1
|
Iqbal R, Beigh SA, Nisar M, Mir AQ, Hussain SA, Dar AA, Muhee A. Effect of Butaphosphan and Cyanocobalamin on the Metabolic Profile, Oxidative Stress and Prophylaxis of Ovine Pregnancy Toxemia. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39538403 DOI: 10.1111/jpn.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/30/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
The study was conducted to evaluate the effect of butaphosphan and cyanocobalamin (BC) on the metabolic profile, oxidative stress in Kashmiri merino ewes and its effect on the prophylaxis of Ovine pregnancy toxemia (PT). A total of 48 ewes were randomly divided into three groups, each consisting of 16 ewes. High dose BC (HBC): Ewes were given 0.2 mL BC/kg body weight, subcutaneously (SC) weekly from 6 weeks pre-lambing to lambing. Low dose BC (LBC): Ewes were given 0.1 mL BC/kg body weight, SC weekly from 6 weeks pre-lambing to lambing. No BC (CON): Ewes were given 0.2 mL normal saline/kg body weight, SC. Weekly from six pre-lambing to lambing. A significant effect of treatment was observed on non-esterified fatty acid (NEFA; p = 0.06), beta hydroxybutyric acid (β-HBA, p = 0.008), fructosamine (p = 0.034) and oxidative stress indices (OSI; p = 0.026) with less NEFA, β-HBA, OSI and more fructosamine levels in HBC followed by LBC. The BC did not affect glucose, cholesterol, blood urea nitrogen, creatinine, total antioxidant capacity, calcium and phosphorus however a significant difference was observed along the sampling time in all the three groups. Plasma triglyceride, aspartate aminotransferase and total oxidant status levels showed a significant treatment-time interaction. Taking 0.8 mmol/L β-HBA as the cutoff limit for subclinical PT, only HBC was able to significantly control PT at 3 weeks pre-lambing (OR; 5.57; p = 0.035), at 2 weeks pre-lambing (OR: 9.53; p = 0.007), at 1-week pre-lambing (OR: 6.60; p = 0.017) and at lambing (OR: 5.57; p = 0.035). In conclusion, there was a positive effect of BC treatment on the energy metabolism in pregnant ewes and it helped in the amelioration of oxidative stress and hence can be used in the prophylaxis of PT.
Collapse
Affiliation(s)
- Raja Iqbal
- Division of Clinical Veterinary Medicine, Ethics and Jurisprudence, F.V. Sc and A.H, SKUAST-K, Jammu and Kashmir, India
| | - Shafayat Ahmad Beigh
- Division of Clinical Veterinary Medicine, Ethics and Jurisprudence, F.V. Sc and A.H, SKUAST-K, Jammu and Kashmir, India
| | - Mehak Nisar
- Division of Clinical Veterinary Medicine, Ethics and Jurisprudence, F.V. Sc and A.H, SKUAST-K, Jammu and Kashmir, India
| | - Abdul Qayoom Mir
- Mountain research for Sheep and Goat, F.V. Sc and AH. SKUAST-K, Jammu and Kashmir, India
| | - Syed Ashaq Hussain
- Division of Clinical Veterinary Medicine, Ethics and Jurisprudence, F.V. Sc and A.H, SKUAST-K, Jammu and Kashmir, India
| | - Aijaz Ahmad Dar
- Division of Clinical Veterinary Medicine, Ethics and Jurisprudence, F.V. Sc and A.H, SKUAST-K, Jammu and Kashmir, India
| | - Amatul Muhee
- Division of Clinical Veterinary Medicine, Ethics and Jurisprudence, F.V. Sc and A.H, SKUAST-K, Jammu and Kashmir, India
| |
Collapse
|
2
|
Nahar M, Rai R, Jat D. Therapeutic intervention of vitamin B12 in mitigating chronic alcoholism induced alterations in adult zebrafish ( Danio rerio): a holistic in vivo approach. Int J Neurosci 2024:1-15. [PMID: 39207796 DOI: 10.1080/00207454.2024.2398564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Chronic alcoholism refers to the unpleasant symptoms directly resulting from excessive drinking. Increased alcohol metabolites and an unbalanced oxidative state are likely to blame for the reported effects under these circumstances. According to preclinical and clinical research, vitamin B12 can act on several organ systems with demonstrated neuroprotective, antioxidant, and glutamate modulating properties. OBJECTIVE This research sought to examine the ameliorative effects of vitamin B12 (VtB12) in persistent alcohol (AlOH) exposed adult zebrafish with the help of following parameters like the anxiety related behavior test, Oxidative stress, and antioxidant assays, histological and immunofluorescence analysis. METHODS Zebrafish pretreated with 0.40% AlOH (v/v) for 120 min (+AlOH) or not (-AlOH), were exposed for 6 h to home tank water (-VtB12) or to 59 µg-VtB12/kg-fish food (+VtB12) to analyze anxiety behavior in the geotaxis (novel tank) test as well as the oxidative brain damage in the adult zebrafish. RESULTS Adult zebrafish exposed to chronic AlOH showed a decrease in the distance travelled, average and mobility speed, and increased the average frozen time, the explored area, and total no. of the site explored in the trapezoid tank. AlOH exposure also resulted in oxidative damage, enhanced lipid peroxidation, advanced oxidative protein products, decreased enzymatic and non-enzymatic antioxidant activities, and enhanced reactive oxygen species generation. Additionally, VtB12 supplementation improved neurogenesis, evident in increased Nissl cell numbers and NeuN expression in the brain. CONCLUSION Chronic alcoholism may be effect on the brain cells as well as on the neuro-behavior of zebrafish. This research demonstrated that VtB12 shows promise as a neuroprotective agent against chronic alcoholism induced alterations in zebrafish's brain.
Collapse
Affiliation(s)
- Manisha Nahar
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| | - Ravina Rai
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| | - Deepali Jat
- Neuroscience Research Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, M.P, India
| |
Collapse
|
3
|
Lambiri DW, Levin LA. Maculopapillary Bundle Degeneration in Optic Neuropathies. Curr Neurol Neurosci Rep 2024; 24:203-218. [PMID: 38833037 DOI: 10.1007/s11910-024-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Degeneration of the maculopapillary bundle (MPB) is a prominent feature in a spectrum of optic neuropathies. MPB-selective degeneration is seen in specific conditions, such as nutritional and toxic optic neuropathies, Leber hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA). Despite their distinct etiologies and clinical presentations, which encompass variations in age of incidence and monocular or binocular onset, these disorders share a core molecular mechanism: compromised mitochondrial homeostasis. This disruption is characterized by dysfunctions in mitochondrial metabolism, biogenesis, and protein synthesis. This article provides a comprehensive understanding of the MPB's role in optic neuropathies, emphasizing the importance of mitochondrial mechanisms in the pathogenesis of these conditions. RECENT FINDINGS Optical coherence tomography studies have characterized the retinal nerve fiber layer changes accompanying mitochondrial-affiliated optic neuropathies. Selective thinning of the temporal optic nerve head is preceded by thickening in early stages of these disorders which correlates with reductions in macular ganglion cell layer thinning and vascular atrophy. A recently proposed mechanism underpinning the selective atrophy of the MPB involves the positive feedback of reactive oxygen species generation as a common consequence of mitochondrial dysfunction. Additionally, new research has revealed that the MPB can undergo degeneration in the early stages of glaucoma, challenging the historically held belief that this area was not involved in this common optic neuropathy. A variety of anatomical risk factors influence the propensity of glaucomatous MPB degeneration, and cases present distinct patterns of ganglion cell degeneration that are distinct from those observed in mitochondria-associated diseases. This review synthesizes clinical and molecular research on primary MPB disorders, highlighting the commonalities and differences in their pathogenesis. KEY POINTS (BOX) 1. Temporal degeneration of optic nerve fibers accompanied by cecocentral scotoma is a hallmark of maculopapillary bundle (MPB) degeneration. 2. Mechanisms of MPB degeneration commonly implicate mitochondrial dysfunction. 3. Recent research challenges the traditional belief that the MPB is uninvolved in glaucoma by showing degeneration in the early stages of this common optic neuropathy, yet with features distinct from other MPB-selective neuropathies. 4. Reactive oxygen species generation is a mechanism linking mitochondrial mechanisms of MPB-selective optic neuropathies, but in-vivo and in-vitro studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Darius W Lambiri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Leonard A Levin
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
4
|
Abbaszadeh F, Javadpour P, Mousavi Nasab MM, Jorjani M. The Role of Vitamins in Spinal Cord Injury: Mechanisms and Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:4293391. [PMID: 38938696 PMCID: PMC11211004 DOI: 10.1155/2024/4293391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Spinal cord injury (SCI) is a common neurological disease worldwide, often resulting in a substantial decrease in quality of life, disability, and in severe cases, even death. Unfortunately, there is currently no effective treatment for this disease. Nevertheless, current basic and clinical evidence suggests that vitamins, with their antioxidant properties and biological functions, may play a valuable role in improving the quality of life for individuals with SCI. They can promote overall health and facilitate the healing process. In this review, we discuss the mechanisms and therapeutic potential of vitamins in the treatment of SCI.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Neuroscience Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jorjani
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of PharmacologySchool of MedicineShahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Forte G, Battagliola ET, Malvasi M, Ruberti N, Daniele P, Mantovani A, Bocca B, Pacella E. Trace Element Concentration in the Blood and Aqueous Humor of Subjects with Eye Cataract. Biol Trace Elem Res 2024:10.1007/s12011-024-04207-3. [PMID: 38687421 DOI: 10.1007/s12011-024-04207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Cataract, characterized by the opacification of the lens, is the leading cause of reversible blindness and visual impairment globally. The study aims to investigate the role of trace elements such as Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn in the development and severity of cataract. Elements were quantified by inductively coupled plasma mass spectrometry in blood and aqueous humor of 32 cataract cases and 27 controls living in the Latium region, Italy. The association between element concentration in blood and aqueous humor and cataract severity, gender, and age of subjects were also assessed. Results showed Cr levels significantly elevated in both blood and aqueous humor of cataract cases, with concentrations that increased with cataract severity. In addition, blood Pb levels were significantly higher in older cases and positively correlated with the age of cataract cases, while blood Co and Cu levels negatively correlated with cataract severity, suggesting changes in the levels of these elements. In conclusion, this study provides evidence of the involvement of specific elements in cataract development and severity, and the findings highlighted important avenues for future research. Understanding the biological mechanism underlying element-induced cataract may contribute to preventing cataractogenesis and providing targeted interventions.
Collapse
Affiliation(s)
- Giovanni Forte
- Department of Environment and Health, Italian National Institute of Health, 00161, Rome, Italy
| | | | - Mariaelena Malvasi
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | - Niccolò Ruberti
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | - Pierluigi Daniele
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy
| | | | - Beatrice Bocca
- Department of Environment and Health, Italian National Institute of Health, 00161, Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, University of Rome La Sapienza, 00161, Rome, Italy.
| |
Collapse
|
6
|
Zhang Y, Huang S, Xie B, Zhong Y. Aging, Cellular Senescence, and Glaucoma. Aging Dis 2024; 15:546-564. [PMID: 37725658 PMCID: PMC10917531 DOI: 10.14336/ad.2023.0630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/30/2023] [Indexed: 09/21/2023] Open
Abstract
Aging is one of the most serious risk factors for glaucoma, and according to age-standardized prevalence, glaucoma is the second leading cause of legal blindness worldwide. Cellular senescence is a hallmark of aging that is defined by a stable exit from the cell cycle in response to cellular damage and stress. The potential mechanisms underlying glaucomatous cellular senescence include oxidative stress, DNA damage, mitochondrial dysfunction, defective autophagy/mitophagy, and epigenetic modifications. These phenotypes interact and generate a sufficiently stable network to maintain the cell senescent state. Senescent trabecular meshwork (TM) cells, retinal ganglion cells (RGCs) and vascular endothelial cells reportedly accumulate with age and stress and may contribute to glaucoma pathologies. Therapies targeting the suppression or elimination of senescent cells have been found to ameliorate RGC death and improve vision in glaucoma models, suggesting the pivotal role of cellular senescence in the pathophysiology of glaucoma. In this review, we explore the biological links between aging and glaucoma, specifically delving into cellular senescence. Moreover, we summarize the current data on cellular senescence in key target cells associated with the development and clinical phenotypes of glaucoma. Finally, we discuss the therapeutic potential of targeting cellular senescence for the management of glaucoma.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Bing Xie
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yisheng Zhong
- Correspondence should be addressed to: Dr. Yisheng Zhong () and Bing Xie (), Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
7
|
Kumar P, Sukhija J, Nagarajan B, Sankhyan N. Infantile Vitamin B12 Deficiency with Reversible Acquired Vision Loss. Indian J Pediatr 2024; 91:310. [PMID: 37658283 DOI: 10.1007/s12098-023-04839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/03/2023]
Affiliation(s)
- Pawan Kumar
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jaspreet Sukhija
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Balamurugan Nagarajan
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
8
|
Shan Y, Xu L, Cui X, Wang E, Jiang F, Li J, Ouyang H, Yin T, Feng H, Luo D, Zhang Y, Li Z. A responsive cascade drug delivery scaffold adapted to the therapeutic time window for peripheral nerve injury repair. MATERIALS HORIZONS 2024; 11:1032-1045. [PMID: 38073476 DOI: 10.1039/d3mh01511d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Peripheral nerve injury (PNI) is a common clinical challenge, requiring timely and orderly initiation of synergistic anti-inflammatory and reparative therapy. Although the existing cascade drug delivery system can realize sequential drug release through regulation of the chemical structure of drug carriers, it is difficult to adjust the release kinetics of each drug based on the patient's condition. Therefore, there is an urgent need to develop a cascade drug delivery system that can dynamically adjust drug release and realize personalized treatment. Herein, we developed a responsive cascade drug delivery scaffold (RCDDS) which can adapt to the therapeutic time window, in which Vitamin B12 is used in early controllable release to suppress inflammation and nerve growth factor promotes regeneration by cascade loading. The RCDDS exhibited the ability to modulate the drug release kinetics by hierarchically opening polymer chains triggered by ultrasound, enabling real-time adjustment of the anti-inflammatory and neuroregenerative therapeutic time window depending on the patient's status. In the rat sciatic nerve injury model, the RCDDS group was able to achieve neural repair effects comparable to the autograft group in terms of tissue structure and motor function recovery. The development of the RCDDS provides a useful route toward an intelligent cascade drug delivery system for personalized therapy.
Collapse
Affiliation(s)
- Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Engui Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| | - Fengying Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiaxuan Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
| | - Han Ouyang
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongqing Feng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China.
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Baydan E, Soylu E. Investigation of the efficacy of two different laser types in the treatment of lower lip paresthesia after sagittal split ramus osteotomy. Lasers Med Sci 2024; 39:23. [PMID: 38191831 PMCID: PMC10774202 DOI: 10.1007/s10103-024-03973-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
Orthognathic surgery involves invasive and major surgical procedures commonly used to correct maxillofacial deformities. Bilateral sagittal split ramus osteotomy (BSSO) is often used to treat dentofacial anomalies related to the mandible, but it can result in various complications, the most common of which is inferior alveolar nerve damage. Nerve damage-induced paresthesia of the lower lip significantly affects patient comfort. Medical treatments such as steroids and vitamin B, low-level laser therapy (LLLT), and platelet-rich fibrin (PRF) can be used as supportive therapies for nerve regeneration after damage. This study aimed to investigate the effectiveness of two different types of lasers in treating lower lip paresthesia after BSSO. This clinical trial was a controlled, single-center, prospective, single-blind, randomized study. Thirty patients were included in the study and randomly assigned to three groups: Group I (laser GRR, n = 10) received transcutaneous and transmucosal GRR laser treatment, Group II (Epic10 laser, n = 10) received transmucosal and transcutaneous Epic10 laser treatment, and Group III (vitamin B, n = 10) received B-complex vitamin tablets orally once a day. Two-point and brush tests were performed six times at specific intervals, and a visual analog scale was used to evaluate pain and sensitivity. Both vitamin B and laser therapies accelerated nerve regeneration. The contribution of the laser groups to the healing rate was better than that of the vitamin B group. Although there was no statistically significant difference between the two laser groups, clinical observations indicated better results in the GRR laser group.
Collapse
Affiliation(s)
- Ebru Baydan
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey
| | - Emrah Soylu
- Department of Oral and Maxillofacial Surgery, Erciyes University Faculty of Dentistry, Kayseri, Turkey.
| |
Collapse
|
10
|
Scalais E, Geron C, Pierron C, Cardillo S, Schlesser V, Mataigne F, Borde P, Regal L. Would, early, versus late hydroxocobalamin dose intensification treatment, prevent cognitive decline, macular degeneration and ocular disease, in 5 patients with early-onset cblC deficiency? Mol Genet Metab 2023; 140:107681. [PMID: 37604084 DOI: 10.1016/j.ymgme.2023.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
In early-onset (EO) cblC deficiency (MMACHC), hydroxocobalamin dose-intensification (OHCBL-DI) improved biochemical and clinical outcome. In mammals, Cobalamin is reduced, in a reaction mediated by MMACHC. Pathogenic variants in MMACHC disrupt the synthesis pathway of methyl-cobalamin (MetCbl) and 5'-deoxy-adenosyl-cobalamin (AdoCbl), cofactors for both methionine synthase (MS) and methyl-malonyl-CoA mutase (MCM) enzymes. In 5 patients (pts.), with EO cblC deficiency, biochemical and clinical responses were studied following OHCbl-DI (mean ± SD 6,5 ± 3,3 mg/kg/day), given early, before age 5 months (pts. 1, 2, 3 and 4) or lately, at age 5 years (pt. 5). In all pts., total homocysteine (tHcy), methyl-malonic acid (MMA) and Cob(III)alamin levels were measured. Follow-up was performed during 74/12 years (pts. 1, 2, 3), 33/12 years (pt. 4) and 34/12 years (pt. 5). OHCbl was delivered intravenously or subcutaneously. Mean ± SD serum Cob(III)alamin levels were 42,2 × 106 ± 28, 0 × 106 pg/ml (normal: 200-900 pg/ml). In all pts., biomarkers were well controlled. All pts., except pt. 5, who had poor vision, had central vision, mild to moderate nystagmus, and with peri-foveolar irregularity in pts. 1, 2 and 4, yet none had the classic bulls' eye maculopathy and retinal degeneration characteristic of pts. with EO cblC deficiency. Only pt. 5, had severe cognitive deficiency. Both visual and cognitive functions were better preserved with early than with late OHCBL-DI. OHCBL-DI is suggested to bypass MMACHC, subsequently to be rescued by methionine synthase reductase (MSR) and adenosyl-transferase (ATR) to obtain Cob(I)alamin resulting in improved cognitive and retinal function in pts. with EO cblC deficiency.
Collapse
Affiliation(s)
- Emmanuel Scalais
- Department of Pediatrics, Division of Pediatric Neurology, Centre Hospitalier de Luxembourg, Luxembourg.
| | - Christine Geron
- Department of Pediatrics, Neonatal Center, Pediatric Intensive Care, Centre Hospitalier de Luxembourg, Luxembourg
| | - Charlotte Pierron
- Department of Pediatrics, Neonatal Center, Pediatric Intensive Care, Centre Hospitalier de Luxembourg, Luxembourg
| | - Sandra Cardillo
- Service d'Ophtalmologie, Centre Hospitalier de Luxembourg, Luxembourg
| | - Vincent Schlesser
- Laboratoire de Chimie et Hématologie, Centre Hospitalier de Luxembourg, Luxembourg
| | - Frédéric Mataigne
- Service de Neuroradiologie, Centre Hospitalier de Luxembourg, Luxembourg
| | - Patricia Borde
- Service de Biochimie, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Luc Regal
- Pediatric Neurology and Metabolism, UZ, VUB, Vrije Universiteit Brussels, Brussels, Belgium
| |
Collapse
|
11
|
Halczuk K, Kaźmierczak-Barańska J, Karwowski BT, Karmańska A, Cieślak M. Vitamin B12-Multifaceted In Vivo Functions and In Vitro Applications. Nutrients 2023; 15:2734. [PMID: 37375638 PMCID: PMC10305463 DOI: 10.3390/nu15122734] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Vitamin B12 plays a key role in DNA stability. Research indicates that vitamin B12 deficiency leads to indirect DNA damage, and vitamin B12 supplementation may reverse this effect. Vitamin B12 acts as a cofactor for enzymes such as methionine synthase and methylmalonyl-CoA mutase, which are involved in DNA methylation and nucleotide synthesis. These processes are essential for DNA replication and transcription, and any impairment can result in genetic instability. In addition, vitamin B12 has antioxidant properties that help protect DNA from damage caused by reactive oxygen species. This protection is achieved by scavenging free radicals and reducing oxidative stress. In addition to their protective functions, cobalamins can also generate DNA-damaging radicals in vitro that can be useful in scientific research. Research is also being conducted on the use of vitamin B12 in medicine as vectors for xenobiotics. In summary, vitamin B12 is an essential micronutrient that plays a vital role in DNA stability. It acts as a cofactor for enzymes involved in the synthesis of nucleotides, has antioxidant properties and has potential value as a generator of DNA-damaging radicals and drug transporters.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Cieślak
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland; (K.H.); (J.K.-B.); (B.T.K.); (A.K.)
| |
Collapse
|
12
|
Schleicher E, Didangelos T, Kotzakioulafi E, Cegan A, Peter A, Kantartzis K. Clinical Pathobiochemistry of Vitamin B 12 Deficiency: Improving Our Understanding by Exploring Novel Mechanisms with a Focus on Diabetic Neuropathy. Nutrients 2023; 15:nu15112597. [PMID: 37299560 DOI: 10.3390/nu15112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Vitamin B12 (B12) is an essential cofactor of two important biochemical pathways, the degradation of methylmalonic acid and the synthesis of methionine from homocysteine. Methionine is an important donor of methyl groups for numerous biochemical reactions, including DNA synthesis and gene regulation. Besides hematological abnormalities (megaloblastic anemia or even pancytopenia), a deficiency in B12 may cause neurological symptoms, including symptoms resembling diabetic neuropathy. Although extensively studied, the underlining molecular mechanism for the development of diabetic peripheral neuropathy (DPN) is still unclear. Most studies have found a contribution of oxidative stress in the development of DPN. Detailed immunohistochemical investigations in sural nerve biopsies obtained from diabetic patients with DPN point to an activation of inflammatory pathways induced via elevated advanced glycation end products (AGE), ultimately resulting in increased oxidative stress. Similar results have been found in patients with B12 deficiency, indicating that the observed neural changes in patients with DPN might be caused by cellular B12 deficiency. Since novel results show that B12 exerts intrinsic antioxidative activity in vitro and in vivo, B12 may act as an intracellular, particularly as an intramitochondrial, antioxidant, independent from its classical, well-known cofactor function. These novel findings may provide a rationale for the use of B12 for the treatment of DPN, even in subclinical early states.
Collapse
Affiliation(s)
- Erwin Schleicher
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Triantafyllos Didangelos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, "AHEPA" Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Evangelia Kotzakioulafi
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, "AHEPA" Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Alexander Cegan
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Konstantinos Kantartzis
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Zhou L, Song X, Wang J, Tan Y, Yang Q. Effects of vitamin B 12 deficiency on risk and outcome of ischemic stroke. Clin Biochem 2023; 118:110591. [PMID: 37247800 DOI: 10.1016/j.clinbiochem.2023.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
Ischemic stroke is the most prevalent form of stroke and has a high incidence in older adults, characterized by high morbidity, mortality, disability, and recurrence rate. Vitamin B12 deficiency is prevalent in the elderly and has been reported to be associated with ischemic stroke. The mechanisms maybe include the disorder of methylation metabolism, accumulation of toxic metabolites, immune dysfunction, affecting gut microbial composition and gut-brain immune homeostasis, and toxic stress responses to the brain. Vitamin B12 deficiency may lead to cerebral artery atherosclerosis, change myelination, influence the metabolism and transmission between nerve tissue, and ultimately causes the occurrence and development of ischemic stroke. This paper reviews the correlation between vitamin B12 deficiency and ischemic stroke, looking forward to improving clinicians' understanding and providing new therapeutic directions for ischemic stroke.
Collapse
Affiliation(s)
- Li Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaosong Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, the Ninth People's Hospital of Chongqing, Chongqing, China
| | - Jiani Wang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongjun Tan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qin Yang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
14
|
Xu G, Xu S, Gong W, Dong S, Yu H. Low Trend for VZV-Associated Disease Patients to Visit Neurologists. J Multidiscip Healthc 2023; 16:1379-1392. [PMID: 37215749 PMCID: PMC10199679 DOI: 10.2147/jmdh.s412398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Background Herpes zoster (HZ) is a skin disease that can also cause virus-infectious peripheral neuropathies. Despite this, there is limited information on patient preferences for seeking medical attention for HZ and zoster-associated pain (ZAP). Our study aimed to evaluate how frequently patients with ZAP choose to visit neurologists for their symptoms. Methods This study conducted a retrospective review of electronic health records in three general hospitals from January 2017 to June 2022. Using association rule mining, the study analyzed referral behaviors. Results We identified 33,633 patients with 111,488 outpatient visits over 5.5 years. The study found that the majority of patients (74.77-91.22%) visited dermatologists during their first outpatient visit, while only a small percentage (0.86-1.47%) preferred to consult a neurologist. The proportion of patients referred to a specialist during their medical visit varied significantly between different specialties within the same hospital (p <0.05) and even within the same specialty (p<0.05). There was a weak association (Lift:1.00-1.17) of referral behaviors between dermatology and neurology. Across the three hospitals, the average number of visits to a neurologist for ZAP was 1.42-2.49, with an average electronic health record duration of 11-15 days per patient. After consulting with a neurologist, some patients were referred to other specialists. Conclusion It was observed that patients with HZ and ZAP tended to visit a variety of specialists, with only a small number seeking the assistance of neurologists. However, from the perspective of neuroprotection, it is the duty of neurologists to provide more means.
Collapse
Affiliation(s)
- Gang Xu
- Department of Rehabilitation Medicine, Affiliated Tenth People’s Hospital of Tongji University, Shanghai Tenth People’s Hospital, Shanghai, 20072, People’s Republic of China
- Department of Rehabilitation Medicine, Tongji University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Site Xu
- Division of Information and Statistics, Affiliated Ruijin Hospital of Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Weiwei Gong
- Department of Rehabilitation Medicine, Tongji University School of Medicine, Shanghai, 200092, People’s Republic of China
- Department of Rehabilitation Medicine, Shanghai First Rehabilitation Hospital, Shanghai, 200090, People’s Republic of China
| | - Shihong Dong
- Department of Rehabilitation Medicine, Tongji University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Hecheng Yu
- Department of Rehabilitation Medicine, Affiliated Tenth People’s Hospital of Tongji University, Shanghai Tenth People’s Hospital, Shanghai, 20072, People’s Republic of China
| |
Collapse
|
15
|
Kumar R, Singh U, Tiwari A, Tiwari P, Sahu JK, Sharma S. Vitamin B12: Strategies for enhanced production, fortified functional food products and health benefits. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
16
|
Gupta SD, Dhawan A, Kakkar A, Shakeel T, Verma A. Effect of nutritional-deficiency anemia on peripapillary retinal nerve fiber layer: A North Indian study. Taiwan J Ophthalmol 2023; 13:210-218. [PMID: 37484609 PMCID: PMC10361432 DOI: 10.4103/tjo.tjo-d-22-00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/08/2023] [Indexed: 07/25/2023] Open
Abstract
PURPOSE The purpose of this study was to evaluate the effect of nutritional-deficiency anemia (NDA) on peripapillary retinal nerve fiber layer thickness (PPRNFLT) using spectral-domain optical coherence tomography and to determine any correlation arising thereof. This was a single-center, cross-sectional, observational study. MATERIALS AND METHODS A total 115 eyes of 115 NDA patients (50 of each with iron-deficiency anemia [IDA] and Vitamin B12-deficiency anemia [BDA], and 15 with folic acid-deficiency anemia [FDA]) aged 18-65 years were compared with a total 100 eyes of 50 age- and sex-matched healthy controls. All subjects underwent comprehensive clinical, ophthalmic, and hematological evaluation, followed by PPRNFLT assessment for the mean total, superior, inferior, nasal, and temporal quadrants. RESULTS PPRNFLT for the mean total and all four quadrants in IDA patients, for the mean total, inferior, nasal, and temporal quadrants in BDA patients, and for the mean total, inferior, and nasal quadrants, in FDA patients, was significantly lower as compared to the controls (P < 0.05). The mean total PPRNFLT of all NDA patients correlated significantly (P < 0.05) with their relevant hematological parameters with Pearson's coefficient (r) value of 0.613, 0.610, 0.336, 0.295, 0.337, 0.374, and - 0.509, respectively, for serum haemoglobin (Hb), iron, ferritin, mean corpuscular volume (MCV), mean cell hemoglobin, mean corpuscular hemoglobin concentration, and total iron binding capacity in IDA; 0.310, 0.435, and - 0.386, respectively, for serum Hb%, Vitamin B12, and MCV in BDA; and 0.557, 0.358, and - 0.294 for Hb%, folate, and MCV, respectively, in FDA cases. Mean total retinal nerve fiber layer thinning of all NDA patients showed progression with the increasing severity grades of anemia, except in very severe BDA where an inverse relationship was documented. CONCLUSION Our study revealed that PPRNFLT is significantly thinner in all NDA patients (total and all four quadrants in IDA; total, inferior, nasal, and temporal in BDA; and total, inferior, and nasal in FDA) correlating well with their relevant hematological parameters. Early detection of this may be crucial in preventing potential blinding sequelae and differentiating glaucomatous and other neuro-ophthalmic disorders.
Collapse
Affiliation(s)
| | | | - Ashish Kakkar
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India
| | - Tarannum Shakeel
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India
| | - Amit Verma
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India
| |
Collapse
|
17
|
Akbari E, Hossaini D, Amiry GY, Ansari M, Haidary M, Beheshti F, Ahmadi-Soleimani SM. Vitamin B12 administration prevents ethanol-induced learning and memory impairment through re-establishment of the brain oxidant/antioxidant balance, enhancement of BDNF and suppression of GFAP. Behav Brain Res 2023; 438:114156. [PMID: 36243244 DOI: 10.1016/j.bbr.2022.114156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022]
Abstract
There are growing evidence indicating that the adolescent brain is persistently affected by the use of psychostimulant agents. In this regard, alcohol drinking has become rather common among the adolescents in many societies during the last decade. It is currently well known that long-term ethanol exposure deteriorates various cognitive functions such as learning and memory. Mechanistically, these adverse effects have been shown to be mediated by oxidative damage to central nervous system. On the other hand, Vit-B12 is known to improve cognitive performance by suppression of oxidative parameters. Thus, in the present study we aimed to test whether treatment by Vit-B12 could prevent ethanol-induced complications in mice using behavioral and biochemical methods. Different groups of male Syrian mice received ethanol, ethanol+Vit-B12, Vit-B12 alone, or saline during adolescence and then learning and memory functions were assessed by Morris water maze (MWM) and Passive Avoidance (PA) tests. Finally, mice were sacrificed for measurement of biochemical factors. Results indicated that, adolescent ethanol intake impairs learning and memory function through exacerbation of oxidative stress and Vit-B12 treatment improves these complications by re-establishment of oxidant/anti-oxidant balance in CNS. Moreover, we found that Vit-B12 prevents ethanol-induced reduction of BDNF and enhancement of GFAP and acetylcholinesterase (AChE) activity. In conclusion, it seems that Vit-B12 supplementation could be used as an effective therapeutic strategy to prevent learning and memory defects induced by chronic alcohol intake during adolescence.
Collapse
Affiliation(s)
- Elham Akbari
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Dawood Hossaini
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Ghulam Yahya Amiry
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Mustafa Ansari
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Murtaza Haidary
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran; Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran.
| | - S Mohammad Ahmadi-Soleimani
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran; Departments of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat, Heydariyeh, Iran.
| |
Collapse
|
18
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|
19
|
Liu Z, Hu Y, Wang Y, Xu B, Zhao J, Yu Z. Relationship between high dose intake of vitamin B12 and glaucoma: Evidence from NHANES 2005-2008 among United States adults. Front Nutr 2023; 10:1130032. [PMID: 37139451 PMCID: PMC10149911 DOI: 10.3389/fnut.2023.1130032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Objective Glaucoma has currently become the second leading cause of blindness in the world. Serum vitamin B12 level has been found to be involved in the development and progression of glaucoma. We performed the present study to confirm this association. Methods This cross-sectional study included 594 participants aged 40 years and older in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2008. Retinal imaging was performed using the Ophthalmic Digital Imaging system (Retinography) to assess the retina for the presence of features of glaucomatous lesions. Logistic regression models were used to assess the association between dietary vitamin intake and glaucoma. Results After screening, 594 subjects were finally included. Among all vitamin intakes, we observed significant differences between the two groups for vitamin B12 intake (5.93 vs. 4.77 mg, p = 0.033). According to the logistic regression results, the intake of vitamin B12 was significantly positively associated with glaucoma (model 1: OR = 1.078, 95% CI = 1.019-1.141; model 2: OR = 1.092, 95% CI = 1.031-1.158; model 3: OR = 1.092, 95% CI = 1.029-1.158). After performing a quantile regression, we observed a significant positive association between vitamin B12 intake and incident glaucoma in the fourth quartile (model 1: OR = 1.133, 95% CI = 1.060-1.210; model 2: OR = 1.141, 95% CI = 1.072-1.215; model 3: OR = 1.146, 95% CI = 1.071-1.226). Conclusions Therefore, the above results, high-dose intake of vitamin B12 may promote the development of glaucoma.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Yi Hu
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Yuhan Wang
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Baiwei Xu
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Jiangyue Zhao
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
- *Correspondence: Ziyan Yu, ; Jiangyue Zhao,
| | - Ziyan Yu
- Department of Ophthalmology, Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Eye Hospital of China Medical University, Shenyang, China
- Key Lens Research Laboratory of Liaoning Province, Shenyang, China
- *Correspondence: Ziyan Yu, ; Jiangyue Zhao,
| |
Collapse
|
20
|
Nowosad K, Sujka M, Wyrostek J. Preparation of yeast flakes enriched with iron and vitamin
B
12
using a pulsed electric field technology. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Karolina Nowosad
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Sciences and Biotechnology University of Life Sciences in Lublin Lublin Poland
| | - Monika Sujka
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Sciences and Biotechnology University of Life Sciences in Lublin Lublin Poland
| | - Jakub Wyrostek
- Department of Analysis and Evaluation of Food Quality, Faculty of Food Sciences and Biotechnology University of Life Sciences in Lublin Lublin Poland
| |
Collapse
|
21
|
Wang X, Li W, Xiang M. Increased serum methylmalonic acid levels were associated with the presence of cardiovascular diseases. Front Cardiovasc Med 2022; 9:966543. [PMID: 36299874 PMCID: PMC9588910 DOI: 10.3389/fcvm.2022.966543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Functional vitamin B12 deficiency is common in cardiovascular diseases (CVDs), such as heart failure and myocardial infarction. Methylmalonic acid (MMA) is a specific and sensitive marker of vitamin B12 deficiency. However, there are scarce data in regard to the relationship between MMA and CVDs. Materials and methods In this cross-sectional study, we analyzed data of 5,313 adult participants of the National Health and Nutrition Examination Survey (NHANES) 2013-2014. Associations between MMA and other variables were assessed with linear regression models. Univariable and multivariable logistic regression models were employed to explore the association between MMA and CVDs. Results The weighted prevalence of CVDs was 8.8% in the general population of the USA. Higher MMA levels were found in participants with CVDs (p < 0.001). Linear regression models revealed positive associations between serum MMA level and age (p < 0.001), glycohemoglobin (p = 0.023), fasting glucose (p = 0.044), mean cell volume (p = 0.038), and hypertension (p = 0.003). In the multivariable logistic model adjusting for age, gender, ethnicity, smoking, hypertension, glycohemoglobin, body mass index (BMI), low-density lipoprotein-cholesterol (LDL-C), renal dysfunction and vitamin B12, serum MMA (adjusted odds ratio, 3.08; 95% confidence interval: 1.63-5.81, p = 0.002, per ln nmol/L increment) was associated with CVDs. Conclusion Our study demonstrated that elevated serum MMA levels were independently associated with the presence of CVDs and may be used to predict the occurrence of CVDs.
Collapse
|
22
|
Chang S, Tat J, China SP, Kalyanaraman H, Zhuang S, Chan A, Lai C, Radic Z, Abdel-Rahman EA, Casteel DE, Pilz RB, Ali SS, Boss GR. Cobinamide is a strong and versatile antioxidant that overcomes oxidative stress in cells, flies, and diabetic mice. PNAS NEXUS 2022; 1:pgac191. [PMID: 36276587 PMCID: PMC9578022 DOI: 10.1093/pnasnexus/pgac191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023]
Abstract
Increased oxidative stress underlies a variety of diseases, including diabetes. Here, we show that the cobalamin/vitamin B12 analog cobinamide is a strong and multifaceted antioxidant, neutralizing superoxide, hydrogen peroxide, and peroxynitrite, with apparent rate constants of 1.9 × 108, 3.7 × 104, and 6.3 × 106 M-1 s-1, respectively, for cobinamide with the cobalt in the +2 oxidation state. Cobinamide with the cobalt in the +3 oxidation state yielded apparent rate constants of 1.1 × 108 and 8.0 × 102 M-1 s-1 for superoxide and hydrogen peroxide, respectively. In mammalian cells and Drosophila melanogaster, cobinamide outperformed cobalamin and two well-known antioxidants, imisopasem manganese and manganese(III)tetrakis(4-benzoic acid)porphyrin, in reducing oxidative stress as evidenced by: (i) decreased mitochondrial superoxide and return of the mitochondrial membrane potential in rotenone- and antimycin A-exposed H9c2 rat cardiomyocytes; (ii) reduced JNK phosphorylation in hydrogen-peroxide-treated H9c2 cells; (iii) increased growth in paraquat-exposed COS-7 fibroblasts; and (iv) improved survival in paraquat-treated flies. In diabetic mice, cobinamide administered in the animals' drinking water completely prevented an increase in lipid and protein oxidation, DNA damage, and fibrosis in the heart. Cobinamide is a promising new antioxidant that has potential use in diseases with heightened oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cassandra Lai
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zoran Radic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Engy A Abdel-Rahman
- Tumor Biology Research Program, Children’s Cancer Hospital, Cairo 57357, Egypt,Pharmacology Department, Faculty of Medicine, Assuit University, Assuit 71515, Egypt
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
23
|
Theiss EL, Griebsch LV, Lauer AA, Janitschke D, Erhardt VKJ, Haas EC, Kuppler KN, Radermacher J, Walzer O, Portius D, Grimm HS, Hartmann T, Grimm MOW. Vitamin B12 Attenuates Changes in Phospholipid Levels Related to Oxidative Stress in SH-SY5Y Cells. Cells 2022; 11:cells11162574. [PMID: 36010649 PMCID: PMC9406929 DOI: 10.3390/cells11162574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 08/15/2022] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is closely linked to Alzheimer’s disease (AD), and is detected peripherally as well as in AD-vulnerable brain regions. Oxidative stress results from an imbalance between the generation and degradation of reactive oxidative species (ROS), leading to the oxidation of proteins, nucleic acids, and lipids. Extensive lipid changes have been found in post mortem AD brain tissue; these changes include the levels of total phospholipids, sphingomyelin, and ceramide, as well as plasmalogens, which are highly susceptible to oxidation because of their vinyl ether bond at the sn-1 position of the glycerol-backbone. Several lines of evidence indicate that a deficiency in the neurotropic vitamin B12 is linked with AD. In the present study, treatment of the neuroblastoma cell line SH-SY5Y with vitamin B12 resulted in elevated levels of phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and plasmalogens. Vitamin B12 also protected plasmalogens from hydrogen peroxide (H2O2)-induced oxidative stress due to an elevated expression of the ROS-degrading enzymes superoxide-dismutase (SOD) and catalase (CAT). Furthermore, vitamin B12 elevates plasmalogen synthesis by increasing the expression of alkylglycerone phosphate synthase (AGPS) and choline phosphotransferase 1 (CHPT1) in SH-SY5Y cells exposed to H2O2-induced oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Oliver Walzer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany
| | | | - Tobias Hartmann
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
- Correspondence: or
| |
Collapse
|
24
|
Vela-Sebastián A, López-Gallardo E, Emperador S, Hernández-Ainsa C, Pacheu-Grau D, Blanco I, Ros A, Pascual-Benito E, Rabaneda-Lombarte N, Presas-Rodríguez S, García-Robles P, Montoya J, Ruiz-Pesini E. Toxic and nutritional factors trigger leber hereditary optic neuropathy due to a mitochondrial tRNA mutation. Clin Genet 2022; 102:339-344. [PMID: 35808913 PMCID: PMC9543827 DOI: 10.1111/cge.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022]
Abstract
Leber hereditary optic neuropathy is a mitochondrial disease mainly due to pathologic mutations in mitochondrial genes related to the respiratory complex I of the oxidative phosphorylation system. Genetic, physiological, and environmental factors modulate the penetrance of these mutations. We report two patients suffering from this disease and harboring a m.15950G > A mutation in the mitochondrial DNA‐encoded gene for the threonine transfer RNA. We also provide evidences supporting the pathogenicity of this mutation.
Collapse
Affiliation(s)
- Ana Vela-Sebastián
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Carmen Hernández-Ainsa
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - David Pacheu-Grau
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | | | | | - Neus Rabaneda-Lombarte
- Departamento de Neurociencias, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Pilar García-Robles
- Servicio de Oftalmología. Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) de Aragón, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
25
|
The effects of vitamin B12 on the TLR-4/NF-κB signaling pathway in ovarian ischemia-reperfusion injury-related inflammation. Int Immunopharmacol 2022; 107:108676. [DOI: 10.1016/j.intimp.2022.108676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
|
26
|
Effect of complexation between cobinamides and bovine serum albumin on their reactivity toward cyanide. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Kripps KA, Sremba L, Larson AA, Van Hove JLK, Nguyen H, Wright EL, Mirsky DM, Watkins D, Rosenblatt DS, Ketteridge D, Berry SA, McCandless SE, Baker PR. Methionine synthase deficiency: Variable clinical presentation and benefit of early diagnosis and treatment. J Inherit Metab Dis 2022; 45:157-168. [PMID: 34625984 DOI: 10.1002/jimd.12448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022]
Abstract
Methionine synthase deficiency (cblG complementation group) is a rare inborn error of metabolism affecting the homocysteine re-methylation pathway. It leads to a biochemical phenotype of hyperhomocysteinemia and hypomethioninemia. The clinical presentation of cblG is variable, ranging from seizures, encephalopathy, macrocytic anemia, hypotonia, and feeding difficulties in the neonatal period to onset of psychiatric symptoms or acute neurologic changes in adolescence or adulthood. Given the variable and nonspecific symptoms seen in cblG, the diagnosis of affected patients is often delayed. Medical management of cblG includes the use of hydroxocobalamin, betaine, folinic acid, and in some cases methionine supplementation. Treatment has been shown to lead to improvement in the biochemical profile of affected patients, with lowering of total homocysteine levels and increasing methionine levels. However, the published literature contains differing conclusions on whether treatment is effective in changing the natural history of the disease. Herein, we present five patients with cblG who have shown substantial clinical benefit from treatment with objective improvement in their neurologic outcomes. We demonstrate more favorable outcomes in our patients who were treated early in life, especially those who were treated before neurologic symptoms manifested. Given improved outcomes from treatment of presymptomatic patients, cblG warrants inclusion in newborn screening.
Collapse
Affiliation(s)
- Kimberly A Kripps
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Leighann Sremba
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Austin A Larson
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Johan L K Van Hove
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hoanh Nguyen
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Erica L Wright
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David M Mirsky
- Department of Radiology, University of Colorado, and Children's Hospital Colorado, Aurora, Colorado, USA
| | - David Watkins
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - David S Rosenblatt
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - David Ketteridge
- Department of Genetics and Molecular Pathology, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Susan A Berry
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shawn E McCandless
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Peter R Baker
- Section of Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
28
|
Lauer AA, Grimm HS, Apel B, Golobrodska N, Kruse L, Ratanski E, Schulten N, Schwarze L, Slawik T, Sperlich S, Vohla A, Grimm MOW. Mechanistic Link between Vitamin B12 and Alzheimer's Disease. Biomolecules 2022; 12:129. [PMID: 35053277 PMCID: PMC8774227 DOI: 10.3390/biom12010129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly population, affecting over 55 million people worldwide. Histopathological hallmarks of this multifactorial disease are an increased plaque burden and tangles in the brains of affected individuals. Several lines of evidence indicate that B12 hypovitaminosis is linked to AD. In this review, the biochemical pathways involved in AD that are affected by vitamin B12, focusing on APP processing, Aβ fibrillization, Aβ-induced oxidative damage as well as tau hyperphosphorylation and tau aggregation, are summarized. Besides the mechanistic link, an overview of clinical studies utilizing vitamin B supplementation are given, and a potential link between diseases and medication resulting in a reduced vitamin B12 level and AD are discussed. Besides the disease-mediated B12 hypovitaminosis, the reduction in vitamin B12 levels caused by an increasing change in dietary preferences has been gaining in relevance. In particular, vegetarian and vegan diets are associated with vitamin B12 deficiency, and therefore might have potential implications for AD. In conclusion, our review emphasizes the important role of vitamin B12 in AD, which is particularly important, as even in industrialized countries a large proportion of the population might not be sufficiently supplied with vitamin B12.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
| | - Birgit Apel
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Nataliya Golobrodska
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Lara Kruse
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Elina Ratanski
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Noemi Schulten
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Laura Schwarze
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Thomas Slawik
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Saskia Sperlich
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Antonia Vohla
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66424 Homburg, Germany; (A.A.L.); (H.S.G.)
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany; (B.A.); (N.G.); (L.K.); (E.R.); (N.S.); (L.S.); (T.S.); (S.S.); (A.V.)
- Deutsches Institut für DemenzPrävention, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
29
|
Liu L, Xie K, Yin M, Chen X, Chen B, Ke J, Wang C. Serum potassium, albumin and vitamin B 12 as potential oxidative stress markers of fungal peritonitis. Ann Med 2021; 53:2132-2141. [PMID: 34779336 PMCID: PMC8604478 DOI: 10.1080/07853890.2021.1999489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Biomarkers of oxidative stress (OS) have been poorly explored in fungal peritonitis (FP). Potassium is a regulator of pro-oxidants and antioxidants. Albumin and vitamin B12 (B12) are vital antioxidant agents in the circulatory system. This study aimed to investigate the antioxidative role of serum potassium, albumin and B12 in FP. METHODS Serum levels of potassium, albumin and B12 were retrospectively analyzed in 21 patients with a confirmed diagnosis of FP, 105 bacterial peritonitis (BP) patients and 210 patients receiving peritoneal dialysis without peritonitis. RESULTS Serum levels of potassium, albumin and B12 were lower in FP patients than in BP patients. Serum potassium concentration was statistically related to albumin concentration in peritonitis patients. Univariate and multivariate binary logistic regression analysis suggested that serum level of potassium and albumin were independent risk factors of FP when compared with BP. Lower potassium and B12 levels were independently associated with higher rates of technique failure in peritonitis. CONCLUSION These findings suggest lower serum potassium, albumin and B12 as potential oxidative stress markers of FP and raise the hypothesis that an increased level of OS could contribute to FP.KEY MESSAGESFP remains a serious complication of peritoneal dialysis (PD), with higher morbidity (1-23.8%) and mortality (2-25%), and oxidative stress plays a role in it.Our study suggested serum potassium, albumin and vitamin B12 as potential oxidative stress markers of fungal peritonitis.
Collapse
Affiliation(s)
- Lingling Liu
- Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Kehang Xie
- Department of Neurology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Mengmeng Yin
- Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Xiaoqiu Chen
- Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Binhuan Chen
- Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Jianting Ke
- Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Cheng Wang
- Department of Nephrology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
30
|
OKUR EC, ORHAN MF, ELMAS B. Vitamin B12 eksikliği olan çocuklarda tiyol disülfit dengesi. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.909342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
31
|
Das Gupta S, Shakeel T, Dhawan A, Kakkar A. Effect of vitamin B12 deficiency anemia on peripapillary retinal nerve fiber layer. Int J Ophthalmol 2021; 14:1424-1429. [PMID: 34540621 DOI: 10.18240/ijo.2021.09.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/14/2021] [Indexed: 01/07/2023] Open
Abstract
AIM To evaluate the effect of vitamin B12 deficiency anemia (BDA) on peripapillary retinal nerve fiber layer thickness (RNFLT) using spectral domain optical coherence tomography (SD-OCT), and to determine any correlation arising thereof. METHODS In this cross-sectional observational study, 99 eyes of 50 BDA patients of age 18-65y were compared with 100 eyes of 50 healthy control subjects. All subjects underwent comprehensive clinical, ophthalmic, and hematological evaluation, followed by peripapillary RNFLT assessment using SD-OCT. RESULTS The mean total, inferior, nasal, and temporal RNFLT were significantly lower in BDA group as compared to control group (P<0.05). The mean total, inferior and nasal RNFLT correlated significantly (P<0.05) with serum Hb%, B12 and mean corpuscular volume (MCV) level (r=0.310, 0.435, -0.386 for total; r=0.932, 0.481, -0.513 for inferior; r=0.344, 0.254, -0.233 for nasal; respectively), while temporal and superior RNFLT quadrant did not show any correlation with any of the hematological parameters (r=0.144, 0.167, -0.096; r=0.111, 0.070, -0.099; respectively). The mean total RNFLT showed progressive thinning at par with the progression of anemia, except in very severe BDA, where an inverse relationship was documented. CONCLUSION The mean total, inferior, nasal, and temporal peripapillary RNFLT was significantly thinner in BDA patients. Peripapillary RNFLT thinning seemed to proceed at par with the progression of severity of anemia, except in very sever grade. Early assessment of peripapillary RNFLT may be crucial in BDA patients to prevent potential blinding sequelae. Peripapillary RNFLT thinning in BDA patients should be considered in the differential diagnosis of other non-glaucomatous optic neuropathies, as well.
Collapse
Affiliation(s)
- Sushobhan Das Gupta
- Department of Ophthalmology, Shri Guru Ram Rai Institute of Medical and Health Science, Patel Nagar, Dehradun 248001, India
| | - Tarannum Shakeel
- Department of Ophthalmology, Shri Guru Ram Rai Institute of Medical and Health Science, Patel Nagar, Dehradun 248001, India
| | - Aeshwarya Dhawan
- Department of Ophthalmology, Shri Guru Ram Rai Institute of Medical and Health Science, Patel Nagar, Dehradun 248001, India
| | - Aashish Kakkar
- Department of Ophthalmology, Shri Guru Ram Rai Institute of Medical and Health Science, Patel Nagar, Dehradun 248001, India
| |
Collapse
|
32
|
Rigaudière F, Nasser H, Delouvrier E, Milani P, Schiff M. Subclinical maculopathy and retinopathy in transcobalamin deficiency: a 10-year follow-up. Doc Ophthalmol 2021; 144:53-65. [PMID: 34491492 DOI: 10.1007/s10633-021-09849-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Transcobalamin (TC) transports cobalamin (vitamin B12) from plasma into cells. Its congenital deficiency is a rare autosomal recessive disorder due to mutations in the TCN2 gene. It causes intracellular cobalamin depletion with early onset in the first months of life, failure to thrive with pallor due to megaloblastic anemia. It can be associated with pancytopenia, gastrointestinal symptoms with vomiting, diarrhea, and neurological complications with myelopathy. Aggressive vitamin B12 parenteral therapy must be instituted early and continuously. Retinopathy and maculopathy are rarely associated with this condition. SUBJECT We report the electrophysiological results of one TC-deficient patient diagnosed at the age of 4 months immediately and continuosly treated by hydroxocobalamin IM. Her visual function was followed by eight ophthalmological assessments, eight flash-ERG, six EOG, one mf-ERG, and seven P-ERG recordings over a 10-year period, between the age of 2y 9 m and 12y 6 m. RESULTS Her ophthalmological assessment including visual acuity, fundi, optical coherent tomography (OCT), and retinal nerve fiber layer (RNFL) remained normal. From the age of 2y 9 m to 5y, dark-adapted and light-adapted flash-ERGs, EOGs and pattern-ERG were normal. From the age of 6y 4 m to 12y 6 m, dark-adapted flash-ERGs and EOGs remained normal. Cone a-wave amplitudes remained normal, whereas cone b-wave and flicker-response amplitudes were decreased. At the age of 12y 6 m, mf-ERG N1P1 amplitudes on the central 30° were decreased. From the age of 7y 4 m to 12y 6 m, P-ERG P50 amplitudes were decreased with no N95. COMMENTS While clinical and anatomical assessments remained normal over a 10-year period, patient's electrophysiological results suggested the progressive onset of a subclinical retinopathy of inner-cone dystrophy type, and a subclinical maculopathy on the central 30° including the ganglion cell layer deficiency on the central 15°, despite continuous intramuscular treatment, RPE and scotopic system remaining normal. The origins of such subclinical retinopathy and maculopathy are unknown and independent of early disease identification and aggressive intramuscular hydroxocobalamin therapy.
Collapse
Affiliation(s)
- Florence Rigaudière
- Service de Physiologie Clinique. Explorations Fonctionnelles, DMU DREAM, Hôpital Lariboisière, AP-HP, Paris, France. .,Faculté de Médecine Paris-Diderot, Université de Paris, Paris, France.
| | - Hala Nasser
- Département de Génétique, Hôpital Robert Debré, AP-HP, Paris, France.,Explorations Fonctionnelles, Hôpital Robert Debré, AP-HP, Paris, France
| | | | - Paolo Milani
- Service de Physiologie Clinique. Explorations Fonctionnelles, DMU DREAM, Hôpital Lariboisière, AP-HP, Paris, France
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Robert Debré Hospital, AP-HP, Paris, France.,Reference Center for Inborn Errors of Metabolism, Faculté de Médecine Paris-Descartes, Necker University Hospital, AP-HP, Université de Paris, Paris, France.,Institut Imagine, Inserm UMRS_1163, Paris, France
| |
Collapse
|
33
|
Offringa AK, Bourgonje AR, Schrier MS, Deth RC, van Goor H. Clinical implications of vitamin B 12 as redox-active cofactor. Trends Mol Med 2021; 27:931-934. [PMID: 34312076 DOI: 10.1016/j.molmed.2021.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Vitamin B12 is a redox-active compound containing a cobalt atom that cycles between oxidation states. Superoxide scavenging induces its oxidation, disabling activation of the enzymes methionine synthase and methylmalonyl-CoA mutase, disrupting gene expression and energy production. High-dosed vitamin B12 may be clinically used to reduce oxidative stress and preserve cofactor functions.
Collapse
Affiliation(s)
- Annette K Offringa
- Microbiology and System Biology, Netherlands Organization for Applied Scientific Research, The Hague, The Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthew S Schrier
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
34
|
Andra A, Tanigawa S, Bito T, Ishihara A, Watanabe F, Yabuta Y. Effects of Vitamin B 12 Deficiency on Amyloid-β Toxicity in Caenorhabditis elegans. Antioxidants (Basel) 2021; 10:antiox10060962. [PMID: 34203911 PMCID: PMC8232795 DOI: 10.3390/antiox10060962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/15/2023] Open
Abstract
High homocysteine (Hcy) levels, mainly caused by vitamin B12 deficiency, have been reported to induce amyloid-β (Aβ) formation and tau hyperphosphorylation in mouse models of Alzheimer's disease. However, the relationship between B12 deficiency and Aβ aggregation is poorly understood, as is the associated mechanism. In the current study, we used the transgenic C. elegans strain GMC101, which expresses human Aβ1-42 peptides in muscle cells, to investigate the effects of B12 deficiency on Aβ aggregation-associated paralysis. C. elegans GMC101 was grown on nematode growth medium with or without B12 supplementation or with 2-O-α-D-glucopyranosyl-L-ascorbic acid (AsA-2G) supplementation. The worms were age-synchronized by hypochlorite bleaching and incubated at 20 °C. After the worms reached the young adult stage, the temperature was increased to 25 °C to induce Aβ production. Worms lacking B12 supplementation exhibited paralysis faster and more severely than those that received it. Furthermore, supplementing B12-deficient growth medium with AsA-2G rescued the paralysis phenotype. However, AsA-2G had no effect on the aggregation of Aβ peptides. Our results indicated that B12 supplementation lowered Hcy levels and alleviated Aβ toxicity, suggesting that oxidative stress caused by elevated Hcy levels is an important factor in Aβ toxicity.
Collapse
|
35
|
Protective effects of lamotrigine and vitamin B12 on pentylenetetrazole-induced epileptogenesis in rats. Epilepsy Behav 2021; 118:107915. [PMID: 33743341 DOI: 10.1016/j.yebeh.2021.107915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Epileptogenesis is a process that includes molecular and cellular events that foster the establishment of hyperexcitable neuronal networks in the brain. Pentylenetetrazole (PTZ)-induced kindling model in rodents has added new information to the knowledge about the pathogenesis of epilepsy and potential targets of novel antiepileptic agents. Evidence from animal and human studies suggests that oxidative and inflammatory events may play important roles in the initiation and maintaining seizure activities. Vitamin B12 has beneficial effects on the nervous system and presents pleiotropic effects with antioxidant and anti-inflammatory aspects. In the present study, we aimed to test the hypothesis that vitamin B12 and their combination with lamotrigine prevents behavioral deficits, hippocampal damage, oxidation, and proinflammatory state during epileptogenesis. Male rats were subjected to PTZ-induced epileptogenesis and pretreated with vitamin B12 (50 µg/kg) or Lamotrigine (LTG) (25 mg/kg) or B12 (50 µg/kg) + LTG (25 mg/kg). Vitamin B12 and its combination with LTG suppressed epileptogenesis and improved the performance of rats in the passive avoidance test. In addition, Vitamin B12 and its combination with LTG decreased levels of total oxidative status (TOS), oxidative stress index (OSI), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and increased total antioxidant status (TAS) levels in the hippocampus and cerebral cortex. Furthermore, it reduced hippocampal neuronal damage. Current findings support the beneficial actions of vitamin B12 due to its antioxidative and anti-inflammatory properties during the course of disease.
Collapse
|
36
|
Optimized culture of retinal ganglion cells and amacrine cells from adult mice. PLoS One 2020; 15:e0242426. [PMID: 33284815 PMCID: PMC7721191 DOI: 10.1371/journal.pone.0242426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023] Open
Abstract
Cell culture is widely utilized to study the cellular and molecular biology of different neuronal cell populations. Current techniques to study enriched neurons in vitro are primarily limited to embryonic/neonatal animals and induced pluripotent stem cells (iPSCs). Although the use of these cultures is valuable, the accessibility of purified primary adult neuronal cultures would allow for improved assessment of certain neurological diseases and pathways at the cellular level. Using a modified 7-step immunopanning technique to isolate for retinal ganglion cells (RGCs) and amacrine cells (ACs) from adult mouse retinas, we have successfully developed a model of neuronal culture that maintains for at least one week. Isolations of Thy1.2+ cells are enriched for RGCs, with the isolation cell yield being congruent to the theoretical yield of RGCs in a mouse retina. ACs of two different populations (CD15+ and CD57+) can also be isolated. The populations of these three adult neurons in culture are healthy, with neurite outgrowths in some cases greater than 500μm in length. Optimization of culture conditions for RGCs and CD15+ cells revealed that neuronal survival and the likelihood of neurite outgrowth respond inversely to different culture media. Serially diluted concentrations of puromycin decreased cultured adult RGCs in a dose-dependent manner, demonstrating the potential usefulness of these adult neuronal cultures in screening assays. This novel culture system can be used to model in vivo neuronal behaviors. Studies can now be expanded in conjunction with other methodologies to study the neurobiology of function, aging, and diseases.
Collapse
|
37
|
Optic neuropathy as a presenting feature of vitamin B-12 deficiency: A systematic review of literature and a case report. Ann Med Surg (Lond) 2020; 60:316-322. [PMID: 33204422 PMCID: PMC7653199 DOI: 10.1016/j.amsu.2020.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Vitamin B12 (VitB12) deficiency rarely manifests with visual symptoms. Optic nerve damage in VitB12 deficiency is thought to be via degeneration. However, optic neuritis, though infrequent, has been reported secondary to VitB12 deficiency. Material and methods We conducted a systematic review of all the reported cases of VitB12 deficiency with optic nerve involvement in Pubmed, Cochrane, and Google Scholar any date up to September 6, 2020. We have discussed the findings and compiled the available information on ophthalmological manifestations of VitB12 deficiency. We aim to provide a unified knowledge about the evidence related to types of optic neuropathies reported to date secondary to VitB12 deficiency. We also present a case of bilateral optic neuritis secondary to VitB12 deficiency. Presentation of case We present a 29-year-old previously healthy male with progressive, painful, bilateral, but asymmetric visual deterioration for forty-five days. A detailed history, examination, and laboratory workup were carried out. He was diagnosed as having optic neuritis secondary to VitB12 deficiency. He showed partial improvement with the replacement of VitB12. Conclusion We suggest promptly identifying and replacing VitB12 in patients with optic neuritis with proven VitB12 deficiency to prevent permanent damage to the optic nerve. Patients with VitB12 deficiency should have a baseline fundoscopic exam to rule out subclinical optic nerve damage. Moreover, patients who present with visual disturbances should be screened for VitB12 deficiency, especially the vegan population. B 12 deficiency can present with optic neuropathy as an initial manifestation. B 12 deficiency-induced optic neuropathy may be reversible if identified timely. In patients with visual disturbance, B12 levels should be checked with a fundus exam. A subclinical optic neuropathy should be ruled out in B12 deficient patients.
Collapse
|
38
|
Roda M, di Geronimo N, Pellegrini M, Schiavi C. Nutritional Optic Neuropathies: State of the Art and Emerging Evidences. Nutrients 2020; 12:E2653. [PMID: 32878163 PMCID: PMC7551088 DOI: 10.3390/nu12092653] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Nutritional optic neuropathy is a cause of bilateral, symmetrical, and progressive visual impairment with loss of central visual acuity and contrast sensitivity, dyschromatopsia, and a central or centrocecal scotoma. The clinical features are not pathognomonic, since hereditary and toxic forms share similar signs and symptoms. It is becoming increasingly common due to the widespread of bariatric surgery and strict vegetarian or vegan diets, so even the scientific interest has recently increased. In particular, recent studies have focused on possible pathogenetic mechanisms, and on novel diagnostic and therapeutic strategies in order to prevent the onset, make a prompt diagnosis and an accurate nutritional supplementation, and to avoid irreversible optic nerve atrophy. Nowadays, there is clear evidence of the role of cobalamin, folic acid, thiamine, and copper, whereas further studies are needed to define the role of niacin, riboflavin, and pyridoxine. This review aims to summarize the etiology, diagnosis, and treatment of nutritional optic neuropathy, and it is addressed not only to ophthalmologists, but to all physicians who could come in contact with a patient with a possible nutritional optic neuropathy, being a fundamental multidisciplinary approach.
Collapse
Affiliation(s)
- Matilde Roda
- Ophthalmology Unit, S. Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (N.d.G.); (M.P.); (C.S.)
| | | | | | | |
Collapse
|
39
|
Li F, Bahnson EM, Wilder J, Siletzky R, Hagaman J, Nickekeit V, Hiller S, Ayesha A, Feng L, Levine JS, Takahashi N, Maeda-Smithies N. Oral high dose vitamin B12 decreases renal superoxide and post-ischemia/reperfusion injury in mice. Redox Biol 2020; 32:101504. [PMID: 32182573 PMCID: PMC7078436 DOI: 10.1016/j.redox.2020.101504] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 01/25/2023] Open
Abstract
Renal ischemia/reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), a potentially fatal syndrome characterized by a rapid decline in kidney function. Excess production of superoxide contributes to the injury. We hypothesized that oral administration of a high dose of vitamin B12 (B12 - cyanocobalamin), which possesses a superoxide scavenging function, would protect kidneys against IRI and provide a safe means of treatment. Following unilateral renal IR surgery, C57BL/6J wild type (WT) mice were administered B12 via drinking water at a dose of 50 mg/L. After 5 days of the treatment, plasma B12 levels increased by 1.2-1.5x, and kidney B12 levels increased by 7-8x. IRI mice treated with B12 showed near normal renal function and morphology. Further, IRI-induced changes in RNA and protein markers of inflammation, fibrosis, apoptosis, and DNA damage response (DDR) were significantly attenuated by at least 50% compared to those in untreated mice. Moreover, the presence of B12 at 0.3 μM in the culture medium of mouse proximal tubular cells subjected to 3 hr of hypoxia followed by 1 hr of reperfusion in vitro showed similar protective effects, including increased cell viability and decreased reactive oxygen species (ROS) level. We conclude that a high dose of B12 protects against perfusion injury both in vivo and in vitro without observable adverse effects in mice and suggest that B12 merits evaluation as a treatment for I/R-mediated AKI in humans.
Collapse
Affiliation(s)
- Feng Li
- Dept of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Edward M Bahnson
- Department of Surgery, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jennifer Wilder
- Dept of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robin Siletzky
- Department of Surgery, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - John Hagaman
- Dept of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Volker Nickekeit
- Dept of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA; Division of Nephropathy, School of Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sylvia Hiller
- Dept of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Azraa Ayesha
- Dept of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lanfei Feng
- Section of Nephrology, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Jerrold S Levine
- Section of Nephrology, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Nobuyuki Takahashi
- Dept of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA; Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School, Sendai, Japan
| | - Nobuyo Maeda-Smithies
- Dept of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
40
|
Vitamin B 12b Enhances the Cytotoxicity of Diethyldithiocarbamate in a Synergistic Manner, Inducing the Paraptosis-Like Death of Human Larynx Carcinoma Cells. Biomolecules 2020; 10:biom10010069. [PMID: 31906414 PMCID: PMC7023477 DOI: 10.3390/biom10010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 11/24/2022] Open
Abstract
We have shown that hydroxycobalamin (vitamin B12b) increases the toxicity of diethyldithiocarbamate (DDC) to tumor cells by catalyzing the formation of disulfiram (DSF) oxi-derivatives. The purpose of this study was to elucidate the mechanism of tumor cell death induced by the combination DDC + B12b. It was found that cell death induced by DDC + B12b differed from apoptosis, autophagy, and necrosis. During the initiation of cell death, numerous vacuoles formed from ER cisterns in the cytoplasm, and cell death was partially suppressed by the inhibitors of protein synthesis and folding, the IP3 receptor inhibitor as well as by thiols. At this time, a short-term rise in the expression of ER-stress markers BiP and PERK with a steady increase in the expression of CHOP were detected. After the vacuolization of the cytoplasm, functional disorders of mitochondria and an increase in the generation of superoxide anion in them occurred. Taken together, the results obtained indicate that DDC and B12b used in combination exert a synergistic toxic effect on tumor cells by causing severe ER stress, extensive ER vacuolization, and inhibition of apoptosis, which ultimately leads to the induction of paraptosis-like cell death.
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The diagnosis of visual loss from toxic-metabolic and hereditary optic neuropathies may be delayed in some cases because of a failure to elicit important information in the clinical history or to recognize typical examination findings. An understanding of the features specific to each type of toxic-metabolic and hereditary optic neuropathy, and of the underlying mechanism of insult to the optic nerve, could lead to earlier recognition, diagnosis, and treatment (when available). RECENT FINDINGS Understanding of the role of mitochondria in toxic-metabolic and hereditary optic neuropathies is growing, particularly regarding the mechanism of insult of certain agents (medications and toxins) and of vitamin B12 deficiency. New developments in the quest for treatment for hereditary optic neuropathy, specifically Leber hereditary optic neuropathy, are being seen. SUMMARY Toxic-metabolic and hereditary optic neuropathies present in a similar fashion, with painless, progressive, bilateral visual loss with dyschromatopsia and cecocentral visual field defects. The associated retinal ganglion cell and axonal loss is typically due to mitochondrial dysfunction caused by an exogenous agent (toxic), by insufficient or deficient substrate (metabolic or nutritional), or by abnormal proteins or mitochondrial structure determined by a genetic mutation (hereditary).
Collapse
|
42
|
Lin YC, Chung CJ, Huang YL, Hsieh RL, Huang PT, Wu MY, Ao PL, Shiue HS, Huang SR, Su CT, Lin MI, Mu SC, Hsueh YM. Association of plasma folate, vitamin B12 levels, and arsenic methylation capacity with developmental delay in preschool children in Taiwan. Arch Toxicol 2019; 93:2535-2544. [DOI: 10.1007/s00204-019-02540-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
|
43
|
Huemer M, Baumgartner MR. The clinical presentation of cobalamin-related disorders: From acquired deficiencies to inborn errors of absorption and intracellular pathways. J Inherit Metab Dis 2019; 42:686-705. [PMID: 30761552 DOI: 10.1002/jimd.12012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
This review gives an overview of clinical characteristics, treatment and outcome of nutritional and acquired cobalamin (Cbl; synonym: vitamin B12) deficiencies, inborn errors of Cbl absorption and intracellular trafficking, as well as methylenetetrahydrofolate dehydrogenase (MTHFD1) and methylene tetrahydrofolate reductase (MTHFR) deficiencies, which impair Cbl-dependent remethylation. Acquired and inborn Cbl-related disorders and MTHFR deficiency cause multisystem, often severe disease. Failure to thrive, neurocognitive or psychiatric symptoms, eye disease, bone marrow alterations, microangiopathy and thromboembolic events are characteristic. The recently identified MTHFD1 defect additionally presents with severe immune deficiency. Deficient Cbl-dependent enzymes cause reduced methylation capacity and metabolite toxicity. Further net-effects of perturbed Cbl function or reduced Cbl supply causing oxidative stress, altered cytokine regulation or immune functions are discussed.
Collapse
Affiliation(s)
- Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
44
|
Wu F, Xu K, Liu L, Zhang K, Xia L, Zhang M, Teng C, Tong H, He Y, Xue Y, Zhang H, Chen D, Hu A. Vitamin B 12 Enhances Nerve Repair and Improves Functional Recovery After Traumatic Brain Injury by Inhibiting ER Stress-Induced Neuron Injury. Front Pharmacol 2019; 10:406. [PMID: 31105562 PMCID: PMC6491933 DOI: 10.3389/fphar.2019.00406] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the most common causes of neurological damage in young human populations. Vitamin B12 has been reported to promote axon growth of neuronal cells after peripheral nerve injury, which is currently used for the treatment of peripheral nerve damage in the clinical trial. Thus, we hypothesized that TBI can be attenuated by vitaminB12 treatment through its beneficial role on axon regeneration after nerve injury. To confirm it, the biological function of vitaminB12 was characterized using hematoxylin and eosin (H&E) staining, Luxol fast blue (LFB) staining, western blot analysis, and immunohistochemistry staining. The results showed that the neurological functional recovery was improved in the VitaminB12-treated group after TBI, which may be due to downregulation of the endoplasmic reticulum stress-related apoptosis signaling pathway. Moreover, the microtubule stabilization, remyelination and myelin reparation were rescued by vitamin B12, which was consistent with the treatment of 4-phenylbutyric acid (4-PBA), an endoplasmic reticulum stress inhibitor. The study suggests that vitamin B12 may be useful as a novel neuroprotective drug for TBI.
Collapse
Affiliation(s)
- Fangfang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Lei Liu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kairui Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Leilei Xia
- Department of Emergency, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, China
| | - Man Zhang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chenhuai Teng
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Heyan Tong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yifang He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yujie Xue
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Daqing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Aiping Hu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. Vitamin B 12 in Relation to Oxidative Stress: A Systematic Review. Nutrients 2019; 11:E482. [PMID: 30823595 PMCID: PMC6412369 DOI: 10.3390/nu11020482] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
The triage theory posits that modest micronutrient deficiencies may induce reallocation of nutrients to processes necessary for immediate survival at the expense of long-term health. Neglected processes could in time contribute to the onset of age-related diseases, in which oxidative stress is believed to be a major factor. Vitamin B12 (B12) appears to possess antioxidant properties. This review aims to summarise the potential antioxidant mechanisms of B12 and investigate B12 status in relation to oxidative stress markers. A systematic query-based search of PubMed was performed to identify eligible publications. The potential antioxidant properties of B12 include: (1) direct scavenging of reactive oxygen species (ROS), particularly superoxide; (2) indirect stimulation of ROS scavenging by preservation of glutathione; (3) modulation of cytokine and growth factor production to offer protection from immune response-induced oxidative stress; (4) reduction of homocysteine-induced oxidative stress; and (5) reduction of oxidative stress caused by advanced glycation end products. Some evidence appears to suggest that lower B12 status is related to increased pro-oxidant and decreased antioxidant status, both overall and for subclinically deficient individuals compared to those with normal B12 status. However, there is a lack of randomised controlled trials and prospective studies focusing specifically on the relation between B12 and oxidative stress in humans, resulting in a low strength of evidence. Further work is warranted.
Collapse
Affiliation(s)
- Erik E van de Lagemaat
- Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
- FrieslandCampina, Stationsplein 4, 3818 LE Amersfoort, The Netherlands.
| | - Lisette C P G M de Groot
- Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | | |
Collapse
|
46
|
Kinoshita Y, Nogami K, Jomura R, Akanuma SI, Abe H, Inouye M, Kubo Y, Hosoya KI. Investigation of Receptor-Mediated Cyanocobalamin (Vitamin B 12) Transport across the Inner Blood-Retinal Barrier Using Fluorescence-Labeled Cyanocobalamin. Mol Pharm 2018; 15:3583-3594. [PMID: 29966424 DOI: 10.1021/acs.molpharmaceut.8b00617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The blood-to-retina supply of cyanocobalamin (vitamin B12) across the blood-retinal barrier (BRB) was investigated by synthesizing a fluorescence-labeled cyanocobalamin (Cy5-cyanocobalamin). In the in vivo analysis following internal jugular injection of Cy5-cyanocobalamin, confocal microscopy showed the distribution of Cy5-cyanocobalamin in the inner plexiform layer (IPL), the outer plexiform layer (OPL), and the retinal pigment epithelium (RPE). In the in vitro analysis with TR-iBRB2 cells, an in vitro model cell line of the inner BRB, Cy5-cyanocobalamin uptake by TR-iBRB2 cells exhibited a time-dependent increase after preincubation with transcobalamin II (TCII) protein, during its residual uptake without preincubation with TCII protein. The Cy5-cyanocobalamin uptake by TR-iBRB2 cells was significantly reduced in the presence of unlabeled cyanocobalamin, chlorpromazine, and chloroquine and was also significantly reduced under Ca2+-free conditions. Confocal microscopy of the TR-iBRB2 cells showed fluorescence signals of Cy5-cyanocobalamin and GFP-TCII protein, and these signals merged with each other. The RT-PCR, Western blot, and immunohistochemistry clearly suggested the expression of TCII receptor (TCII-R) in the inner and outer BRB. These results suggested the involvement of receptor-mediated endocytosis in the blood-to-retina transport of cyanocobalamin at the inner BRB with implying its possible involvement at the outer BRB.
Collapse
Affiliation(s)
- Yuri Kinoshita
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | | | - Ryuta Jomura
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | | | | | - Yoshiyuki Kubo
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics and ‡Department of Chemical Biology, Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , Toyama 930-0194 , Japan
| |
Collapse
|