1
|
Bergsten H, Nizet V. The intricate pathogenicity of group a Streptococcus: A comprehensive update. Virulence 2024:2412745. [PMID: 39370779 DOI: 10.1080/21505594.2024.2412745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Group A Streptococcus (GAS) is a versatile pathogen that targets human lymphoid, decidual, skin, and soft tissues. Recent advancements have shed light on its airborne transmission, lymphatic spread, and interactions with neuronal systems. GAS promotes severe inflammation through mechanisms involving inflammasomes, IL-1β, and T-cell hyperactivation. Additionally, it secretes factors that directly induce skin necrosis via Gasdermin activation and sustains survival and replication in human blood through sophisticated immune evasion strategies. These include lysis of erythrocytes, using red cell membranes for camouflage, resisting antimicrobial peptides, evading phagocytosis, escaping from neutrophil extracellular traps (NETs), inactivating chemokines, and cleaving targeted antibodies. GAS also employs molecular mimicry to traverse connective tissues undetected and exploits the host's fibrinolytic system, which contributes to its stealth and potential for causing autoimmune conditions after repeated infections. Secreted toxins disrupt host cell membranes, enhancing intracellular survival and directly activating nociceptor neurons to induce pain. Remarkably, GAS possesses mechanisms for precise genome editing to defend against phages, and its fibrinolytic capabilities have found applications in medicine. Immune responses to GAS are paradoxical: robust responses to its virulence factors correlate with more severe disease, whereas recurrent infections often show diminished immune reactions. This review focuses on the multifaceted virulence of GAS and introduces novel concepts in understanding its pathogenicity.
Collapse
Affiliation(s)
- Helena Bergsten
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Keller N, Boumasmoud M, Andreoni F, Tarnutzer A, von Matt M, Scheier TC, Epprecht J, Weller D, Gómez-Mejia A, Huemer M, von Reibnitz D, Fontein DBY, Marques-Maggio E, Schuepbach RA, Mairpady-Shambat S, Brugger SD, Zinkernagel AS. Investigating group A Streptococcus antibiotic tolerance in necrotizing fasciitis. mSphere 2024; 9:e0063424. [PMID: 39189777 PMCID: PMC11423592 DOI: 10.1128/msphere.00634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Group A Streptococcus (GAS) necrotizing fasciitis (NF) is a difficult-to-treat bacterial infection associated with high morbidity and mortality despite extensive surgery and targeted antibiotic treatment. Difficult-to-treat infections are often characterized by the presence of bacteria surviving prolonged antibiotic exposure without displaying genetic resistance, referred to as persisters. In the present study, we investigated the presence of GAS persisters in tissue freshly debrided from patients as well as in an in vivo mouse model of NF and examined the phenomenon of antibiotic tolerance. Time-lapse imaging of GAS plated directly upon isolation from NF debrided tissue and an antibiotic challenge-based persisters assay were used to assess the presence of persisters. We show for the first time that GAS recovered directly from freshly debrided NF tissue is characterized by heterogeneous and overall delayed colony appearance time, suggesting the presence of persisters. Acidic pH or nutrient stress exposure, mimicking the NF-like environment in vitro, led to a similar phenotypic heterogeneity and resulted in enhanced survival upon antibiotic challenge, confirming the presence of GAS persisters. GAS persisters might contribute to NF treatment failure, despite extensive surgery and adequate antibiotic treatment.IMPORTANCEDifficult-to-treat and recurrent infections are a global problem burdening society and the health care system alike. Unraveling the mechanisms by which bacteria can survive antibiotic treatment without developing genetic resistance is of utmost importance to lay the foundation for new, effective therapeutic approaches. For the first time, we describe the phenomenon of antibiotic tolerance in group A Streptococcus (GAS) isolated from necrotizing fasciitis (NF) patients. Dormant, non-replicating cells (persisters) are tolerant to antibiotics and their occurrence in vivo is reported in an increasing number of bacterial species. Tailored treatment options, including the use of persisters-targeting drugs, need to be developed to specifically target dormant bacteria causing difficult-to-treat and recurrent infections.
Collapse
Affiliation(s)
- Nadia Keller
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mathilde Boumasmoud
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Andreoni
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Tarnutzer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manuela von Matt
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas C. Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jana Epprecht
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - David Weller
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alejandro Gómez-Mejia
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Donata von Reibnitz
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Duveken B. Y. Fontein
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ewerton Marques-Maggio
- Division of Clinical Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A. Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Srikanth Mairpady-Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio D. Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Annelies S. Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Bateman LM, Hebert KA, Streeter SS, Nunziata JA, Barth CW, Wang LG, Gibbs SL, Henderson ER. Use of Freshly Amputated Human Limbs for Pre-Clinical Evaluation of Molecular-Targeted Fluorescent Probes. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12361:1236109. [PMID: 37009433 PMCID: PMC10065840 DOI: 10.1117/12.2650356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
We have co-developed a first-in-kind model of fluorophore testing in freshly amputated human limbs. Ex vivo human tissue provides a unique opportunity for the testing of pre-clinical fluorescent agents, collection of imaging data, and histopathologic examination in human tissue prior to performing in vivo experiments. Existing pre-clinical fluorescent agent studies rely primarily on animal models, which do not directly predict fluorophore performance in humans and can result in wasted resources and time if an agent proves ineffective in early human trials. Because fluorophores have no desired therapeutic effect, their clinical utility is based solely on their safety and ability to highlight tissues of interest. Advancing to human trials even via the FDA's phase 0/microdose pathway still requires substantial resources, single-species pharmacokinetic testing, and toxicity testing. In a recently concluded study using amputated human lower limbs, we were able to test successfully a nerve-specific fluorophore in pre-clinical development. This study used systemic administration via vascular cannulization and a cardiac perfusion pump. We envision that this model may assist with early lead agent testing selection for fluorophores with various targets and mechanisms.
Collapse
Affiliation(s)
- Logan M Bateman
- Department of Orthopaedics, Dartmouth Health, Lebanon, New Hampshire, United States
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Kendra A Hebert
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
| | - Samuel S Streeter
- Department of Orthopaedics, Dartmouth Health, Lebanon, New Hampshire, United States
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States
| | - Jenna A Nunziata
- Heart and Vascular Center, Dartmouth Health, Lebanon, New Hampshire, United States
| | - Connor W Barth
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States
| | - Lei G Wang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States
| | - Summer L Gibbs
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States
| | - Eric R Henderson
- Department of Orthopaedics, Dartmouth Health, Lebanon, New Hampshire, United States
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States
| |
Collapse
|
4
|
Streeter SS, Ray GS, Bateman LM, Hebert KA, Bushee FE, Rodi SW, Gitajn IL, Ahn J, Singhal S, Martin ND, Bernthal NM, Lee C, Obremskey WT, Schoenecker JG, Elliott JT, Henderson ER. Early identification of life-threatening soft-tissue infection using dynamic fluorescence imaging: first-in-kind clinical study of first-pass kinetics. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12361:123610B. [PMID: 37034555 PMCID: PMC10078977 DOI: 10.1117/12.2648408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Necrotizing soft-tissue infections (NSTIs) are aggressive and deadly. Immediate surgical debridement is standard-of-care, but patients often present with non-specific symptoms, thereby delaying treatment. Because NSTIs cause microvascular thrombosis, we hypothesized that perfusion imaging using indocyanine green (ICG) would show diminished fluorescence signal in NSTI-affected tissues, particularly compared to non-necrotizing, superficial infections. Through a first-in-kind clinical study, we performed first-pass ICG fluorescence perfusion imaging of patients with suspected NSTIs. Early results support our hypothesis that ICG signal voids occur in NSTI-affected tissues and that dynamic contrast-enhanced fluorescence parameters reveal tissue kinetics that may be related to disease progression and extent.
Collapse
Affiliation(s)
- Samuel S. Streeter
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH 03756
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Gabrielle S. Ray
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH 03756
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Logan M. Bateman
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Kendra A. Hebert
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | | | - Scott W. Rodi
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - I. Leah Gitajn
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH 03756
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
| | - Jaimo Ahn
- Michigan Medicine, U. of Michigan, Ann Arbor, MI 48109
| | - Sunil Singhal
- Perelman School of Medicine, U. of Pennsylvania, Philadelphia, PA 19104
| | - Niels D. Martin
- Perelman School of Medicine, U. of Pennsylvania, Philadelphia, PA 19104
| | - Nicholas M. Bernthal
- David Geffen School of Medicine, U. of California Los Angeles, Santa Monica, CA 90404
| | - Christopher Lee
- David Geffen School of Medicine, U. of California Los Angeles, Santa Monica, CA 90404
| | | | | | - Jonathan Thomas Elliott
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH 03756
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Eric R. Henderson
- Department of Orthopaedics, Dartmouth Health, Lebanon, NH 03756
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
5
|
Quilling LL, Outerbridge CA, White SD, Affolter VK. Retrospective case series: Necrotising fasciitis in 23 dogs. Vet Dermatol 2022; 33:534-544. [PMID: 36043338 DOI: 10.1111/vde.13113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Necrotising fasciitis (NF) is a rare, rapidly progressive subcutaneous bacterial infection. Few studies have characterised NF in dogs. HYPOTHESIS/OBJECTIVES To retrospectively describe clinical and laboratory findings, with treatments and outcomes, in dogs with NF. ANIMALS Twenty-three client-owned dogs treated at a veterinary teaching hospital between 1998 and 2021. MATERIALS AND METHODS Medical records and laboratory data from 23 dogs diagnosed with NF were reviewed. RESULTS Male dogs were significantly over-represented (p = 0.003). The most common presenting complaint was sudden lameness. Infection occurred in one or two limbs in 19 of 23 dogs, with right hindlimbs most often affected (13 of 23). Pitting oedema was evident in 14 of 23 dogs. Antibiotic and nonsteroidal anti-inflammatory drugs were administered before presentation in nine and 13 of 23 dogs, respectively. Common clinicopathological abnormalities included hypoalbuminemia, hyponatremia, elevated liver enzymes, elevated creatine kinase, increased bands and lymphopenia. Streptococcus canis was isolated from 18 of 23 dogs. Histopathological features included acute necrosis and severe neutrophilic inflammation. Fifteen dogs were euthanised or died, while surgical intervention led to survival in eight of 23 dogs. CONCLUSIONS AND CLINICAL RELEVANCE Dogs presenting for acute swelling of a limb with oedema should have the diagnosis of NF considered and early surgical intervention might increase survival.
Collapse
Affiliation(s)
- Laura L Quilling
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Catherine A Outerbridge
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Stephen D White
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Verena K Affolter
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
6
|
Martin SJ, Stephen VS. Pitfalls in medicine: pain out of proportion to examination findings. Br J Hosp Med (Lond) 2022; 83:1-8. [DOI: 10.12968/hmed.2021.0599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Most life-threatening conditions form a coherent clinical picture, with examination findings confirming the patient's history. However, pain out of proportion to examination findings can also signify an emergency – acute compartment syndrome, bowel ischaemia, necrotising fasciitis and acute aortic dissection may all present in this way. A lack of situational awareness leads doctors to erroneously rely on examination findings to flag impending catastrophe, but in such cases misdiagnosis or delayed treatment can have dire consequences. Patients with unexplained pain risk significant morbidity and mortality, and doctors are vulnerable to litigation and reputational damage. This article addresses this danger, exploring the causes and pathology of pain that is out of proportion, and presenting an approach to mitigate risk and prevent catastrophe.
Collapse
Affiliation(s)
- Stephen-John Martin
- School of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK
| | - Victoria S Stephen
- Division of Emergency Medicine, Far East Rand Hospital, University of the Witwatersrand, South Africa
| |
Collapse
|
7
|
Lai CS, Liu PY, Lee CH, Ho CH, Chen WL, Lai KL, Su HY, Lin WL, Chung KC, Yang YY, You CW, Chen KT, Mao YC. The development of surgical risk score and evaluation of necrotizing soft tissue infection in 161 Naja atra envenomed patients. PLoS Negl Trop Dis 2022; 16:e0010066. [PMID: 35143522 PMCID: PMC8830662 DOI: 10.1371/journal.pntd.0010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Naja atra bites cause wound necrosis, secondary infection, and necrotizing soft tissue infection (NSTI) requiring repetitive surgeries. Little information is known about the predictors for surgery after these bites. MATERIALS AND METHODS We retrospectively evaluated 161 patients envenomed by N. atra, 80 of whom underwent surgery because of wound necrosis and infection. We compared the patients' variables between surgical and non-surgical groups. To construct a surgical risk score, we converted the regression coefficients of the significant factors in the multivariate logistic regression into integers. We also examined the deep tissue cultures and pathological findings of the debrided tissue. RESULTS A lower limb as the bite site, a ≥3 swelling grade, bullae or blister formation, gastrointestinal (GI) effects, and fever were significantly associated with surgery in the multivariate logistic regression analysis. The surgical risk scores for these variables were 1, 1, 2, 1, and 2, respectively. At a ≥3-point cutoff value, the model has 71.8% sensitivity and 88.5% specificity for predicting surgery, with an area under the receiver operating characteristic curve of 0.88. The histopathological examinations of the debrided tissues supported the diagnosis of snakebite-induced NSTI. Twelve bacterial species were isolated during the initial surgery and eleven during subsequent surgeries. DISCUSSION AND CONCLUSIONS From the clinical perspective, swelling, bullae or blister formation, GI effects, and fever appeared quickly after the bite and before surgery. The predictive value of these factors for surgery was acceptable, with a ≥3-point risk score. The common laboratory parameters did not always predict the outcomes of N. atra bites without proper wound examination. Our study supported the diagnosis of NSTI and demonstrated the changes in bacteriology during the surgeries, which can have therapeutic implications for N. atra bites.
Collapse
Affiliation(s)
- Chih-Sheng Lai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University
| | - Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hsuan Ho
- Department of Emergency Medicine, Tri-Service General Hospital, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ling Chen
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Psychiatry Department, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuo-Lung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Yuan Su
- Department of Emergency Medicine, E-Da Hospital and I-Shou University, Kaohsiung, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Loung Lin
- Taichung Wildlife Conservation Group, Taichung, Taiwan
| | - Kuo-Chen Chung
- Division of Traumatology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | | | | | - Yan-Chiao Mao
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
8
|
Wilde S, Johnson AF, LaRock CN. Playing With Fire: Proinflammatory Virulence Mechanisms of Group A Streptococcus. Front Cell Infect Microbiol 2021; 11:704099. [PMID: 34295841 PMCID: PMC8290871 DOI: 10.3389/fcimb.2021.704099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
Group A Streptococcus is an obligate human pathogen that is a major cause of infectious morbidity and mortality. It has a natural tropism for the oropharynx and skin, where it causes infections with excessive inflammation due to its expression of proinflammatory toxins and other virulence factors. Inflammation directly contributes to the severity of invasive infections, toxic shock syndrome, and the induction of severe post-infection autoimmune disease caused by autoreactive antibodies. This review discusses what is known about how the virulence factors of Group A Streptococcus induce inflammation and how this inflammation can promote disease. Understanding of streptococcal pathogenesis and the role of hyper-immune activation during infection may provide new therapeutic targets to treat the often-fatal outcome of severe disease.
Collapse
Affiliation(s)
- Shyra Wilde
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Anders F Johnson
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Christopher N LaRock
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, and Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
9
|
Grier JT, Arivett BA, Ramírez MS, Chosed RJ, Bigner JA, Ohneck EJ, Metz ML, Wood CR, Arce S, Tartaro A, Relich RF, Actis LA, Fiester SE. Two Acinetobacter baumannii Isolates Obtained From a Fatal Necrotizing Fasciitis Infection Display Distinct Genomic and Phenotypic Characteristics in Comparison to Type Strains. Front Cell Infect Microbiol 2021; 11:635673. [PMID: 33912474 PMCID: PMC8072282 DOI: 10.3389/fcimb.2021.635673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
Acinetobacter baumannii has been recognized as a critical pathogen that causes severe infections worldwide not only because of the emergence of extensively drug-resistant (XDR) derivatives, but also because of its ability to persist in medical environments and colonize compromised patients. While there are numerous reports describing the mechanisms by which this pathogen acquires resistance genes, little is known regarding A. baumannii’s virulence functions associated with rare manifestations of infection such as necrotizing fasciitis, making the determination and implementation of alternative therapeutic targets problematic. To address this knowledge gap, this report describes the analysis of the NFAb-1 and NFAb-2 XDR isolates, which were obtained at two time points during a fatal case of necrotizing fasciitis, at the genomic and functional levels. The comparative genomic analysis of these isolates with the ATCC 19606T and ATCC 17978 strains showed that the NFAb-1 and NFAb-2 isolates are genetically different from each other as well as different from the ATCC 19606T and ATCC 17978 clinical isolates. These genomic differences could be reflected in phenotypic differences observed in these NFAb isolates. Biofilm, cell viability and flow cytometry assays indicate that all tested strains caused significant decreases in A549 human alveolar epithelial cell viability with ATCC 17978, NFAb-1 and NFAb-2 producing significantly less biofilm and significantly more hemolysis and capacity for intracellular invasion than ATCC 19606T. NFAb-1 and NFAb-2 also demonstrated negligible surface motility but significant twitching motility compared to ATCC 19606T and ATCC 17978, likely due to the presence of pili exceeding 2 µm in length, which are significantly longer and different from those previously described in the ATCC 19606T and ATCC 17978 strains. Interestingly, infection with cells of the NFAb-1 isolate, which were obtained from a premortem blood sample, lead to significantly higher mortality rates than NFAb-2 bacteria, which were obtained from postmortem tissue samples, when tested using the Galleria mellonella in vivo infection model. These observations suggest potential changes in the virulence phenotype of the A. baumannii necrotizing fasciitis isolates over the course of infection by mechanisms and cell processes that remain to be identified.
Collapse
Affiliation(s)
- Jennifer T Grier
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, United States
| | - Brock A Arivett
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Maria S Ramírez
- Department of Biological Science, California State University Fullerton, Fullerton, CA, United States
| | - Renee J Chosed
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, United States
| | - Jessica A Bigner
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, United States
| | - Emily J Ohneck
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Maeva L Metz
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Cecily R Wood
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Sergio Arce
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, United States.,Cancer Institute, Prisma Health, Greenville, SC, United States
| | - Andrea Tartaro
- Computer Science Department, Furman University, Greenville, SC, United States
| | - Ryan F Relich
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Steven E Fiester
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC, United States.,Department of Pathology, Prisma Health, Greenville, SC, United States
| |
Collapse
|
10
|
Systems Genetics Approaches in Mouse Models of Group A Streptococcal Necrotizing Soft-Tissue Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33079368 DOI: 10.1007/978-3-030-57616-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mouse models are invaluable resources for studying the pathogenesis and preclinical evaluation of therapeutics and vaccines against many human pathogens. Infections caused by group A streptococcus (GAS, Streptococcus pyogenes) are heterogeneous ranging from mild pharyngitis to severe invasive necrotizing fasciitis, a subgroup of necrotizing soft-tissue infections (NSTIs). While several strains of mice including BALB/c, C3H/HeN, CBA/J, and C57BL/10 offered significant insights, the human specificity and the interindividual variations on susceptibility or resistance to GAS infections limit their ability to mirror responses as seen in humans. In this chapter, we discuss the advanced recombinant inbred (ARI) BXD mouse model that mimics the genetic diversity as seen in humans and underpins the feasibility to map multiple genes (genetic loci) modulating GAS NSTI. GAS produces a myriad of virulence factors, including superantigens (SAg). Superantigens are potent immune toxins that activate T cells by cross-linking T cell receptors with human leukocyte antigen class-II (HLA-II) molecules expressed on antigen-presenting cells. This leads to a pro-inflammatory cytokine storm and the subsequent multiple organ damage and shock. Inbred mice are innately refractive to SAg-mediated responses. In this chapter, we discuss the versatility of the HLA-II transgenic mouse model that allowed the biological validation of known genetic associations to GAS NSTI. The combined utility of ARI-BXD and HLA-II mice as complementary approaches that offer clinically translatable insights into pathomechanisms driven by complex traits and host genetic context and novel means to evaluate the in vivo efficiency of therapies to improve outcomes of GAS NSTI are also discussed.
Collapse
|
11
|
Streptococcus pyogenes Transcriptome Changes in the Inflammatory Environment of Necrotizing Fasciitis. Appl Environ Microbiol 2019; 85:AEM.01428-19. [PMID: 31471300 PMCID: PMC6803311 DOI: 10.1128/aem.01428-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022] Open
Abstract
Necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection, is principally caused by S. pyogenes. The inflammatory environment at the site of infection causes global gene expression changes for survival of the bacterium and pathogenesis. However, no known study regarding transcriptomic profiling of S. pyogenes in cases of necrotizing fasciitis has been presented. We identified 483 bacterial genes whose expression was consistently altered during infection. Our results showed that S. pyogenes infection induces drastic upregulation of the expression of virulence-associated genes and shifts metabolic pathway usage. In particular, high-level expression of toxins, such as cytolysins, proteases, and nucleases, was observed at infection sites. In addition, genes identified as consistently enriched included those related to metabolism of arginine and histidine as well as carbohydrate uptake and utilization. Conversely, genes associated with the oxidative stress response and cell division were consistently downregulated during infection. The present findings provide useful information for establishing novel treatment strategies. Streptococcus pyogenes is a major cause of necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection. At the host infection site, the local environment and interactions between the host and bacteria have effects on bacterial gene expression profiles, while the gene expression pattern of S. pyogenes related to this disease remains unknown. In this study, we used a mouse model of necrotizing fasciitis and performed RNA-sequencing (RNA-seq) analysis of S. pyogenes M1T1 strain 5448 by isolating total RNA from infected hind limbs obtained at 24, 48, and 96 h postinfection. RNA-seq analysis results identified 483 bacterial genes whose expression was consistently altered in the infected hindlimbs compared to their expression under in vitro conditions. Genes showing consistent enrichment during infection included 306 encoding molecules involved in virulence, carbohydrate utilization, amino acid metabolism, trace-metal transport, and the vacuolar ATPase transport system. Surprisingly, drastic upregulation of 3 genes, encoding streptolysin S precursor (sagA), cysteine protease (speB), and secreted DNase (spd), was noted in the present mouse model (log2 fold change, >6.0, >9.4, and >7.1, respectively). Conversely, the number of consistently downregulated genes was 177, including those associated with the oxidative stress response and cell division. These results suggest that in necrotizing fasciitis, S. pyogenes shows an altered metabolism, decreased cell proliferation, and upregulation of expression of major toxins. Our findings are considered to provide critical information for developing novel treatment strategies and vaccines for necrotizing fasciitis. IMPORTANCE Necrotizing fasciitis, a life-threatening subcutaneous soft-tissue infection, is principally caused by S. pyogenes. The inflammatory environment at the site of infection causes global gene expression changes for survival of the bacterium and pathogenesis. However, no known study regarding transcriptomic profiling of S. pyogenes in cases of necrotizing fasciitis has been presented. We identified 483 bacterial genes whose expression was consistently altered during infection. Our results showed that S. pyogenes infection induces drastic upregulation of the expression of virulence-associated genes and shifts metabolic pathway usage. In particular, high-level expression of toxins, such as cytolysins, proteases, and nucleases, was observed at infection sites. In addition, genes identified as consistently enriched included those related to metabolism of arginine and histidine as well as carbohydrate uptake and utilization. Conversely, genes associated with the oxidative stress response and cell division were consistently downregulated during infection. The present findings provide useful information for establishing novel treatment strategies.
Collapse
|
12
|
Jessurun J, Cui I, Aristi-Urista G. Acute (gangrenous) esophageal necrosis (black esophagus). A rare form of injury with specific histologic features and diverse clinical associations with a common pathogenesis. Hum Pathol 2019; 87:44-50. [DOI: 10.1016/j.humpath.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
|
13
|
Group A Streptococcal DNase Sda1 Impairs Plasmacytoid Dendritic Cells' Type 1 Interferon Response. J Invest Dermatol 2018; 139:1284-1293. [PMID: 30543898 DOI: 10.1016/j.jid.2018.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/19/2023]
Abstract
Group A Streptococcus causes severe invasive infections, including necrotizing fasciitis. The expression of an array of virulence factors targeting specific host immune functions impedes successful bacterial clearance. The virulence factor streptococcal DNase Sda1 was previously shown to interfere with the entrapment of bacteria through neutrophil extracellular traps and TLR9 signaling. In this study, we showed that plasmacytoid dendritic cells are recruited to the infected tissue during group A streptococcal necrotizing fasciitis. We found that the streptococcal DNase Sda1 impairs plasmacytoid dendritic cell recruitment by reducing IFN-1 levels at the site of infection. We found that streptococcal DNase Sda1 interferes with stabilization of the DNA by the host molecule HMGB1 protein, which may account for decreased IFN-1 levels at the site of infection.
Collapse
|