1
|
Qiu L, Lu X, Xue W, Fu H, Deng S, Li L, Chen M, Wang Y. Ischemic stroke susceptibility associated with ALPK1 single nucleotide polymorphisms by inhibiting URAT1 in uric acid hemostasis. Gene 2024; 934:149017. [PMID: 39437898 DOI: 10.1016/j.gene.2024.149017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Ischemic stroke (IS) prevalence rising annually, the necessity of discovering non-interventional genetic influences is progressing. Single nucleotide polymorphism (SNP) plays a pivotal role in stable inheritance of disease susceptibility. Based on the relationship between Alpha- Kinase 1 (ALPK1) and traditional IS risk factors especially hyperuricemia, our study investigated the association and function of ALPK1 SNPs with IS susceptibility. METHODS A case-control study of 1539 patients and 933 controls from northeast China was conducted. Genotyping information of ALPK1 rs2074379 and rs2074388 was collected. Four types of plasmids including rs2074379/rs2074388 G/G, A/G, G/A, and A/A were transfected into 293T cells to observe ALPK1 and SLC22A12 expression. Possible ALPK1 structures of different SNPs were predicted online. RESULTS Genotype GG (OR = 1.371, CI = 1.029-1.828, P = 0.031) and GA (OR = 1.326, CI = 1.110-1.584, P = 0.002) of rs2074379 and GA of rs2074388 (OR = 1.359, CI = 1.137-1.624, P = 0.001) were found significantly susceptible to IS, with G allele on sites to be a risk allele. Rs2074379 had a multiplicative interaction with hyperuricemia (OR = 1.637, CI = 1.157-2.315, P = 0.005). Uric acid levels differed in genotypes (P < 0.001). The expression of ALPK1 (P < 0.01) and SLC22A12 in membrane urate transporter 1 (URAT1) protein (P < 0.05) functionally changed with G allele on either site. With glycine changing into aspartic acid at rs2074388, the protein secondary structure changed, but the ALPK1 protein subtype remained still. CONCLUSIONS ALPK1 rs2074379 and rs2074388 SNPs were functionally associated with IS susceptibility. The wild allele progressed IS risk probably by reducing ALPK1 expression and inhibiting URAT1 raising the uric acid level, contributing to further exploration of pathogenetic mechanisms of stroke. Chinese Clinical Trial Registration number: ChiCTR-COC-17013559.
Collapse
Affiliation(s)
- Luying Qiu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Xiaoqin Lu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Weishuang Xue
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Hefei Fu
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Shumin Deng
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, China Medical University, Shenyang 110001, China
| | - Meilin Chen
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100069, China
| | - Yanzhe Wang
- Department of Neurology, Key Laboratory for Neurological Big Data of Liaoning Province, Shenyang Clinical Medical Research Center for Difficult and Serious Diseases of the Nervous System, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
2
|
Martin-Gallausiaux C, Salesse L, Garcia-Weber D, Marinelli L, Beguet-Crespel F, Brochard V, Le Gléau C, Jamet A, Doré J, Blottière HM, Arrieumerlou C, Lapaque N. Fusobacterium nucleatum promotes inflammatory and anti-apoptotic responses in colorectal cancer cells via ADP-heptose release and ALPK1/TIFA axis activation. Gut Microbes 2024; 16:2295384. [PMID: 38126163 PMCID: PMC10761154 DOI: 10.1080/19490976.2023.2295384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The anaerobic bacterium Fusobacterium nucleatum is significantly associated with human colorectal cancer (CRC) and is considered a significant contributor to the disease. The mechanisms underlying the promotion of intestinal tumor formation by F. nucleatum have only been partially uncovered. Here, we showed that F. nucleatum releases a metabolite into the microenvironment that strongly activates NF-κB in intestinal epithelial cells via the ALPK1/TIFA/TRAF6 pathway. Furthermore, we showed that the released molecule had the biological characteristics of ADP-heptose. We observed that F. nucleatum induction of this pathway increased the expression of the inflammatory cytokine IL-8 and two anti-apoptotic genes known to be implicated in CRC, BIRC3 and TNFAIP3. Finally, it promoted the survival of CRC cells and reduced 5-fluorouracil chemosensitivity in vitro. Taken together, our results emphasize the importance of the ALPK1/TIFA pathway in Fusobacterium induced-CRC pathogenesis, and identify the role of ADP-H in this process.
Collapse
Affiliation(s)
| | - Laurène Salesse
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Ludovica Marinelli
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Vincent Brochard
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Camille Le Gléau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexandre Jamet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Joël Doré
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | - Hervé M. Blottière
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, Metagenopolis, Jouy-en-Josas, France
| | | | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
3
|
Sidor K, Skirecki T. A Bittersweet Kiss of Gram-Negative Bacteria: The Role of ADP-Heptose in the Pathogenesis of Infection. Microorganisms 2023; 11:1316. [PMID: 37317291 DOI: 10.3390/microorganisms11051316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Due to the global crisis caused by the dramatic rise of drug resistance among Gram-negative bacteria, there is an urgent need for a thorough understanding of the pathogenesis of infections of such an etiology. In light of the limited availability of new antibiotics, therapies aimed at host-pathogen interactions emerge as potential treatment modalities. Thus, understanding the mechanism of pathogen recognition by the host and immune evasion appear to be the key scientific issues. Until recently, lipopolysaccharide (LPS) was recognized as a major pathogen-associated molecular pattern (PAMP) of Gram-negative bacteria. However, recently, ADP-L-glycero-β-D-manno-heptose (ADP-heptose), an intermediate carbohydrate metabolite of the LPS biosynthesis pathway, was discovered to activate the hosts' innate immunity. Therefore, ADP-heptose is regarded as a novel PAMP of Gram-negative bacteria that is recognized by the cytosolic alpha kinase-1 (ALPK1) protein. The conservative nature of this molecule makes it an intriguing player in host-pathogen interactions, especially in the context of changes in LPS structure or even in its loss by certain resistant pathogens. Here, we present the ADP-heptose metabolism, outline the mechanisms of its recognition and the activation of its immunity, and summarize the role of ADP-heptose in the pathogenesis of infection. Finally, we hypothesize about the routes of the entry of this sugar into cytosol and point to emerging questions that require further research.
Collapse
Affiliation(s)
- Karolina Sidor
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| |
Collapse
|
4
|
Duizer C, de Zoete MR. The Role of Microbiota-Derived Metabolites in Colorectal Cancer. Int J Mol Sci 2023; 24:8024. [PMID: 37175726 PMCID: PMC10178193 DOI: 10.3390/ijms24098024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The impact of bacterial members of the microbiota on the development of colorectal cancer (CRC) has become clear in recent years. However, exactly how bacteria contribute to the development of cancer is often still up for debate. The impact of bacteria-derived metabolites, which can influence the development of CRC either in a promoting or inhibiting manner, is undeniable. Here, we discuss the effects of the most well-studied bacteria-derived metabolites associated with CRC, including secondary bile acids, short-chain fatty acids, trimethylamine-N-oxide and indoles. We show that the effects of individual metabolites on CRC development are often nuanced and dose- and location-dependent. In the coming years, the array of metabolites involved in CRC development will undoubtedly increase further, which will emphasize the need to focus on causation and mechanisms and the clearly defined roles of bacterial species within the microbiota.
Collapse
Affiliation(s)
| | - Marcel R. de Zoete
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
5
|
Liu X, Zhao J, Jiang H, Guo H, Li Y, Li H, Feng Y, Ke J, Long X. ALPK1 Accelerates the Pathogenesis of Osteoarthritis by Activating NLRP3 Signaling. J Bone Miner Res 2022; 37:1973-1985. [PMID: 36053817 DOI: 10.1002/jbmr.4669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 11/08/2022]
Abstract
Alpha-kinase 1 (ALPK1), a member of the alpha-kinase family, has been shown to be involved in mediating inflammatory responses and is strongly associated with gout; however, its modulatory role in osteoarthritis (OA) remains unclear. Here, we uncovered elevation of ALPK1 in degraded cartilage of destabilized medial meniscus (DMM) and collagenase-induced osteoarthritis (CIOA), two different mouse OA models induced by mechanical stress or synovitis. Intraarticular administration of recombinant human ALPK1 (rhALPK1) in vivo exacerbated OA pathogenesis in both DMM and CIOA mice, whereas ALPK1 knockout reversed this process. In vitro study demonstrated that ALPK1 aggravates metabolic disturbances in chondrocytes by enhancing the production of NOD-like receptor protein 3 (NLRP3), an inflammasome sensors driving interlukin-1β (IL-1β)-mediated inflammatory conditions. Furthermore, the selective inhibition of nuclear factor-κB (NF-κB) or NLRP3 indicates that NLRP3 is a downstream signaling governed by NF-κB in ALPK1-activated chondrocytes. Collectively, these results establish ALPK1 as a novel catabolic regulator of OA pathogenesis, and targeting this signaling may be a promising treatment strategy for OA. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Henghua Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huilin Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yingjie Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huimin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Systematic Review of the Role of Alpha-Protein Kinase 1 in Cancer and Cancer-Related Inflammatory Diseases. Cancers (Basel) 2022; 14:cancers14184390. [PMID: 36139553 PMCID: PMC9497133 DOI: 10.3390/cancers14184390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Aside from the basic phosphorylation function of alpha-kinase 1 (ALPK1), little is known about its major functions. Researchers have used various forms of biotechnology and human, animal, and cellular models to better understand the relationship of ALPK1 with cancer and cancer-related inflammatory diseases. ALPK1 is involved in the progression of breast, lung, colorectal, oral, and skin cancer as well as lymphoblastic leukemia. ALPK1 has also been implicated in gout, diabetes, and chronic kidney disease, which are thought to be associated with breast, lung, colorectal, urinary tract, pancreatic, and endometrial cancers and lymphoblastic leukemia. ALPK1 upregulates inflammatory cytokines and chemokines during carcinogenesis. The major cytokine involved in carcinogenesis is TNF-α, which activates the NF-κB pathway, and similar inflammatory responses exist in gout, diabetes, and chronic kidney disease. ALPK1 regulates downstream inflammatory mechanisms that lead to cancer development through certain pathways and plays a key role in cancer initiation and metastasis. Abstract Background: Deregulation of conventional protein kinases is associated with the growth and development of cancer cells. Alpha-kinase 1 (ALPK1) belongs to a newly discovered family of serine/threonine protein kinases with no sequence homology to conventional protein kinases, and its function in cancer is poorly understood. Methods: In this systematic review, we searched for and analyzed studies linking ALPK1 to cancer development and progression. Results: Based on the current evidence obtained using human, animal, cellular, and tissue models, ALPK1 is located upstream and triggers cancer cell development and metastasis by regulating the inflammatory response through phosphorylation. Its mRNA and protein levels were found to correlate with advanced tumor size and lymph node metastasis, which occur from the cellular cytoplasm into the nucleus. ALPK1 is also strongly associated with gout, chronic kidney disease, and diabetes, which are considered as inflammatory diseases and associated with cancer. Conclusion: ALPK1 is an oncogene involved in carcinogenesis. Chronic inflammation is the common regulatory mechanism between cancer and these diseases. Future research should focus on identifying inhibitors of serine/threonine and ALPK1 at their phosphorylation sites, which would block various signal transductions and potentially offer kinase-targeted therapeutic agents for patients with cancer and inflammatory diseases.
Collapse
|
7
|
Natsuko PD, Laura SC, Denise CC, Lucio VR, Carlos AS, Fausto SM, Ambar LM. Differential gene expression of ABCG2, SLC22A12, IL-1β, and ALPK1 in peripheral blood leukocytes of primary gout patients with hyperuricemia and their comorbidities: a case-control study. Eur J Med Res 2022; 27:62. [PMID: 35505381 PMCID: PMC9063158 DOI: 10.1186/s40001-022-00684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background The ABCG2, SLC22A12, and ALPK1 genes have been strongly associated with dysfunction of urate metabolism in patients with gout, but it is unknown how these transporters are expressed in patients with acute or chronic gout. Our objectives were to: (a) analyze the gene expression of urate transporters and of inflammation genes in peripheral blood from gout patients and controls; (b) determine whether the metabolic profile of gout patients can influence the gene expression profile and the expression of urate transporters, ABCG2 and SLC22A12, and inflammation molecules, ALPK1 and IL-1β, in peripheral blood leukocytes from gout patients; (c) compare them with their metabolic profile and the gene expression of people without gout and without hyperuricemia. Methods A total of 36 chronic and acute patients and 52 controls were recruited, and ABCG2, SLC22A12, IL-1β, and ALPK1 gene expression was evaluated by quantitative real-time PCR. Correlations of gene expression with clinical and laboratory parameters of patients were also analyzed. Results IL-1β was significantly increased in peripheral blood mononuclear cells (PBMCs) of patients compared with their polymorphonuclear leukocytes white blood cells (PMNLs, p < 0.05). A significant increase in ABCG2 and IL-1β was found in PMNLs from patients compared to controls (p < 0.05). Correlations of gene expression in patients were found with levels of serum uric acid (sUA), serum creatinine, C-reactive protein (CRP), triglycerides, body mass index (BMI), kidney disease, hypertension, and metabolic syndrome. Conclusions Our data suggest that leukocytes of patients respond to the presence of hyperuricemia and comorbidities, expressing ABCG2 and IL-1β genes differentially compared to normouricemic and nondisease states. Hyperuricemia, dyslipidemia, and obesity probably stimulate the differential gene expression of peripheral blood leukocytes (neutrophils and monocytes), even in an asymptomatic state.
Collapse
Affiliation(s)
- Paniagua-Díaz Natsuko
- Laboratorio de Enfermedades Neuromusculares, Instituto Nacional de Rehabilitación, Guillermo Ibarra Ibarra. Calzada Mexico-Xochimilco 289, Colonia Arenal de Guadalupe, División Neurociencias, CP, 143898, Ciudad de México, México
| | - Sanchez-Chapul Laura
- Laboratorio de Enfermedades Neuromusculares, Instituto Nacional de Rehabilitación, Guillermo Ibarra Ibarra. Calzada Mexico-Xochimilco 289, Colonia Arenal de Guadalupe, División Neurociencias, CP, 143898, Ciudad de México, México
| | - Clavijo-Cornejo Denise
- Division of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitación, Mexico City, Mexico., Instituto Nacional de Rehabilitación - "Luis Guillermo Ibarra Ibarra". Tlalpan, Ciudad de México, México
| | - Ventura-Ríos Lucio
- Laboratorio de Ultrasonido Musculoesquelético Articular, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Tlalpan, Ciudad de México, México
| | - Aguilar-Salinas Carlos
- Unidad de investigación de enfermedades metabólicas, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán. Tlalpan, Ciudad de Mexico, México
| | - Sanchez-Muñoz Fausto
- Department of immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Tlalpan, Ciduad de México, México
| | - López-Macay Ambar
- Laboratorio de Enfermedades Neuromusculares, Instituto Nacional de Rehabilitación, Guillermo Ibarra Ibarra. Calzada Mexico-Xochimilco 289, Colonia Arenal de Guadalupe, División Neurociencias, CP, 143898, Ciudad de México, México.
| |
Collapse
|
8
|
Tarvainen I, Nunn RC, Tuominen RK, Jäntti MH, Talman V. Protein kinase A Mediated Effects of Protein kinase C Partial Agonist HMI-1a3 in Colorectal Cancer Cells. J Pharmacol Exp Ther 2021; 380:54-62. [PMID: 34697230 DOI: 10.1124/jpet.121.000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the third most commonly occurring cancer in men and the second in women. The global burden of colorectal cancer is projected to increase to over 2 million new cases with over 1 million deaths within the next 10 years and there is a great need for new compounds with novel mechanisms of action. Our group has developed PKC modulating isophthalic acid derivatives that induce cytotoxicity towards human cervical and prostate cancer cell lines. In this study, we investigated the effects of 5-(hydroxymethyl)isophthalate 1a3 (HMI-1a3) on colorectal cancer cell lines (Caco2, Colo205 and HT29). HMI-1a3 inhibited cell proliferation, decreased cell viability and induced an apoptotic response in all studied cell lines. These effects, however, were independent of PKC. Using serine/threonine kinome profiling and pharmacological kinase inhibitors we identified activation of the cAMP/PKA pathway as a new mechanism-of-action for HMI-1a3-induced anti-cancer activity in colorectal cancer cell lines. Our current results strengthen the hypothesis for HMI-1a3 as a potential anti-cancer agent against various malignancies. Significance Statement Colorectal cancer (CRC) is a common solid organ malignancy. Here, we demonstrate that the protein kinase C (PKC) C1 domain-targeted isophthalatic acid derivative HMI-1a3 has anti-cancer activity on CRC cell lines independently of PKC. We identified protein kinase A (PKA) activation as a mechanism of HMI-1a3 induced anti-cancer effects. Our results reveal a new anti-cancer mechanism of action for the partial PKC agonist HMI-1a3 and thus provide new insights for the development of PKC and PKA modulators for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Virpi Talman
- Faculty of Pharmacy, University of Helsinki, Finland
| |
Collapse
|
9
|
Lee CP, Ko AMS, Nithiyanantham S, Lai CH, Ko YC. Long noncoding RNA HAR1A regulates oral cancer progression through the alpha-kinase 1, bromodomain 7, and myosin IIA axis. J Mol Med (Berl) 2021; 99:1323-1334. [PMID: 34097087 DOI: 10.1007/s00109-021-02095-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Studies suggested that long noncoding HAR1A RNA may be a tumor suppressor, but its association with oral cancer remains unclear. Here, we show the functional role and mechanisms of HAR1A in oral cancer progression. Microarray analysis was performed to screen the related candidates of long noncoding RNA (lncRNA) in human monocytes. Following lncRNA HAR1A, the regulation of HAR1A, ALPK1, myosin IIA, and BRD7 was tested using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) in oral cancer cells. The inflammatory and epithelial-to-mesenchymal transition marker expressions were analyzed using enzyme-linked immunosorbent assay and western blot. Phenotypic experiments were verified by colony formation assay, transwell migration assay, and Annexin V-apoptotic assay. In the nuclei of cancer cells, HAR1A functions upstream of signaling pathways and knockdown of HAR1A promoted ALPK1 expression and downregulated BRD7 resulting in inflammation and oral cancer progression. In monocytes, the expressions of TNF-α and CCL2 were increased following HAR1A knockdown and reduced following ALPK1 knockdown. HAR1A knockdown upregulated the expression of ALPK1, slug, vimentin, fibronectin, and N-cadherin but reduced the expression of E-cadherin in oral cancer cells. Myosin IIA was primarily located in the cytoplasm and that its decrease in the nuclei of oral cancer cells was likely to demonstrate suppressive ability in late-stage cancer. Our findings suggest that the HAR1A, BRD7, and myosin IIA are tumor suppressors while ALPK1 has oncogene-like property in the nucleus and is involved in inflammation and oral cancer progression. More research for HAR1A activators or ALPK1 inhibitors is required to develop potential therapeutic agents for advanced oral cancer. KEY MESSAGES: lncRNA HAR1A, BRD7, and myosin IIA are tumor suppressors whereas ALPK1 has an oncogenic-like property in the nucleus. lncRNA HAR1A/ALPK1/BRD7/myosin IIA axis plays a critical role in the progression of oral cancer. lncRNA HAR1A localizes upstream of signaling pathways to inhibit ALPK1 expression and then upregulated BRD7. lncRNA HAR1A and ALPK1 are involved in cancer progression via epithelial-to-mesenchymal transition regulations. ALPK1 inhibitors are potential kinase-targeted therapeutic agents for patients with advanced oral cancer.
Collapse
Affiliation(s)
- Chi-Pin Lee
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, Taichung, 40447, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, CAS, Beijing, 100044, China
| | - Srinivasan Nithiyanantham
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, Taichung, 40447, Taiwan
| | - Chu-Hu Lai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 41354, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University Hospital, China Medical University, No. 2 Yude Road, Taichung, 40447, Taiwan.
| |
Collapse
|
10
|
García-Weber D, Arrieumerlou C. ADP-heptose: a bacterial PAMP detected by the host sensor ALPK1. Cell Mol Life Sci 2021; 78:17-29. [PMID: 32591860 PMCID: PMC11072087 DOI: 10.1007/s00018-020-03577-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/16/2023]
Abstract
The innate immune response constitutes the first line of defense against pathogens. It involves the recognition of pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), the production of inflammatory cytokines and the recruitment of immune cells to infection sites. Recently, ADP-heptose, a soluble intermediate of the lipopolysaccharide biosynthetic pathway in Gram-negative bacteria, has been identified by several research groups as a PAMP. Here, we recapitulate the evidence that led to this identification and discuss the controversy over the immunogenic properties of heptose 1,7-bisphosphate (HBP), another bacterial heptose previously defined as an activator of innate immunity. Then, we describe the mechanism of ADP-heptose sensing by alpha-protein kinase 1 (ALPK1) and its downstream signaling pathway that involves the proteins TIFA and TRAF6 and induces the activation of NF-κB and the secretion of inflammatory cytokines. Finally, we discuss possible delivery mechanisms of ADP-heptose in cells during infection, and propose new lines of thinking to further explore the roles of the ADP-heptose/ALPK1/TIFA axis in infections and its potential implication in the control of intestinal homeostasis.
Collapse
Affiliation(s)
- Diego García-Weber
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France
| | - Cécile Arrieumerlou
- INSERM, U1016, Institut Cochin, CNRS, UMR8104, Université de Paris, 22 rue Méchain, 75014, Paris, France.
| |
Collapse
|
11
|
Wu Q, Cao R, Chen J, Xie X. Screening and identification of biomarkers associated with clinicopathological parameters and prognosis in oral squamous cell carcinoma. Exp Ther Med 2019; 18:3579-3587. [PMID: 31608128 PMCID: PMC6778814 DOI: 10.3892/etm.2019.7998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 08/16/2019] [Indexed: 12/27/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a major type of malignant tumor of the oral cavity. Despite marked advances in the management and diagnosis of OSCC, the associated overall survival ratio has only exhibited a modest increase in recent years. The present study aimed to identify potential crucial genes associated with clinical features and prognosis for OSCC, and to provide a basis for further investigation. RNA-sequencing data and corresponding clinical information were downloaded from The Cancer Genome Atlas database and differentially expressed mRNAs (DEmRNAs) were identified using the edgeR package. Bioinformatics analysis was performed to identify differentially expressed clinical features-associated mRNAs (CFmRNAs) and enhance the current knowledge of the function of them. Functional enrichment analysis and protein-protein interplay (PPI) network analysis were then performed to better understand CFmRNAs. Survival-associated genes were analyzed with Kaplan-Meier survival curves and the log-rank test. A total of 2,013 DEmRNAs between OSCC samples and normal tissues were identified, 180 of which were associated with clinical features. A total of 17 GO terms and 4 KEGG pathways were significantly enriched in functional enrichment analysis. A total of 4 hub genes (albumin, statherin, neurotensin and mucin 7) were identified in the PPI network analysis. A total of 6 genes (DDB1 and CUL4 associated factor 4 like 2, opiorphin prepropeptide, R3H domain containing like, transmembrane phosphatase with tensin homology, actin like 8 and protocadherin α 11) were observed to have an influence on survival. The DEmRNAs identified may have a crucial role in the genesis and development of OSCC and may be further developed for diagnostic, therapeutic and prognostic applications for OSCC in the future.
Collapse
Affiliation(s)
- Qiqi Wu
- Department of Endodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Ruoyan Cao
- Department of Prosthodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Juan Chen
- Department of Oral and Maxillofacial Surgery, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| | - Xiaoli Xie
- Department of Endodontics, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan 410083, P.R. China
| |
Collapse
|
12
|
Rashid M, van der Horst M, Mentzel T, Butera F, Ferreira I, Pance A, Rütten A, Luzar B, Marusic Z, de Saint Aubain N, Ko JS, Billings SD, Chen S, Abi Daoud M, Hewinson J, Louzada S, Harms PW, Cerretelli G, Robles-Espinoza CD, Patel RM, van der Weyden L, Bakal C, Hornick JL, Arends MJ, Brenn T, Adams DJ. ALPK1 hotspot mutation as a driver of human spiradenoma and spiradenocarcinoma. Nat Commun 2019; 10:2213. [PMID: 31101826 PMCID: PMC6525246 DOI: 10.1038/s41467-019-09979-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 01/12/2023] Open
Abstract
Spiradenoma and cylindroma are distinctive skin adnexal tumors with sweat gland differentiation and potential for malignant transformation and aggressive behaviour. We present the genomic analysis of 75 samples from 57 representative patients including 15 cylindromas, 17 spiradenomas, 2 cylindroma-spiradenoma hybrid tumors, and 24 low- and high-grade spiradenocarcinoma cases, together with morphologically benign precursor regions of these cancers. We reveal somatic or germline alterations of the CYLD gene in 15/15 cylindromas and 5/17 spiradenomas, yet only 2/24 spiradenocarcinomas. Notably, we find a recurrent missense mutation in the kinase domain of the ALPK1 gene in spiradenomas and spiradenocarcinomas, which is mutually exclusive from mutation of CYLD and can activate the NF-κB pathway in reporter assays. In addition, we show that high-grade spiradenocarcinomas carry loss-of-function TP53 mutations, while cylindromas may have disruptive mutations in DNMT3A. Thus, we reveal the genomic landscape of adnexal tumors and therapeutic targets.
Collapse
Affiliation(s)
- Mamunur Rashid
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Michiel van der Horst
- Department of Pathology, Maasstad Hospital, Maasstadweg 21, Rotterdam, 3079 DZ, The Netherlands
| | - Thomas Mentzel
- Dermatopathologie Friedrichshafen, Siemensstrasse 6/1, 88048, Friedrichshafen, Germany
| | - Francesca Butera
- Dynamical Cell Systems Laboratory. Chester Beatty Laboratories, Division of Cancer Biology. Institute of Cancer Research, London, SW3 6JB, UK
| | - Ingrid Ferreira
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Alena Pance
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Arno Rütten
- Dermatopathologie Friedrichshafen, Siemensstrasse 6/1, 88048, Friedrichshafen, Germany
| | - Bostjan Luzar
- Institute of Pathology, Medical Faculty University of Ljubljana, Korytkova 2, Ljubljana, 1000, Slovenia
| | - Zlatko Marusic
- University Hospital Center Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia
| | | | - Jennifer S Ko
- Department of Pathology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Steven D Billings
- Department of Pathology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sofia Chen
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Marie Abi Daoud
- Departments of Pathology & Laboratory Medicine and Medicine and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2L 2K8, Canada
| | - James Hewinson
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Sandra Louzada
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109-5602, USA
| | - Guia Cerretelli
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics & Molecular Medicine, Crewe Road, Edinburgh, EH4 2XR, UK
| | - Carla Daniela Robles-Espinoza
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd Juriquilla 3001, Santiago de Querétaro, 76230, Mexico
| | - Rajiv M Patel
- Departments of Pathology and Dermatology, University of Michigan Medical School, 2800 Plymouth Road, Ann Arbor, MI, 48109-5602, USA
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Chris Bakal
- Dynamical Cell Systems Laboratory. Chester Beatty Laboratories, Division of Cancer Biology. Institute of Cancer Research, London, SW3 6JB, UK
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics & Molecular Medicine, Crewe Road, Edinburgh, EH4 2XR, UK
| | - Thomas Brenn
- Departments of Pathology & Laboratory Medicine and Medicine and The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2L 2K8, Canada
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics & Molecular Medicine, Crewe Road, Edinburgh, EH4 2XR, UK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK.
| |
Collapse
|