1
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
2
|
Marr AR, Halpin M, Corbin DL, Asemelash Y, Sher S, Gordon BK, Whipp EC, Mitchell S, Harrington BK, Orwick S, Benrashid S, Goettl VM, Yildiz V, Mitchell AD, Cahn O, Mims AS, Larkin KTM, Long M, Blachly J, Woyach JA, Lapalombella R, Grieselhuber NR. The multi-CDK inhibitor dinaciclib reverses bromo- and extra-terminal domain (BET) inhibitor resistance in acute myeloid leukemia via inhibition of Wnt/β-catenin signaling. Exp Hematol Oncol 2024; 13:27. [PMID: 38438856 PMCID: PMC10913666 DOI: 10.1186/s40164-024-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic cancer with poor survival across a broad range of molecular subtypes. Development of efficacious and well-tolerable therapies encompassing the range of mutations that can arise in AML remains an unmet need. The bromo- and extra-terminal domain (BET) family of proteins represents an attractive therapeutic target in AML due to their crucial roles in many cellular functions, regardless of any specific mutation. Many BET inhibitors (BETi) are currently in pre-clinical and early clinical development, but acquisition of resistance continues to remain an obstacle for the drug class. Novel methods to circumvent this development of resistance could be instrumental for the future use of BET inhibitors in AML, both as monotherapy and in combination. To date, many investigations into possible drug combinations of BETi with CDK inhibitors have focused on CDK9, which has a known physical and functional interaction with the BET protein BRD4. Therefore, we wished to investigate possible synergy and additive effects between inhibitors of these targets in AML. Here, we describe combination therapy with the multi-CDK inhibitor dinaciclib and the BETi PLX51107 in pre-clinical models of AML. Dinaciclib and PLX51107 demonstrate additive effects in AML cell lines, primary AML samples, and in vivo. Further, we demonstrate novel activity of dinaciclib through inhibition of the canonical/β-catenin dependent Wnt signaling pathway, a known resistance mechanism to BETi in AML. We show dinaciclib inhibits Wnt signaling at multiple levels, including downregulation of β-catenin, the Wnt co-receptor LRP6, as well as many Wnt pathway components and targets. Moreover, dinaciclib sensitivity remains unaffected in a setting of BET resistance, demonstrating similar inhibitory effects on Wnt signaling when compared to BET-sensitive cells. Ultimately, our results demonstrate rationale for combination CDKi and BETi in AML. In addition, our novel finding of Wnt signaling inhibition could have potential implications in other cancers where Wnt signaling is dysregulated and demonstrates one possible approach to circumvent development of BET resistance in AML.
Collapse
Affiliation(s)
- Alexander R Marr
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Madeline Halpin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Dominique L Corbin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yerdanos Asemelash
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Britten K Gordon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ethan C Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Samon Benrashid
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Virginia M Goettl
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Vedat Yildiz
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Andrew D Mitchell
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Olivia Cahn
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Karilyn T M Larkin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Meixao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Lee J, Lee BK, Gross JM. Brd activity regulates Müller glia-dependent retinal regeneration in zebrafish. Glia 2023; 71:2866-2883. [PMID: 37584502 DOI: 10.1002/glia.24457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
The zebrafish retina possesses tremendous regenerative potential. Müller glia underlie retinal regeneration through their ability to reprogram and generate multipotent neuronal progenitors that re-differentiate into lost neurons. Many factors required for Müller glia reprogramming and proliferation have been identified; however, we know little about the epigenetic and transcriptional regulation of these genes during regeneration. Here, we determined whether transcriptional regulation by members of the Bromodomain (Brd) family is required for Müller glia-dependent retinal regeneration. Our data demonstrate that three brd genes were expressed in Müller glia upon injury. brd2a and brd2b were expressed in all Müller glia and brd4 was expressed only in reprogramming Müller glia. Utilizing (+)-JQ1, a pharmacological inhibitor of Brd function, we demonstrate that transcriptional regulation by Brds plays a critical role in Müller glia reprogramming and regeneration. (+)-JQ1 treatment prevented cell cycle re-entry of Müller glia and the generation of neurogenic progenitors. Modulating the (+)-JQ1 exposure window, we identified the first 48 h post-injury as the time-period during which Müller glia reprogramming occurs. (+)-JQ1 treatments after 48 h post-injury had no effect on the re-differentiation of UV cones, indicating that Brd function is required only for Müller glia reprogramming and not subsequent specification/differentiation events. Brd inhibition also prevented the expression of reprogramming genes like ascl1a and lepb in Müller glia, but not effector genes like mmp9, nor did it affect microglial recruitment after injury. These results demonstrate that transcriptional regulation by Brds plays a critical role during Müller glia-dependent retinal regeneration in zebrafish.
Collapse
Affiliation(s)
- Jiwoon Lee
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Xu C, Yu M, Zhang Q, Ma Z, Du K, You H, Wei J, Wang D, Tao W. Genome-Wide Identification and Characterization of the BRD Family in Nile Tilapia (Oreochromis niloticus). Animals (Basel) 2022; 12:ani12172266. [PMID: 36077987 PMCID: PMC9454494 DOI: 10.3390/ani12172266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Nile tilapia is a good model for genome-wide identification and examination of the expression and role of gene families. In this study, we identified 54 bromodomain genes (BRDs) divided into eight subfamilies in Nile tilapia. Phylogenetic analysis revealed a high conservation of the BRDs family in vertebrates, with BRDs expansion due to fish-specific duplications. Most of the BRDs displayed sexually dimorphic expression in the gonads at 90 and 180 dah (days after hatching), including 21 testis-dominated genes (brdt, brd4a and brd2b, etc.), and 9 ovary-dominated genes (brd3b, brd2a and kat2a, etc.). Male fish treated with JQ1 (BET subfamily inhibitor) displayed abnormal spermatogenesis. The numbers of germ cells were reduced and the expression of steroidogenic enzyme genes was downregulated, while the expression of apoptosis-promoting genes was elevated in the testes of treated fish. Abstract The bromodomain (BRD) proteins specifically recognize the N-acetyllysine motifs, which is a key event in the reading process of epigenetic marks. BRDs are evolutionarily highly conserved. Over recent years, BRDs attracted great interest because of their important roles in biological processes. However, the genome-wide identification of this family was not carried out in many animal groups, in particular, in teleosts. Moreover, the expression patterns were not reported for any of the members in this family, and the role of the BRD family was not extensively studied in fish reproduction. In this study, we identified 16 to 120 BRD genes in 24 representative species. BRDs expanded significantly in vertebrates. Phylogenetic analysis showed that the BRD family was divided into eight subfamilies (I–VIII). Transcriptome analysis showed that BRDs in Nile tilapia (Oreochromis niloticus) exhibited different expression patterns in different tissues, suggesting that these genes may play different roles in growth and development. Gonadal transcriptome analysis showed that most of the BRDs display sexually dimorphic expression in the gonads at 90 and 180 dah (days after hatching), including 21 testis-dominated genes (brdt, brd4a and brd2b, etc.), and nine ovary-dominated genes (brd3b, brd2a and kat2a, etc.). Consistent with transcriptomic data, the results of qRT-PCR and fluorescence in situ hybridization showed that brdt expression was higher in the testis than in the ovary, suggesting its critical role in the spermatogenesis of the tilapia. Male fish treated with JQ1 (BET subfamily inhibitor) displayed abnormal spermatogenesis. The numbers of germ cells were reduced, and the expression of steroidogenic enzyme genes was downregulated, while the expression of apoptosis-promoting genes was elevated in the testis tissue of treated fish. Our data provide insights into the evolution and expression of BRD genes, which is helpful for understanding their critical roles in sex differentiation and gonadal development in teleosts.
Collapse
|
5
|
Cai P, Mao X, Zhao J, Nie L, Jiang Y, Yang Q, Ni R, He J, Luo L. Farnesoid X Receptor Is Required for the Redifferentiation of Bipotential Progenitor Cells During Biliary-Mediated Zebrafish Liver Regeneration. Hepatology 2021; 74:3345-3361. [PMID: 34320243 DOI: 10.1002/hep.32076] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Liver regeneration after extreme hepatocyte loss occurs through transdifferentiation of biliary epithelial cells (BECs), which includes dedifferentiation of BECs into bipotential progenitor cells (BPPCs) and subsequent redifferentiation into nascent hepatocytes and BECs. Although multiple molecules and signaling pathways have been implicated to play roles in the BEC-mediated liver regeneration, mechanisms underlying the dedifferentiation-redifferentiation transition and the early phase of BPPC redifferentiation that is pivotal for both hepatocyte and BEC directions remain largely unknown. APPROACH AND RESULTS The zebrafish extreme liver damage model, genetic mutation, pharmacological inhibition, transgenic lines, whole-mount and fluorescent in situ hybridizations and antibody staining, single-cell RNA sequencing, quantitative real-time PCR, and heat shock-inducible overexpression were used to investigate roles and mechanisms of farnesoid X receptor (FXR; encoded by nuclear receptor subfamily 1, group H, member 4 [nr1h4]) in regulating BPPC redifferentiation. The nr1h4 expression was significantly up-regulated in response to extreme liver injury. Genetic mutation or pharmacological inhibition of FXR was ineffective to BEC-to-BPPC dedifferentiation but blocked the redifferentiation of BPPCs to both hepatocytes and BECs, leading to accumulation of undifferentiated or less-differentiated BPPCs. Mechanistically, induced overexpression of extracellular signal-related kinase (ERK) 1 (encoded by mitogen-activated protein kinase 3) rescued the defective BPPC-to-hepatocyte redifferentiation in the nr1h4 mutant, and ERK1 itself was necessary for the BPPC-to-hepatocyte redifferentiation. The Notch activities in the regenerating liver of nr1h4 mutant attenuated, and induced Notch activation rescued the defective BPPC-to-BEC redifferentiation in the nr1h4 mutant. CONCLUSIONS FXR regulates BPPC-to-hepatocyte and BPPC-to-BEC redifferentiations through ERK1 and Notch, respectively. Given recent applications of FXR agonists in the clinical trials for liver diseases, this study proposes potential underpinning mechanisms by characterizing roles of FXR in the stimulation of dedifferentiation-redifferentiation transition and BPPC redifferentiation.
Collapse
Affiliation(s)
- Pengcheng Cai
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Xiaoyu Mao
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jieqiong Zhao
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Li Nie
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Yan Jiang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
6
|
Massoz L, Dupont MA, Manfroid I. Zebra-Fishing for Regenerative Awakening in Mammals. Biomedicines 2021; 9:65. [PMID: 33445518 PMCID: PMC7827770 DOI: 10.3390/biomedicines9010065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Regeneration is defined as the ability to regrow an organ or a tissue destroyed by degeneration or injury. Many human degenerative diseases and pathologies, currently incurable, could be cured if functional tissues or cells could be restored. Unfortunately, humans and more generally mammals have limited regenerative capabilities, capacities that are even further declining with age, contrary to simpler organisms. Initially thought to be lost during evolution, several studies have revealed that regenerative mechanisms are still present in mammals but are latent and thus they could be stimulated. To do so there is a pressing need to identify the fundamental mechanisms of regeneration in species able to efficiently regenerate. Thanks to its ability to regenerate most of its organs and tissues, the zebrafish has become a powerful model organism in regenerative biology and has recently engendered a number of studies attesting the validity of awakening the regenerative potential in mammals. In this review we highlight studies, particularly in the liver, pancreas, retina, heart, brain and spinal cord, which have identified conserved regenerative molecular events that proved to be beneficial to restore murine and even human cells and which helped clarify the real clinical translation potential of zebrafish research to mammals.
Collapse
Affiliation(s)
| | | | - Isabelle Manfroid
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of Liège, B-4000 Liège, Belgium; (L.M.); (M.A.D.)
| |
Collapse
|
7
|
Macchi F, Sadler KC. Unraveling the Epigenetic Basis of Liver Development, Regeneration and Disease. Trends Genet 2020; 36:587-597. [PMID: 32487496 DOI: 10.1016/j.tig.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Abstract
A wealth of studies over several decades has revealed an epigenetic prepattern that determines the competence of cellular differentiation in the developing liver. More recently, studies focused on the impact of epigenetic factors during liver regeneration suggest that an epigenetic code in the quiescent liver may establish its regenerative potential. We review work on the pioneer factors and other chromatin remodelers that impact the gene expression patterns instructing hepatocyte and biliary cell specification and differentiation, along with the requirement of epigenetic regulatory factors for hepatic outgrowth. We then explore recent studies involving the role of epigenetic regulators, Arid1a and Uhrf1, in efficient activation of proregenerative genes during liver regeneration, thus highlighting the epigenetic mechanisms of liver disease and tumor development.
Collapse
Affiliation(s)
- Filippo Macchi
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
8
|
Monga SP, Sadler KC. An epigenetic perspective on liver regeneration. Epigenomics 2020; 12:381-384. [PMID: 32090611 DOI: 10.2217/epi-2020-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Satdarshan P Monga
- Department of Pathology, Medicine & The Pittsburgh Liver Research Center, University of Pittsburgh Medical Center & University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
| |
Collapse
|
9
|
Liu C, Cheng X, Chen J, Wang Y, Wu X, Tian R, Liu B, Ding X, Sun Q, Gong W. Suppression of YAP/TAZ-Notch1-NICD axis by bromodomain and extraterminal protein inhibition impairs liver regeneration. Am J Cancer Res 2019; 9:3840-3852. [PMID: 31281517 PMCID: PMC6587347 DOI: 10.7150/thno.33370] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
Background and aims: Biological mechanisms that control liver regeneration remain poorly defined. However, these mechanisms are remarkable issues in the clinic that affect management of hepatic loss caused by liver surgery, traumatic injury, chronic infection, or liver poisoning. Increasing evidence has shown that various growth factors, cytokines, and metabolic signaling pathways affect the liver regenerative process. Our aim is to study the effect of bromodomain and extraterminal (BET) protein inhibition on liver regeneration and its mechanism. Methods: We studied the role of BET protein inhibitor, JQ1, in liver regeneration in a mouse model after 70% partial hepatectomy (PH). We evaluated yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) and Notch signaling pathways, which were affected by BET protein inhibitor in mouse hepatic tissues and primary hepatocytes in vivo and AML12 cell lines in vitro. We evaluated the relationship of YAP/TAZ and Notch signaling pathway using YAP/TAZ pathway inhibitor in liver regeneration in vivo. Moreover, we analyzed the relationship of YAP/TAZ and Notch signaling pathways via overexpression or RNA silencing of Yap in AML12 cells. Furthermore, we used Yap overexpression mouse model to examine whether it can rescue liver regeneration damage caused by inhibition of BET proteins. Results: In this study, we report that BET protein inhibitor JQ1 molecule impairs the early phase of liver regeneration in a mouse model after 70% PH. Mechanistically, YAP/TAZ and Notch1-NICD pathways were suppressed by BET protein inhibitor in mouse hepatic tissues and primary hepatocytes in vivo and mouse AML12 cell lines in vitro. By using YAP/TAZ pathway inhibitor, we confirmed that the liver regeneration and the activation of Notch pathway were impaired by the inhibition of YAP/TAZ pathway in vivo. Furthermore, the study showed that Yap knockdown by shRNA in normal mouse hepatic cell line downregulated Notch1 signal transduction, whereas Yap overexpression promoted Notch1-NICD signals. Specific overexpression of Yap in mouse liver could rescue the effect of BET protein inhibition on liver regeneration injury. Conclusion: These results revealed the crucial role of the YAP/TAZ-Notch1-NICD axis in liver regeneration. Therefore, BET protein inhibitors must be used in caution in the treatment of hepatic diseases by reason of its suppressive roles in liver regeneration.
Collapse
|
10
|
Russell JO, Ko S, Monga SP, Shin D. Notch Inhibition Promotes Differentiation of Liver Progenitor Cells into Hepatocytes via sox9b Repression in Zebrafish. Stem Cells Int 2019; 2019:8451282. [PMID: 30992706 PMCID: PMC6434270 DOI: 10.1155/2019/8451282] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/12/2019] [Indexed: 02/08/2023] Open
Abstract
Liver regeneration after most forms of injury is mediated through the proliferation of hepatocytes. However, when hepatocyte proliferation is impaired, such as during chronic liver disease, liver progenitor cells (LPCs) arising from the biliary epithelial cell (BEC) compartment can give rise to hepatocytes to mediate hepatic repair. Promotion of LPC-to-hepatocyte differentiation in patients with chronic liver disease could serve as a potentially new therapeutic option, but first requires the identification of the molecular mechanisms driving this process. Notch signaling has been identified as an important signaling pathway promoting the BEC fate during development and has also been implicated in regulating LPC differentiation during regeneration. SRY-related HMG box transcription factor 9 (Sox9) is a direct target of Notch signaling in the liver, and Sox9 has also been shown to promote the BEC fate during development. We have recently shown in a zebrafish model of LPC-driven liver regeneration that inhibition of Hdac1 activity through MS-275 treatment enhances sox9b expression in LPCs and impairs LPC-to-hepatocyte differentiation. Therefore, we hypothesized that inhibition of Notch signaling would promote LPC-to-hepatocyte differentiation by repressing sox9b expression in zebrafish. We ablated the hepatocytes of Tg(fabp10a:CFP-NTR) larvae and blocked Notch activation during liver regeneration through treatment with γ-secretase inhibitor LY411575 and demonstrated enhanced induction of Hnf4a in LPCs. Alternatively, enhancing Notch signaling via Notch3 intracellular domain (N3ICD) overexpression impaired Hnf4a induction. Hepatocyte ablation in sox9b heterozygous mutant embryos enhanced Hnf4a induction, while BEC-specific Sox9b overexpression impaired LPC-to-hepatocyte differentiation. Our results establish the Notch-Sox9b signaling axis as inhibitory to LPC-to-hepatocyte differentiation in a well-established in vivo LPC-driven liver regeneration model.
Collapse
Affiliation(s)
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh, Pittsburgh, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, USA
| | - Satdarshan P. Monga
- Department of Pathology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|