1
|
Xu Y, Yu C, Zhang H, Wang T, Liu Y, Wu L, Zhong S, Hong Z. Downregulation of Brf1 Induces Liver Failure and Inhibits Hepatocellular Carcinoma Progression by Promoting Apoptosis. J Cancer 2024; 15:5577-5593. [PMID: 39308682 PMCID: PMC11414613 DOI: 10.7150/jca.97277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/29/2024] [Indexed: 09/25/2024] Open
Abstract
The occurrence and development of hepatocellular carcinoma (HCC) are closely related to abnormal apoptosis. Brf1 is highly expressed in HCC and has clinical prognostic value. Here, attenuation of Brf1-induced apoptosis was found, and the related mechanism was explored. In the study, general bioinformatics data for Brf1 were obtained from The Human Protein Atlas (HPA). Analyses of the clinical prognostic value of Brf1 in HCC were performed with the Xiantao Academic web server using R software. The basic data were obtained from the GTEx database and TCGA database. Brf1 conditional knockout mice were obtained by repeated mating of C57BL/6 Brf1LoxP/LoxP and C57BL/6 NS5A-alb-Cre-ERT2 mice and verified by genotyping. Liver function measurements, hematoxylin and eosin staining (HE), and immunohistochemistry (IHC) were performed to explore the cause of mouse death after Brf1 knockout. The Brf1 knockdown HCC cell model was generated using lentiviral vector-based shRNA transduction. Cell proliferation assays, plate colony formation assays, anchorage-independent colony formation assays and mouse subcutaneous tumor models were used to evaluate the progression of HCC. Western blot (WB) analysis, flow cytometry, and TUNEL assays were used to detect apoptosis. DNA sequencing, transcriptomics, and proteomics analyses were carried out to explore the antiapoptotic mechanism of Brf1. We found that Brf1 was highly expressed in HCC and had clinical prognostic value. Brf1 knockout led to liver failure and hepatocyte apoptosis in mice. Downregulation of Brf1 slowed HCC cell proliferation, colony growth, and mouse subcutaneous tumor growth and increased the sensitivity of HCC cells to apoptosis induced by chemotherapy drugs. The expression of Brf1 was positively related to that of the apoptosis gene Bcl-2. The sequencing, transcriptomics and proteomics analyses consistently showed that energy metabolism played an important role in Brf1 function, that protein-protein interaction was the primary mode, and that organelles such as mitochondria were the main sites. In Conclusions, downregulation of Brf1 inhibits HCC development by inducing apoptosis. Energy metabolism plays an important role in Brf1 function. These results provide a scientific basis for combating HCC.
Collapse
Affiliation(s)
- Yaping Xu
- Key laboratory of functional and clinical translational medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian Province,China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, China
| | - Hongbin Zhang
- Endoscopy Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Tao Wang
- Department of General Surgery, Xinglin District of the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361022, Fujian Province, China
| | - Yujian Liu
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Lupeng Wu
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| | - Shuping Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zaifa Hong
- Department of Hepato-Biliary-Pancreatic and Vascular Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, Fujian Province, China
| |
Collapse
|
2
|
Motamedzadeh A, Rahmati-Dehkordi F, Heydari H, Behnam M, Rashidi Noshabad FZ, Tamtaji Z, Taheri AT, Nabavizadeh F, Aschner M, Mirzaei H, Tamtaji OR. Therapeutic potential of Phycocyanin in gastrointestinal cancers and related disorders. Mol Biol Rep 2024; 51:741. [PMID: 38874869 DOI: 10.1007/s11033-024-09675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/β-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoora Heydari
- Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wang Q, Zhang Y, Ding W, Feng C, Wang Y, Wei X, Qu Z, Wang H, Liu X, Wang H, Gu K. Neutrophil extracellular traps induced by interleukin 8 via CXCR1/2 promote the progression of gastric carcinoma through transcription factor IIB-related factor 1 and cyclin. Genes Dis 2024; 11:575-578. [PMID: 37692473 PMCID: PMC10491907 DOI: 10.1016/j.gendis.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/22/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Qianling Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yiyin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Wenxi Ding
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Cheng Feng
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yuyan Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xiaoli Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ziting Qu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Hui Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
4
|
Pádua JDB, Mariano CFA, Fabro AT, Lizarte Neto FS, Zuliani RL, Sares CTG, dos Santos JS, Sankarankutty AK, Tirapelli DPDC, Silveira VDS, de Molfetta GA, Júnior WADS, Brunaldi MO. mRNA Expression and Methylation of the RAD51, ATM, ATR, BRCA1, and BRCA2 Genes in Gastric Adenocarcinoma. Biomark Insights 2024; 19:11772719231225206. [PMID: 38293680 PMCID: PMC10826385 DOI: 10.1177/11772719231225206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Background Immunohistochemical prognostic significance of the homologous recombination-related proteins RAD51, ATM, BRCA1, and BRCA2 is known in gastric adenocarcinoma, one of the deadliest cancers. Objective and design This retrospective cohort study aimed to evaluate mRNA expression and promoter methylation of some homologous recombination-related genes in this neoplasm. Methods We evaluated mRNA expression and methylation of RAD51, ATM, ATR, BRCA1, and BRCA2 in tumor and non-tumor frozen samples from gastrectomy specimens by RT-qPCR and MS-HRM, correlating our results with previous immunohistochemistry data and prognostic features. Results RAD51, ATR, BRCA1, BRCA2, and ATM mRNA expression was detected in 93.75% (45/48), 93.75% (45/48), 91.67% (44/48), 83.33% (40/48), and 89.58% (43/48) of the tumors; partial or complete methylation, in 94.87% (37/39), 0 (0/42), 97.56% (40/41), 100% (41/41), and 0 (0/40), respectively. Most gene pairs showed significant weak to moderate positive correlations of tumoral mRNA expression with each other: RAD51 with ATR (P = .027), BRCA1 (P < .001), and BRCA2 (P < .001); ATR with BRCA1 (P = .007), and ATM (P = .001); BRCA1 with BRCA2 (P = 0.001). BRCA1 mRNA was reduced in tumors compared with non-neoplastic mucosa (0.345 vs 1.272, P = .015) and, excluding neoadjuvant therapy cases, in T3 to T4 tumors compared with T2 (0.414 vs 0.954, P = .035). Greater tumoral RAD51 mRNA levels correlated with perineural invasion (1.822 vs 0.725, P = .010) and death (1.664 vs 0.929, P = .036), but not with survival time. There was an inverse association between nuclear immunohistochemical positivity for ATR and its mRNA levels (0.487 vs 0.907, P = .032), and no significant correlation for the other markers. Conclusions Our results suggest RAD51, BRCA1, and BRCA2 methylation as a frequent epigenetic mechanism in gastric cancer, support the hypothesis that reduced BRCA1 expression participates in disease progression, and show an association between RAD51 mRNA and perineural invasion and mortality that may be considered unexpected, considering the former immunohistochemical studies. The lack of correlation between immunohistochemistry and mRNA, and even the inverse association, for ATR, can be seen as indicative of action of post-transcriptional or post-translational regulatory mechanisms, to be better investigated.
Collapse
Affiliation(s)
- Joel Del Bel Pádua
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Carolline Fontes Alves Mariano
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | | | - Rogério Lenotti Zuliani
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, USP, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | - Mariângela Ottoboni Brunaldi
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Chen H, Hu Y, Zhuang Z, Wang D, Ye Z, Jing J, Cheng X. Advancements and Obstacles of PARP Inhibitors in Gastric Cancer. Cancers (Basel) 2023; 15:5114. [PMID: 37958290 PMCID: PMC10647262 DOI: 10.3390/cancers15215114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Gastric cancer (GC) is a common and aggressive cancer of the digestive system, exhibiting high aggressiveness and significant heterogeneity. Despite advancements in improving survival rates over the past few decades, GC continues to carry a worrisome prognosis and notable mortality. As a result, there is an urgent need for novel therapeutic approaches to address GC. Recent targeted sequencing studies have revealed frequent mutations in DNA damage repair (DDR) pathway genes in many GC patients. These mutations lead to an increased reliance on poly (adenosine diphosphate-ribose) polymerase (PARP) for DNA repair, making PARP inhibitors (PARPi) a promising treatment option for GC. This article presents a comprehensive overview of the rationale and development of PARPi, highlighting its progress and challenges in both preclinical and clinical research for treating GC.
Collapse
Affiliation(s)
- Hongjie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Yangchan Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Zirui Zhuang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dingyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Zu Ye
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
6
|
Senat A, Kabadayi-Sahin E, Sogut I, Duymaz T, Erel O. Evaluation of Atherosclerotic Risk by Oxidative Contributors in Alcohol Use Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:526-533. [PMID: 37424420 PMCID: PMC10335906 DOI: 10.9758/cpn.22.1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 07/11/2023]
Abstract
Objective Alcohol Use Disorder (AUD) is a condition described as the inability to control or stop alcohol consumption. The patients with AUD have an increased risk of developing atherosclerosis-related diseases. The present study aimed to evaluate oxidative contributors of atherosclerotic risk factors in patients with AUD. Methods The male subjects diagnosed with AUD (n = 45) and the male subjects as control (n = 35) were enrolled in this study. All participants were undergone psychiatric evaluation and sociodemographic tests. Also, serum oxidative contributors of atherosclerosis including myeloperoxidase (MPO), ferroxidase, catalase (CAT), and lipid hydroperoxides (LOOH) were measured. Additionally, serum lipid profile tests and atherogenic indicators including atherogenic index of plasma (AIP) and non-high-density lipoprotein (HDL) cholesterol were also analyzed. Results The AUD subject had significantly elevated MPO activity and LOOH levels with decreased antioxidant capacity. AIP and non-HDL cholesterol levels, the atherogenic indicators, were also higher in AUD group compared to the control group. We found the MPO activity and LOOH levels were positively correlated with AIP, non-HDL cholesterol levels, and amount of alcohol consumption. Additionally, CAT activity was negatively correlated with duration of alcohol consumption. Conclusion Our results revealed that MPO and LOOH levels were elevated by severe alcohol intake and the atherogenic indicators, AIP and non-HDL cholesterol, were significantly correlated alcohol induced elevated oxidative risk factors. Therefore, it can be suggested that MPO activity and LOOH levels may be useful to determine jeopardy of atherosclerotic and the therapeutic interventions that reduce oxidative load could be taken into account to prevent atherosclerotic diseases before clinical manifestation.
Collapse
Affiliation(s)
- Almila Senat
- Department of Biochemistry, Istanbul Taksim Training and Research Hospital, Istanbul, Turkey
| | - Esra Kabadayi-Sahin
- Department of Psychiatry, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Ibrahim Sogut
- Department of Biochemistry, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Tomris Duymaz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Bilgi University, Istanbul, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
7
|
Kong W, Wang Z, Wang B. Unveiling DNA damage repair-based molecular subtypes, tumor microenvironment and pharmacogenomic landscape in gastric cancer. Front Genet 2023; 14:1118889. [PMID: 37124627 PMCID: PMC10140566 DOI: 10.3389/fgene.2023.1118889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Objective: The current molecular classification system for gastric cancer covers genomic, molecular, and morphological characteristics. Non-etheless, classification of gastric cancer based upon DNA damage repair is still lacking. Here, we defined DNA damage repair-based subtypes across gastric cancer and identified clinicopathological, tumor microenvironment and pharmacogenomic features. Methods: Unsupervised clustering analysis was executed in the TCGA-STAD cohort based upon the transcriptional expression profiling of DNA damage repair genes. LASSO computational approach was adopted for generating a DNA damage repair-relevant gene signature. The identified subtypes or signature were externally verified in the GSE84426 or GSE84433 cohort. The transcriptional levels of immunomodulators, abundance of immune cells and somatic mutations were measured, respectively. Immunotherapeutic response, and drug sensitivity were investigated. The DNA damage repair-relevant genes were further experimentally verified. Results: Two DNA damage repair-based subtypes were identified, with the notable heterogeneity in prognostic stratification, tumor microenvironment and somatic mutations. The gene signature was generated for risk stratification and prognostic prediction, which was in relation to immunomodulators and immune cells. High-risk cases were more likely to respond to immunotherapy, with distinct pharmacogenomic landscapes between low- and high-risk groups. Higher levels of PAPPA2, MPO, MAGEA11, DEPP1, CPZ, and COLEC12 and lower level of CYTL1 were proven in gastric cancer cells versus controls. Silencing CYTL1 facilitated intracellular ROS accumulation and suppressed migration in gastric cancer cells. Conclusion: Collectively, the DNA damage repair-based classification is a suitable complement to existing molecular classification system, and the quantitative gene signature provides a robust tool in selecting specific therapeutic options.
Collapse
|
8
|
Pádua JDB, Mariano CFA, Fabro AT, Tirapelli DPDC, Sankarankutty AK, dos Santos JS, Brunaldi MO. Prognostic Value of the Immunohistochemical Expression of RAD51 and BRCA2 in Gastric Adenocarcinoma. J Histochem Cytochem 2022; 70:199-210. [PMID: 34978208 PMCID: PMC8832630 DOI: 10.1369/00221554211065834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current scientific literature lacks data on the prognostic value of the expression of RAD51 and BRCA2 in gastric adenocarcinoma. Therefore, we aimed to evaluate those and other homologous recombination-related proteins (ATM, ATR, BRCA1, CHK2, γH2AX, p53) in gastric cancer, assessing their correlation with clinical prognosis. Paraffin-embedded samples were obtained from surgical specimens collected in total or subtotal gastrectomy procedures. Between 2008 and 2017, 121 patients with advanced gastric adenocarcinoma underwent surgical resection and were included in this study. Negativity for nuclear RAD51 correlated with vascular invasion, lymph node metastasis, larger tumor size, and lower overall survival and disease-free survival in univariate analysis. However, nuclear RAD51-negative cases presented better response rates to adjuvant therapy than the positive ones. Nuclear ATR negativity correlated with larger tumor size and a higher histological grade. Positivity for ATM was associated with more prolonged disease-free survival. Positivity for nuclear BRCA2 correlated with lower overall survival and diffuse histological type, whereas its high expression was associated with vascular invasion. Nevertheless, tumors positive for nuclear BRCA2 were more frequently low grade in the intestinal histological type. Our findings indicate that RAD51 and BRCA2 are valuable immunohistochemical prognostic markers in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Joel Del Bel Pádua
- Joel Del Bel Pádua, Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil. E-mail:
| | - Carolline Fontes Alves Mariano
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Todorovic Fabro
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Ajith Kumar Sankarankutty
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - José Sebastião dos Santos
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Mariângela Ottoboni Brunaldi
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Wang H, Zhang Y, Wang Q, Wei X, Wang H, Gu K. The regulatory mechanism of neutrophil extracellular traps in cancer biological behavior. Cell Biosci 2021; 11:193. [PMID: 34758877 PMCID: PMC8579641 DOI: 10.1186/s13578-021-00708-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022] Open
Abstract
As the predominant host defense against pathogens, neutrophil extracellular traps (NETs) have attracted increasing attention due to their vital roles in infectious inflammation in the past few years. Interestingly, NETs also play important roles in noninfectious conditions, such as rheumatism and cancer. The process of NETs formation can be regulated and the form of cell death accompanied by the formation of NETs is regarded as "NETosis". A large amount of evidence has confirmed that many stimuli can facilitate the release of NETs from neutrophils. Furthermore, it has been illustrated that NETs promote tumor growth and progression via many molecular pathways. Meanwhile, NETs also can promote metastasis in many kinds of cancers based on multiple studies. In addition, some researchs have found that NETs can promote coagulation and cancer-associated thrombosis. In the present review, it will highlight how NETosis, which is stimulated by various stimuli and signaling pathways, affects cancer biological behaviors via NETs. Given their crucial roles in cancer, NETs will become possible therapeutic targets for inhibiting proliferation, metastasis and thrombosis in cancer patients.
Collapse
Affiliation(s)
- Hui Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Yiyin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Qianling Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Xiaoli Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, Anhui, People's Republic of China.
| |
Collapse
|
10
|
Zheng L, Lin Y, Zhong S. ROS Signaling-Mediated Novel Biological Targets: Brf1 and RNA Pol III Genes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5888432. [PMID: 34646425 PMCID: PMC8505076 DOI: 10.1155/2021/5888432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Biomolecule metabolism produces ROS (reactive oxygen species) under physiological and pathophysiological conditions. Dietary factors (alcohol) and carcinogens (EGF, DEN, and MNNG) also induce the release of ROS. ROS often causes cell stress and tissue injury, eventually resulting in disorders or diseases of the body through different signaling pathways. Normal metabolism of protein is critically important to maintain cellular function and body health. Brf1 (transcript factor II B-related factor 1) and its target genes, RNA Pol III genes (RNA polymerase III-dependent genes), control the process of protein synthesis. Studies have demonstrated that the deregulation of Brf1 and its target genes is tightly linked to cell proliferation, cell transformation, tumor development, and human cancers, while alcohol, EGF, DEN, and MNNG are able to induce the deregulation of these genes through different signaling pathways. Therefore, it is very important to emphasize the roles of these signaling events mediating the processes of Brf1 and RNA Pol III gene transcription. In the present paper, we mainly summarize our studies on signaling events which mediate the deregulation of these genes in the past dozen years. These studies indicate that Brf1 and RNA Pol III genes are novel biological targets of ROS.
Collapse
Affiliation(s)
- Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, China
| | - Yongluan Lin
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Wu T, Zhang D, Lin M, Yu L, Dai T, Li S, Yu F, Lu L, Zheng L, Zhong S. Exploring the Role and Mechanism of pAMPK α-Mediated Dysregulation of Brf1 and RNA Pol III Genes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5554932. [PMID: 33995823 PMCID: PMC8081602 DOI: 10.1155/2021/5554932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023]
Abstract
TF IIB-related factor 1 (Brf1) is a key transcription factor of RNA polymerase III (Pol III) genes. Our early studies have demonstrated that Brf1 and Pol III genes are epigenetically modulated by histone H3 phosphorylation. Here, we have further investigated the relationship of the abnormal expression of Brf1 with a high level of phosphorylated AMPKα (pAMPKα) and explored the role and molecular mechanism of pAMPKα-mediated dysregulation of Brf1 and Pol III genes in lung cancer. Brf1 is significantly overexpressed in lung cancer cases. The cases with high Brf1 expression display short overall survival times. Elevation of Brf1 expression is accompanied by a high level of pAMPKα. Brf1 and pAMPKα colocalize in nuclei. Further analysis indicates that the carcinogen MNNG induces pAMPKα to upregulate Brf1 expression, resulting in the enhancement of Pol III transcription. In contrast, inhibiting pAMPKα decreases cellular levels of Brf1, resulting in the reduction of Pol III gene transcription to attenuate the rates of cell proliferation and colony formation of lung cancer cells. These outcomes demonstrate that high Brf1 expression reveals a worse prognosis in lung cancer patients. pAMPKα-mediated dysregulation of Brf1 and Pol III genes plays important roles in cell proliferation, colony formation, and tumor development of lung cancer. Brf1 may be a biomarker for establishing the prognosis of lung cancer. It is a new mechanism that pAMPKα mediates dysregulation of Brf1 and Pol III genes to promote lung cancer development.
Collapse
Affiliation(s)
- Teng Wu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dongkun Zhang
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingen Lin
- The First Affiliated Hospital of Shantou University Medical College, China
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lihong Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ting Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shuai Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Fenghai Yu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lei Lu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, China
| | - Shuping Zhong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Hong Z, Lin M, Zhang Y, He Z, Zheng L, Zhong S. Role of betaine in inhibiting the induction of RNA Pol III gene transcription and cell growth caused by alcohol. Chem Biol Interact 2020; 325:109129. [PMID: 32418914 PMCID: PMC7323736 DOI: 10.1016/j.cbi.2020.109129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/24/2020] [Accepted: 05/06/2020] [Indexed: 02/05/2023]
Abstract
Alcohol has been classified as carcinogenic to humans by the International Agency for Research on Cancer (IARC). Studies have demonstrated that alcohol intake increases the risk of breast cancer, and alcohol also stimulates breast cancer cell growth. Deregulation of Pol III genes is tightly associated with tumour development. Transcription factor II-B (TFIIB)-related factor 1 (Brf1) is a transcription factor that specifically regulates Pol III gene transcription. Our in vivo and in vitro studies have indicated that alcohol enhances the transcription of Pol III genes to cause an alteration of cellular phenotypes, which is closely related with human breast cancer. Betaine is a vegetable alkaloid and has antitumor functions. Most reports about betaine show that the consumption level of betaine is inversely associated with a risk of breast cancer. Although different mechanisms of betaine against tumour have been investigated, nothing has been reported on the effect of betaine on the deregulation of Brf1 and Pol III genes. In this study, we determine the role of betaine in breast cancer cell growth and colony formation and explore its mechanism. Our results indicate that alcohol increases the rates of growth and colony formation of breast cancer cells, whereas betaine is able to significantly inhibit the effects of alcohol on these cell phenotypes. Betaine decreases the induction of Brf1 expression and Pol III gene transcription caused by ethanol to reduce the rates of cell growth and colony formation. Together, these studies provide novel insights into the role of betaine in alcohol-caused breast cancer cell growth and deregulation of Brf1 and Pol III genes. These results suggest that betaine consumption is able to prevent alcohol-associated human cancer development.
Collapse
Affiliation(s)
- Zaifa Hong
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mingen Lin
- The First Hospital of Shantou University Medical College, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yanmei Zhang
- Department of Pharmacology of Shantou University Medical College, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhimin He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, China.
| | - Shuping Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Mitogen- and Stress-Activated Protein Kinase 1 Mediates Alcohol-Upregulated Transcription of Brf1 and tRNA Genes to Cause Phenotypic Alteration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2067959. [PMID: 32685086 PMCID: PMC7336232 DOI: 10.1155/2020/2067959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Upregulation of Brf1 (TFIIB-related factor 1) and Pol III gene (RNA polymerase III-dependent gene, such as tRNAs and 5S rRNA) activities is associated with cell transformation and tumor development. Alcohol intake causes liver injury, such as steatosis, inflammation, fibrosis, and cirrhosis, which enhances the risk of HCC development. However, the mechanism of alcohol-promoted HCC remains to be explored. We have designed the complementary research system, which is composed of cell lines, an animal model, human samples, and experiments in vivo and in vitro, to carry out this project by using molecular biological, biochemical, and cellular biological approaches. It is a unique system to explore the mechanism of alcohol-associated HCC. Our results indicate that alcohol upregulates Brf1 and Pol III gene (tRNAs and 5S rRNA) transcription in primary mouse hepatocytes, immortalized mouse hepatocyte-AML-12 cells, and engineered human HepG2-ADH cells. Alcohol activates MSK1 to upregulate expression of Brf1 and Pol III genes, while inhibiting MSK1 reduces transcription of Brf1 and Pol III genes in alcohol-treated cells. The inhibitor of MSK1, SB-747651A, decreases the rates of cell proliferation and colony formation. Alcohol feeding promotes liver tumor development of the mouse. These results, for the first time, show the identification of the alcohol-response promoter fragment of the Pol III gene key transcription factor, Brf1. Our studies demonstrate that Brf1 expression is elevated in HCC tumor tissues of mice and humans. Alcohol increases cellular levels of Brf1, resulting in enhancement of Pol III gene transcription in hepatocytes through MSK1. Our mechanism analysis has demonstrated that alcohol-caused high-response fragment of the Brf1 promoter is at p-382/+109bp. The MSK1 inhibitor SB-747651A is an effective reagent to repress alcohol-induced cell proliferation and colony formation, which is a potential pharmaceutical agent. Developing this inhibitor as a therapeutic approach will benefit alcohol-associated HCC patients.
Collapse
|
14
|
Zhang Y, Hu Y, Ma C, Sun H, Wei X, Li M, Wei W, Zhang F, Yang F, Wang H, Gu K. Diagnostic, Therapeutic Predictive, and Prognostic Value of Neutrophil Extracellular Traps in Patients With Gastric Adenocarcinoma. Front Oncol 2020; 10:1036. [PMID: 32714865 PMCID: PMC7344202 DOI: 10.3389/fonc.2020.01036] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are a significant population of infiltrated immune cells in the tumor microenvironment. Neutrophil extracellular traps (NETs) are implicated in the biological behavior of many malignant tumors. NETs can be degraded into soluble nucleosomes, leading to the release of fragments containing DNA and granule proteins into the peripheral blood (PB). Using human gastric cancer (GC) biopsies and PB samples, we investigated the specific value of NETs in GC from a clinical perspective. In summary, the formation of NETs was discovered in the tissue microenvironment and PB of GC patients. The amounts of NETs and neutrophil accumulation decreased from tumor tissue to paratumor tissue. In addition, the level of NETs in the PB gradually declined through the following patient populations: advanced disease patients, preoperative patients, postoperative patients, benign disease patients, and healthy controls. The levels of NETs in the plasma and serum were significantly correlated. As a serum biomarker, NETs had a better diagnostic value than carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) in GC. The neutrophil count and neutrophil to lymphocyte ratio (NLR) were significantly associated with the level of NETs in the PB. The existence of lymph node metastasis indicated a high level of NETs in the serum. Moreover, the level of NETs in the PB was inversely correlated with short-term efficacy in GC patients who had received advanced first-line treatment. The higher baseline level of NETs in the PB of patients with negative HER2 status was correlated with worse progression-free survival (PFS). And the level of NETs in the PB was a unfavorable independent prognostic factor for PFS in patients with advanced GC who had received first-line treatment. Thus, NETs have novel diagnostic, therapeutic predictive, and prognostic value in GC patients.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangyang Hu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cui Ma
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hua Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoli Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fei Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feng Yang
- Department of Pathology, Basic Medical School of Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Loveridge CJ, Slater S, Campbell KJ, Nam NA, Knight J, Ahmad I, Hedley A, Lilla S, Repiscak P, Patel R, Salji M, Fleming J, Mitchell L, Nixon C, Strathdee D, Neilson M, Ntala C, Bryson S, Zanivan S, Edwards J, Robson CN, Goodyear CS, Blyth K, Leung HY. BRF1 accelerates prostate tumourigenesis and perturbs immune infiltration. Oncogene 2020; 39:1797-1806. [PMID: 31740786 PMCID: PMC7033044 DOI: 10.1038/s41388-019-1106-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 01/10/2023]
Abstract
BRF1 is a rate-limiting factor for RNA Polymerase III-mediated transcription and is elevated in numerous cancers. Here, we report that elevated levels of BRF1 associate with poor prognosis in human prostate cancer. In vitro studies in human prostate cancer cell lines demonstrated that transient overexpression of BRF1 increased cell proliferation whereas the transient downregulation of BRF1 reduced proliferation and mediated cell cycle arrest. Consistent with our clinical observations, BRF1 overexpression in a Pten-deficient mouse (PtenΔ/Δ BRF1Tg) prostate cancer model accelerated prostate carcinogenesis and shortened survival. In PtenΔ/Δ BRF1Tg tumours, immune and inflammatory processes were altered, with reduced tumoral infiltration of neutrophils and CD4 positive T cells, which can be explained by decreased levels of complement factor D (CFD) and C7 components of the complement cascade, an innate immune pathway that influences the adaptive immune response. We tested if the secretome was involved in BRF1-driven tumorigenesis. Unbiased proteomic analysis on BRF1-overexpresing PC3 cells confirmed reduced levels of CFD in the secretome, implicating the complement system in prostate carcinogenesis. We further identify that expression of C7 significantly correlates with expression of CD4 and has the potential to alter clinical outcome in human prostate cancer, where low levels of C7 associate with poorer prognosis.
Collapse
Affiliation(s)
- Carolyn J Loveridge
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sarah Slater
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Kirsteen J Campbell
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Noor A Nam
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - John Knight
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Imran Ahmad
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Ann Hedley
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sergio Lilla
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | | | - Rachana Patel
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Mark Salji
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Janis Fleming
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | | | - Colin Nixon
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | | | | | - Chara Ntala
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sheila Bryson
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| | - Craig N Robson
- Northern Institute for Cancer Research, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Karen Blyth
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK.
- CRUK Beatson Institute, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
16
|
Kim HS, Hwang IG, Min HY, Bang YJ, Kim WH. Clinical significance of BRCA1 and BRCA2 mRNA and protein expression in patients with sporadic gastric cancer. Oncol Lett 2019; 17:4383-4392. [PMID: 30988810 PMCID: PMC6447901 DOI: 10.3892/ol.2019.10132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/08/2019] [Indexed: 01/02/2023] Open
Abstract
The purpose of the present study was to investigate the clinical significance of BRCA1/BRCA2 DNA repair associated (BRCA1/BRCA2) gene expression in patients with sporadic gastric cancer (GC) who had received postoperative adjuvant chemotherapy. Breast cancer type 1 and 2 susceptibility protein (BRCA1 and BRCA2) expression and BRCA1/BRCA2 mRNA expression were evaluated using immunohistochemistry (IHC) and in-situ hybridization (ISH) on tissue GC microarray tissues, in addition to reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The results were analyzed for clinicopathological associations. A total of 367 cases of sporadic GC (stages II and III) were subjected to BRCA1 and BRCA2 expression analysis, and for BRCA1 and BRCA2 IHC, 360 cases were informative. A total of 61 cases (16.9%) displayed a loss of BRCA1 and 63 (17.5%) displayed a loss of BRCA2. BRCA1 and BRCA2 ISH results were obtained in 364 cases, of which 98 (26.9%) presented with low expression of BRCA1 mRNA and 148 (40.7%) with low expression of BRCA2 mRNA. In 72 of the 367 cases, BRCA1 and BRCA2 mRNA expression levels were assessed using RT-qPCR, of which 50 (69.4%) and 56 (77.8%) displayed low expression of BRCA1 and BRCA2, respectively. Positive IHC expression of BRCA2 was associated with advanced tumor stage; however, BRCA1 expression was not associated with any clinicopathological parameters. Associations between the RT-qPCR and ISH methods were not significant for either BRCA1 or BRCA2. The results of Kaplan-Meier survival analysis with stage subgrouping revealed no significant differences with regard to survival rate. Of the multivariate analyses, neither BRCA1 nor BRCA2 IHC results were independent prognostic factors. In summary, the present study indicated that BRCA1 and BRCA2, as assessed by IHC, may be used as clinicopathological biomarkers to evaluate the prognosis of sporadic GC.
Collapse
Affiliation(s)
- Hee Sung Kim
- Department of Pathology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - In Gyu Hwang
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Hye Young Min
- Department of Pharmacy, Chung-Ang University College of Pharmacy, Seoul 06974, Republic of Korea
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| |
Collapse
|
17
|
Sun X, Xiang CJ, Wu J, Dong W, Zhan Z, Wang RP, Zhang JF. Relationship between serum inflammatory cytokines and lifestyle factors in gastric cancer. Mol Clin Oncol 2019; 10:401-414. [PMID: 30847182 DOI: 10.3892/mco.2019.1804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is associated with increased risk of gastric cancer (GC), and GC risk is significantly associated with lifestyle. The aim of the present study was to explore the association between serum inflammatory cytokines and lifestyle factors in GC. A total of 20 serum inflammatory cytokines were measured in a hospital-based case-control population with 142 GC patients and 98 healthy controls. Controls without the selected healthy lifestyle factors were regarded as baseline, and correlation analysis was conducted to establish the association between serum inflammatory cytokines and lifestyle factors. The results demonstrated that several lifestyle factors (including eating fried and salty foods, eating quickly, smoking and drinking) could increase the risk of GC, while only eating fresh fruits could decrease the risk of GC. Correlation analysis revealed that increased serum interleukin (IL)-12/IL-23P40 levels was associated with GC risk as significant differences were observed in all lifestyle factors. Increased serum IL-8 was closely associated with smoking in GC patients, while increased IL-17α and IL-8 levels were associated with GC patients who ate salty foods. Increased IL-10 and decreased TGF-β levels were also associated with GC patients who ate fresh fruits. In conclusion, GC risk was strongly affected by lifestyle factors, which may regulate the expression of inflammatory cytokines and promote gastric carcinogenesis.
Collapse
Affiliation(s)
- Xian Sun
- Department of Pathogen and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Chun-Jie Xiang
- Department of Pathogen and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Juan Wu
- Department of Pathogen and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Wei Dong
- Department of Pathogen and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Zhen Zhan
- Department of Pathogen and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Rui-Ping Wang
- Department of Oncology, First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China.,Department of Oncology, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jun-Feng Zhang
- Department of Pathogen and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
18
|
Gao C, Zhuang J, Zhou C, Liu L, Liu C, Li H, Zhao M, Liu G, Sun C. Developing DNA methylation-based prognostic biomarkers of acute myeloid leukemia. J Cell Biochem 2018; 119:10041-10050. [PMID: 30171717 DOI: 10.1002/jcb.27336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous clonal neoplasm characterized by complex genomic alterations. The incidence of AML increases with age, and most cases experience serious illness and poor prognosis. To explore the relationship between abnormal DNA methylation and the occurrence and development of AML based on the Gene Expression Database (GEO), this study extracted data related to methylation in AML and identified a methylated CpG site that was significantly different in terms of expression and distribution between the primary cells of AML patients, and hematopoietic stem/progenitor cells from normal bone marrow. To further investigate the differences caused by the dysfunction of methylation sites, bioinformatics analysis was used to screen methylation-related biomarkers, and the potential prognostic genes were selected by univariate and multivariate Cox proportional hazards regressions. Finally, five independent prognostic indicators were identified. In addition, these results provide new insight into the molecular mechanisms of methylation.
Collapse
Affiliation(s)
- Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China.,Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China.,Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China.,Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huayao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minzhang Zhao
- School of Medicine, Shandong University, Jinan, China
| | - Gongxi Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China.,Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China.,Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
19
|
Yi Y, Lei J, Shi G, Chen S, Zhang Y, Hong Z, He Z, Zhong S. The Effects of Liquor Spirits on RNA Pol III Genes and Cell Growth of Human Cancer Lines. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/fns.2018.93016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|