads to non-cell autonomous effects on neighboring cells. Thus, our data uncovered a pathogenic role of WT1 in IPF by promoting fibroblast activation in the peripheral areas of the lung and as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Vishwaraj Sontake
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Rajesh K Kasam
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Debora Sinner
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas R Korfhagen
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Geereddy B Reddy
- Department of Biochemistry, National Institute of Nutrition, Hyderabad, Telangana, India
| | - Eric S White
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Anil G Jegga
- Division of Biomedical Informatics Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
30
|
Lin Z, Liu F, Shi P, Song A, Huang Z, Zou D, Chen Q, Li J, Gao X. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C. Stem Cell Res Ther 2018; 9:47. [PMID: 29482657 PMCID: PMC5937047 DOI: 10.1186/s13287-018-0792-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. METHODS Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. RESULTS We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. CONCLUSION We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.
Collapse
Affiliation(s)
- Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China.
| | - Fei Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Peiliang Shi
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China
| | - Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China
| | - Zan Huang
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agriculture University, 1 Weigang Road, Nanjing, Jiangsu, 210095, China
| | - Dayuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China
| | - Qin Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China
| | - Jianxin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Collaborative Innovation Center of Genetics and Development, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, 12 Xuefu Road, Pukou District, Nanjing, Jiangsu, 210061, China
| |
Collapse
|
31
|
Komissarov AA, Rahman N, Lee YCG, Florova G, Shetty S, Idell R, Ikebe M, Das K, Tucker TA, Idell S. Fibrin turnover and pleural organization: bench to bedside. Am J Physiol Lung Cell Mol Physiol 2018; 314:L757-L768. [PMID: 29345198 DOI: 10.1152/ajplung.00501.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shed new light on the role of the fibrinolytic system in the pathogenesis of pleural organization, including the mechanisms by which the system regulates mesenchymal transition of mesothelial cells and how that process affects outcomes of pleural injury. The key contribution of plasminogen activator inhibitor-1 to the outcomes of pleural injury is now better understood as is its role in the regulation of intrapleural fibrinolytic therapy. In addition, the mechanisms by which fibrinolysins are processed after intrapleural administration have now been elucidated, informing new candidate diagnostics and therapeutics for pleural loculation and failed drainage. The emergence of new potential interventional targets offers the potential for the development of new and more effective therapeutic candidates.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Najib Rahman
- Oxford Pleural Unit and Oxford Respiratory Trials Unit, University of Oxford, Churchill Hospital; and National Institute of Health Research Biomedical Research Centre , Oxford , United Kingdom
| | - Y C Gary Lee
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital; Pleural Medicine Unit, Institute for Respiratory Health , Perth ; School of Medicine and Pharmacology, University of Western Australia , Perth , Australia
| | - Galina Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Sreerama Shetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Richard Idell
- Department of Behavioral Health, Child and Adolescent Psychiatry, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Kumuda Das
- Department of Translational and Vascular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|