1
|
Stella M, Russo GI, Leonardi R, Carcò D, Gattuso G, Falzone L, Ferrara C, Caponnetto A, Battaglia R, Libra M, Barbagallo D, Di Pietro C, Pernagallo S, Barbagallo C, Ragusa M. Extracellular RNAs from Whole Urine to Distinguish Prostate Cancer from Benign Prostatic Hyperplasia. Int J Mol Sci 2024; 25:10079. [PMID: 39337566 PMCID: PMC11432375 DOI: 10.3390/ijms251810079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
RNAs, especially non-coding RNAs (ncRNAs), are crucial players in regulating cellular mechanisms due to their ability to interact with and regulate other molecules. Altered expression patterns of ncRNAs have been observed in prostate cancer (PCa), contributing to the disease's initiation, progression, and treatment response. This study aimed to evaluate the ability of a specific set of RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), and mRNAs, to discriminate between PCa and the non-neoplastic condition benign prostatic hyperplasia (BPH). After selecting by literature mining the most relevant RNAs differentially expressed in biofluids from PCa patients, we evaluated their discriminatory power in samples of unfiltered urine from 50 PCa and 50 BPH patients using both real-time PCR and droplet digital PCR (ddPCR). Additionally, we also optimized a protocol for urine sample manipulation and RNA extraction. This two-way validation study allowed us to establish that miRNAs (i.e., miR-27b-3p, miR-574-3p, miR-30a-5p, and miR-125b-5p) are more efficient biomarkers for PCa compared to long RNAs (mRNAs and lncRNAs) (e.g., PCA3, PCAT18, and KLK3), as their dysregulation was consistently reported in the whole urine of patients with PCa compared to those with BPH in a statistically significant manner regardless of the quantification methodology performed. Moreover, a significant increase in diagnostic performance was observed when molecular signatures composed of different miRNAs were considered. Hence, the abovementioned circulating ncRNAs represent excellent potential non-invasive biomarkers in urine capable of effectively distinguishing individuals with PCa from those with BPH, potentially reducing cancer overdiagnosis.
Collapse
Affiliation(s)
- Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Giorgio Ivan Russo
- Department of Urology, Polyclinic Hospital, University of Catania, 95123 Catania, Italy
| | - Rosario Leonardi
- Casa di Cura Musumeci GECAS, 95030 Gravina di Catania, Italy
- Department of Medicine and Surgery, University of Enna KORE, 94100 Enna, Italy
| | - Daniela Carcò
- Istituto Oncologico del Mediterraneo, 95029 Viagrande, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, 95123 Catania, Italy
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Salvatore Pernagallo
- DESTINA Genomica S.L., Health Sciences Technology Park (PTS), Av. de la Innovación 1, Building Business Innovation Center (BIC), 18016 Granada, Spain
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| |
Collapse
|
2
|
Joshi N, Garapati K, Ghose V, Kandasamy RK, Pandey A. Recent progress in mass spectrometry-based urinary proteomics. Clin Proteomics 2024; 21:14. [PMID: 38389064 PMCID: PMC10885485 DOI: 10.1186/s12014-024-09462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.
Collapse
Affiliation(s)
- Neha Joshi
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kishore Garapati
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vivek Ghose
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, 55905, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Figueiredo D, Cruz RGB, Normando AGC, Granato DC, Busso-Lopes AF, Carnielli CM, De Rossi T, Paes Leme AF. Peptidomics Strategies to Evaluate Cancer Diagnosis, Prognosis, and Treatment. Methods Mol Biol 2024; 2758:401-423. [PMID: 38549027 DOI: 10.1007/978-1-0716-3646-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Peptides have potential bioactive functions, and the peptidomics landscape has been broadly investigated for various diseases, including cancer. In this chapter, we reviewed the past four years of literature available and selected 16 peer-reviewed publications exploring peptidomics in diagnosis, prognosis, and treatment in cancer research. We highlighted their main aims, mass spectrometry-based peptidomics, multi-omics, data-driven and in silico strategies, functional assays, and clinical applications. Moreover, we underscored several levels of difficulties in translating the peptidomics findings to clinical practice, aiming to learn with the accumulated knowledge and guide upcoming studies. Finally, this review reinforces the peptidomics robustness in discovering potential candidates for monitoring the several stages of cancer disease and therapeutic treatment, leveraging the management of cancer patients in the future.
Collapse
Affiliation(s)
- Daniella Figueiredo
- Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, CNPEM, Campinas, SP, Brazil
| | - Rodrigo G B Cruz
- Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, CNPEM, Campinas, SP, Brazil
| | - Ana Gabriela Costa Normando
- Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, CNPEM, Campinas, SP, Brazil
| | - Daniela C Granato
- Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, CNPEM, Campinas, SP, Brazil
| | - Ariane F Busso-Lopes
- Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, CNPEM, Campinas, SP, Brazil
| | - Carolina M Carnielli
- Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, CNPEM, Campinas, SP, Brazil
| | - Tatiane De Rossi
- Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, CNPEM, Campinas, SP, Brazil
| | - Adriana Franco Paes Leme
- Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, CNPEM, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Vitorino R, Choudhury M, Guedes S, Ferreira R, Thongboonkerd V, Sharma L, Amado F, Srivastava S. Peptidomics and proteogenomics: background, challenges and future needs. Expert Rev Proteomics 2021; 18:643-659. [PMID: 34517741 DOI: 10.1080/14789450.2021.1980388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION With available genomic data and related information, it is becoming possible to better highlight mutations or genomic alterations associated with a particular disease or disorder. The advent of high-throughput sequencing technologies has greatly advanced diagnostics, prognostics, and drug development. AREAS COVERED Peptidomics and proteogenomics are the two post-genomic technologies that enable the simultaneous study of peptides and proteins/transcripts/genes. Both technologies add a remarkably large amount of data to the pool of information on various peptides associated with gene mutations or genome remodeling. Literature search was performed in the PubMed database and is up to date. EXPERT OPINION This article lists various techniques used for peptidomic and proteogenomic analyses. It also explains various bioinformatics workflows developed to understand differentially expressed peptides/proteins and their role in disease pathogenesis. Their role in deciphering disease pathways, cancer research, and biomarker discovery using biofluids is highlighted. Finally, the challenges and future requirements to overcome the current limitations for their effective clinical use are also discussed.
Collapse
Affiliation(s)
- Rui Vitorino
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Manisha Choudhury
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Powai, India
| | - Sofia Guedes
- Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Francisco Amado
- Laqv/requimte, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Powai, India
| |
Collapse
|
5
|
He T, Yuan C, Zhao C. Long intragenic non-coding RNA p53-induced transcript (LINC-PINT) as a novel prognosis indicator and therapeutic target in cancer. Biomed Pharmacother 2021; 143:112127. [PMID: 34474342 DOI: 10.1016/j.biopha.2021.112127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer involves complex etiology factors, multiple stages, and intricate gene mutations. Long non-coding RNAs (lncRNAs) are implicated as molecular mechanisms underlying human genomic activity in various physiologic and pathophysiologic conditions. However, the sophisticated modifications and regulatory processes linking lncRNAs to cancer initiation and progression have not yet been fully explored. Long intragenic non-coding RNA p53-induced transcript (LINC-PINT) is an lncRNA that functions as a tumor suppressor gene involved in various tumors and malignant activities. LINC-PINT is downregulated in nasopharyngeal cancer, renal carcinoma, non-small cell lung cancer, glioblastoma, thyroid cancer, retinoblastoma, ovarian cancer, breast cancer, esophageal squamous cell carcinoma, osteosarcoma, melanoma, and gastric cancer. Furthermore, decreased LINC-PINT expression predicts poor prognosis and advanced clinical tumor stages. Together, these studies indicate that LINC-PINT could serve as a diagnostic and prognostic indicator in cancer. The specific lncRNA regulatory mechanism of LINC-PINT may also be a novel target for cancer therapies.
Collapse
Affiliation(s)
- Tiefei He
- Department of Vascular Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China.
| | - Chendong Yuan
- Department of Vascular Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China.
| | - Cansong Zhao
- Department of Vascular Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China.
| |
Collapse
|
6
|
Foreman RE, George AL, Reimann F, Gribble FM, Kay RG. Peptidomics: A Review of Clinical Applications and Methodologies. J Proteome Res 2021; 20:3782-3797. [PMID: 34270237 DOI: 10.1021/acs.jproteome.1c00295] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improvements in both liquid chromatography (LC) and mass spectrometry (MS) instrumentation have greatly enhanced proteomic and small molecule metabolomic analysis in recent years. Less focus has been on the improved capability to detect and quantify small bioactive peptides, even though the exact sequences of the peptide species produced can have important biological consequences. Endogenous bioactive peptide hormones, for example, are generated by the targeted and regulated cleavage of peptides from their prohormone sequence. This process may include organ specific variants, as proglucagon is converted to glucagon in the pancreas but glucagon-like peptide-1 (GLP-1) in the small intestine, with glucagon raising, whereas GLP-1, as an incretin, lowering blood glucose. Therefore, peptidomics workflows must preserve the structure of the processed peptide products to prevent the misidentification of ambiguous peptide species. The poor in vivo and in vitro stability of peptides in biological matrices is a major factor that needs to be considered when developing methods to study them. The bioinformatic analysis of peptidomics data sets requires the inclusion of specific post-translational modifications, which are critical for the function of many bioactive peptides. This review aims to discuss and contrast the various extraction, analytical, and bioinformatics approaches used for human peptidomics studies in a multitude of matrices.
Collapse
Affiliation(s)
- Rachel E Foreman
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Amy L George
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Frank Reimann
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Fiona M Gribble
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Richard G Kay
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| |
Collapse
|
7
|
Khatab Z, Yousef GM. Disruptive innovations in the clinical laboratory: catching the wave of precision diagnostics. Crit Rev Clin Lab Sci 2021; 58:546-562. [PMID: 34297653 DOI: 10.1080/10408363.2021.1943302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Disruptive innovation is an invention that disrupts an existing market and creates a new one by providing a different set of values, which ultimately overtakes the existing market. Typically, when disruptive innovations are introduced, their performance is initially less than existing standard technologies, but because of their ability to bring the cost down, and with gradual improvement, they end up replacing established service standards.Disruptive technologies have their fingerprints in health care. Pathology and laboratory medicine are fertile soils for disruptive innovations because they are heavily reliant on technology. Disruptive innovations have resulted in a revolution of our diagnostic ability and will take laboratory medicine to the next level of patient care. There are several examples of disruptive innovations in the clinical laboratory. Digitizing pathology practice is an example of disruptive technology, with many advantages and an extended scope of applications. Next-generation sequencing can be disruptive in two ways. The first is by replacing an array of laboratory tests, which each requires expensive and specialized instruments and expertise, with a single cost-effective technology. The second is by disrupting the current paradigm of the clinical laboratory as a diagnostic service by taking it into a new era of preventive or primary care pathology. Other disruptive innovations include the use of dry chemistry reagents in chemistry analyzers and also point of care testing. The use of artificial intelligence is another promising disruptive innovation that can transform the future of pathology and laboratory medicine. Another emerging disruptive concept is the integration of two fields of medicine to create an interrelated discipline such as "histogenomics and radiohistomics." Another recent disruptive innovation in laboratory medicine is the use of social media in clinical practice, education, and publication.There are multiple reasons to encourage disruptive innovations in the clinical laboratory, including the escalating cost of health care, the need for better accessibility of diagnostic care, and the increased demand on the laboratory in the era of precision diagnostics. There are, however, a number of challenges that need to be overcome such as the significant resistance to disruptive innovations by current technology providers and governmental regulatory bodies. The hesitance from health care providers and insurance companies must also be addressed.Adoption of disruptive innovations requires a multifaceted approach that involves orchestrated solutions to key aspects of the process, including creating successful business models, multidisciplinary collaborations, and innovative accreditation and regulatory oversight. It also must be coupled with successful commercialization plans and modernization of health care structure. Fostering a culture of disruptive innovation requires establishing unique collaborative models between academia and industry. It also requires uncovering new sources of unconventional funding that are open to high-risk high-reward projects. It should also be matched with innovative thinking, including new approaches for delivery of care and identifying novel cohorts of patients who can benefit from disruptive technology.
Collapse
Affiliation(s)
- Ziyad Khatab
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - George M Yousef
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Urine as a Source of Liquid Biopsy for Cancer. Cancers (Basel) 2021; 13:cancers13112652. [PMID: 34071230 PMCID: PMC8199052 DOI: 10.3390/cancers13112652] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Tissue biopsy is essential for diagnosis and characterization of a tumor. Recently circulating tumor cells and other tumor-derived nucleic acid can be detected from blood, which is called liquid biopsy. Now this concept has been expanded to many other body fluids including urine. Urine is the least invasive method to obtain a liquid biopsy and can be done anywhere, which allows longitudinal repeated sampling. Here, we review the latest update on urine liquid biopsy in urological and non-urological cancers. Abstract Tissue biopsy is the gold standard for diagnosis and morphological and immunohistochemical analyses to characterize cancer. However, tissue biopsy usually requires an invasive procedure, and it can be challenging depending on the condition of the patient and the location of the tumor. Even liquid biopsy analysis of body fluids such as blood, saliva, gastric juice, sweat, tears and cerebrospinal fluid may require invasive procedures to obtain samples. Liquid biopsy can be applied to circulating tumor cells (CTCs) or nucleic acids (NAs) in blood. Recently, urine has gained popularity due to its less invasive sampling, ability to easily repeat samples, and ability to follow tumor evolution in real-time, making it a powerful tool for diagnosis and treatment monitoring in cancer patients. With the development and advancements in extraction methods of urinary substances, urinary NAs have been found to be closely related to carcinogenesis, metastasis, and therapeutic response, not only in urological cancers but also in non-urological cancers. This review mainly highlights the components of urine liquid biopsy and their utility and limitations in oncology, especially in non-urological cancers.
Collapse
|
9
|
Cimmino I, Bravaccini S, Cerchione C. Urinary Biomarkers in Tumors: An Overview. Methods Mol Biol 2021; 2292:3-15. [PMID: 33651347 DOI: 10.1007/978-1-0716-1354-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Recent reports suggest that urine is a useful noninvasive tool for the identification of urogenital tumors, including bladder, prostate, kidney, and other nonurological cancers. As a liquid biopsy, urine represents an important source for the improvement of new promising biomarkers, a suitable tool to identify indolent cancer and avoid overtreatment. Urine is enriched with DNAs, RNAs, proteins, circulating tumor cells, exosomes, and other small molecules which can be detected with several diagnostic methodologies.We provide an overview of the ongoing state of urinary biomarkers underlying both their potential utilities to improve cancer prognosis, diagnosis, and therapeutic strategy and their limitations.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Sara Bravaccini
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy.
| |
Collapse
|
10
|
Vitorino R, Guedes S, Trindade F, Correia I, Moura G, Carvalho P, Santos MAS, Amado F. De novo sequencing of proteins by mass spectrometry. Expert Rev Proteomics 2020; 17:595-607. [PMID: 33016158 DOI: 10.1080/14789450.2020.1831387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Proteins are crucial for every cellular activity and unraveling their sequence and structure is a crucial step to fully understand their biology. Early methods of protein sequencing were mainly based on the use of enzymatic or chemical degradation of peptide chains. With the completion of the human genome project and with the expansion of the information available for each protein, various databases containing this sequence information were formed. AREAS COVERED De novo protein sequencing, shotgun proteomics and other mass-spectrometric techniques, along with the various software are currently available for proteogenomic analysis. Emphasis is placed on the methods for de novo sequencing, together with potential and shortcomings using databases for interpretation of protein sequence data. EXPERT OPINION As mass-spectrometry sequencing performance is improving with better software and hardware optimizations, combined with user-friendly interfaces, de-novo protein sequencing becomes imperative in shotgun proteomic studies. Issues regarding unknown or mutated peptide sequences, as well as, unexpected post-translational modifications (PTMs) and their identification through false discovery rate searches using the target/decoy strategy need to be addressed. Ideally, it should become integrated in standard proteomic workflows as an add-on to conventional database search engines, which then would be able to provide improved identification.
Collapse
Affiliation(s)
- Rui Vitorino
- QOPNA & LAQV-REQUIMTE, Departamento De Química, Institute of Biomedicine - iBiMED , Aveiro, Portugal.,iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal.,Unidade De Investigação Cardiovascular, Departamento De Cirurgia E Fisiologia, Faculdade De Medicina, Universidade Do Porto , Porto, Portugal
| | - Sofia Guedes
- QOPNA & LAQV-REQUIMTE, Departamento De Química, Institute of Biomedicine - iBiMED , Aveiro, Portugal
| | - Fabio Trindade
- Unidade De Investigação Cardiovascular, Departamento De Cirurgia E Fisiologia, Faculdade De Medicina, Universidade Do Porto , Porto, Portugal
| | - Inês Correia
- iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal
| | - Gabriela Moura
- iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal
| | - Paulo Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, FIOCRUZ, Laboratory for Proteomics and Protein Engineering , Brazil
| | - Manuel A S Santos
- iBiMED, Department of Medical Sciences, University of Aveiro , Aveiro, Portugal
| | - Francisco Amado
- QOPNA & LAQV-REQUIMTE, Departamento De Química, Institute of Biomedicine - iBiMED , Aveiro, Portugal
| |
Collapse
|
11
|
Overexpression of Spondin-2 Is Associated with Recurrence-Free Survival in Patients with Localized Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2020; 2020:5074239. [PMID: 32952742 PMCID: PMC7487092 DOI: 10.1155/2020/5074239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/08/2020] [Accepted: 08/21/2020] [Indexed: 02/05/2023]
Abstract
Background The spondin-2 (SPON2) gene is overexpressed in multiple malignant tumors and may promote tumor aggressiveness. However, its expression profile and functional roles in clear cell renal cell carcinoma (ccRCC) are still unclear. Methods SPON2 expression in ccRCC was evaluated using expression data from TCGA and GEO databases, then confirmed by local patient population (94 patients). The clinical significance of SPON2 expression was evaluated. Downregulation of SPON2 was performed using small-interfering RNA (siRNA). The effects of SPON2 silencing on cell proliferation, apoptosis, invasion, and migration in vitro were investigated. Results SPON2 was overexpressed in the majority of the ccRCC at both mRNA and protein levels. SPON2 expression was significantly correlated with stage, grade, and recurrence (all P < 0.05) in patients with localized ccRCC. The receiver operating characteristic (ROC) curve showed that SPON2 expression could serve as a predictor of recurrence. SPON2 expression was significantly associated with recurrence-free survival (RFS) in patients with localized ccRCC. Knocking down SPON2 resulted in suppressed cell invasion and migration in vitro. Conclusion SPON2 expression might function as a prognostic biomarker in patients with localized ccRCC.
Collapse
|
12
|
Raimondo F, Pitto M. Prognostic significance of proteomics and multi-omics studies in renal carcinoma. Expert Rev Proteomics 2020; 17:323-334. [PMID: 32428425 DOI: 10.1080/14789450.2020.1772058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Renal carcinoma, and in particular its most common variant, the clear cell subtype, is often diagnosed incidentally through abdominal imaging and frequently, the tumor is discovered at an early stage. However, 20% to 40% of patients undergoing nephrectomy for clinically localized renal cancer, even after accurate histological and clinical classification, will develop metastasis or recurrence, justifying the associated mortality rate. Therefore, even if renal carcinoma is not among the most frequent nor deadly cancers, a better prognostication is needed. AREAS COVERED Recently proteomics or other omics combinations have been applied to both cancer tissues, on the neoplasia itself and surrounding microenvironment, cultured cells, and biological fluids (so-called liquid biopsy) generating a list of prognostic molecular tools that will be reviewed in the present paper. EXPERT OPINION Although promising, none of the approaches listed above has been yet translated in clinics. This is likely due to the peculiar genetic and phenotypic heterogeneity of this cancer, which makes nearly each tumor different from all the others. Attempts to overcome this issue will be also revised. In particular, we will discuss how the application of omics-integrated approaches could provide the determinants of response to the different targeted drugs.
Collapse
Affiliation(s)
- Francesca Raimondo
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano - Bicocca , Vedano al Lambro, Italy
| | - Marina Pitto
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano - Bicocca , Vedano al Lambro, Italy
| |
Collapse
|