1
|
Dongdem JT, Etornam AE, Beletaa S, Alidu I, Kotey H, Wezena CA. The β 3-Adrenergic Receptor: Structure, Physiopathology of Disease, and Emerging Therapeutic Potential. Adv Pharmacol Pharm Sci 2024; 2024:2005589. [PMID: 39640497 PMCID: PMC11620816 DOI: 10.1155/2024/2005589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/24/2024] [Indexed: 12/07/2024] Open
Abstract
The discovery and characterization of the signal cascades of the β-adrenergic receptors have made it possible to effectively target the receptors for drug development. β-Adrenergic receptors are a class A rhodopsin type of G protein-coupled receptors (GPCRs) that are stimulated mainly by catecholamines and therefore mediate diverse effects of the parasympathetic nervous system in eliciting "fight or flight" type responses. They are detectable in several human tissues where they control a plethora of physiological processes and therefore contribute to the pathogenesis of several disease conditions. Given the relevance of the β-adrenergic receptor as a molecular target for many pathological conditions, this comprehensive review aims at providing an in-depth exploration of the recent advancements in β3-adrenergic receptor research. More importantly, we delve into the prospects of the β3-adrenergic receptor as a therapeutic target across a variety of clinical domains.
Collapse
Affiliation(s)
- Julius T. Dongdem
- Department of Chemical Pathology, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Axandrah E. Etornam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Solomon Beletaa
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Issah Alidu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Hassan Kotey
- Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Northern Region, Ghana
| | - Cletus A. Wezena
- Department of Microbiology, Faculty of Biosciences, University for Development Studies, Tamale, Northern Region, Ghana
| |
Collapse
|
2
|
Yu R, Liu S, Li Y, Lu L, Huang S, Chen X, Xue Y, Fu T, Liu J, Li Z. TRPV1 + sensory nerves suppress conjunctival inflammation via SST-SSTR5 signaling in murine allergic conjunctivitis. Mucosal Immunol 2024; 17:211-225. [PMID: 38331094 DOI: 10.1016/j.mucimm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Allergic conjunctivitis (AC), an allergen-induced ocular inflammatory disease, primarily involves mast cells (MCs) and eosinophils. The role of neuroimmune mechanisms in AC, however, remains to be elucidated. We investigated the effects of transient receptor potential vanilloid 1 (TRPV1)-positive sensory nerve ablation (using resiniferatoxin) and TRPV1 blockade (using Acetamide, N-[4-[[6-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl]oxy]-2-benzothiazolyl] (AMG-517)) on ovalbumin-induced conjunctival allergic inflammation in mice. The results showed an exacerbation of allergic inflammation as evidenced by increased inflammatory gene expression, MC degranulation, tumor necrosis factor-α production by MCs, eosinophil infiltration and activation, and C-C motif chemokine 11 (CCL11) (eotaxin-1) expression in fibroblasts. Subsequent findings demonstrated that TRPV1+ sensory nerves secrete somatostatin (SST), which binds to SST receptor 5 (SSTR5) on MCs and conjunctival fibroblasts. SST effectively inhibited tumor necrosis factor-α production in MCs and CCL11 expression in fibroblasts, thereby reducing eosinophil infiltration and alleviating AC symptoms, including eyelid swelling, lacrimation, conjunctival chemosis, and redness. These findings suggest that targeting TRPV1+ sensory nerve-mediated SST-SSTR5 signaling could be a promising therapeutic strategy for AC, offering insights into neuroimmune mechanisms and potential targeted treatments.
Collapse
Affiliation(s)
- Ruoxun Yu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sijing Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuoya Huang
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinwei Chen
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Ruan Y, Buonfiglio F, Gericke A. Adrenoceptors in the Eye - Physiological and Pathophysiological Relevance. Handb Exp Pharmacol 2024; 285:453-505. [PMID: 38082203 DOI: 10.1007/164_2023_702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The autonomic nervous system plays a crucial role in the innervation of the eye. Consequently, it comes as no surprise that catecholamines and their corresponding receptors have been extensively studied and characterized in numerous ocular structures, including the cornea, conjunctiva, lacrimal gland, trabecular meshwork, uvea, and retina. These investigations have unveiled substantial clinical implications, particularly in the context of treating glaucoma, a progressive neurodegenerative disorder responsible for irreversible vision loss on a global scale. The primary therapeutic approaches for glaucoma frequently involve the modulation of α1-, α2-, and β-adrenoceptors, making them pivotal targets. In this chapter, we offer a comprehensive overview of the expression, distribution, and functional roles of adrenoceptors within various components of the eye and its associated structures. Additionally, we delve into the pivotal role of adrenoceptors in the pathophysiology of glaucoma. Furthermore, we provide a concise historical perspective on adrenoceptor research, examine the distinct contributions of individual adrenoceptor subtypes to the treatment of various ocular conditions, and propose potential future avenues of exploration in this field.
Collapse
Affiliation(s)
- Yue Ruan
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Zhao H, Yang Y, Feng C, Wang W, Yang C, Yin Y, Gong L, Lin T. Nonlinear effects of humidex on risk of outpatient visit for allergic conjunctivitis among children and adolescents in Shanghai, China: A time series analysis. J Glob Health 2023; 13:04132. [PMID: 37921044 PMCID: PMC10623378 DOI: 10.7189/jogh.13.04132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Background Various epidemiological studies have focused on the adverse health outcomes of meteorological factors. However, there has been little research on the impact of humidex on allergic conjunctivitis, especially in child and adolescent populations. We aimed to explore the impact of humidex, a comprehensive index of relative humidity and temperature, on child and adolescent allergic conjunctivitis admissions. Methods Outpatient visit data for allergic conjunctivitis, meteorological factors and air pollutants in Shanghai for the 2017-2022 period were retrieved. For the purpose of analysing the nonlinear connection and lag impact between humidex and admissions for paediatric and adolescent allergic conjunctivitis, the distributed lag nonlinear model (DLNM) was fitted. Results A total of 147 090 cases were included in our cohort. We found a significantly nonlinear effect on humidex and allergic conjunctivitis. In the single-day lag pattern, the relative risks (RR) of allergic conjunctivitis were significant at lag 0 (RR = 1.08, 95% confidence interval (CI) = 1.05-1.11) to lag 2 (RR = 1.01, 95% CI = 1.00-1.01), lag 5 (RR = 1.01, 95% CI = 1.00-1.01) to lag 9 (RR = 1.01, 95% CI = 1.00-1.01), and lag 14 (RR = 1.02, 95% CI: 1.01-1.03). In the cumulative-lag day pattern, the RR of allergic conjunctivitis were significant at lag 0-0 (RR = 1.08, 95% CI = 1.05-1.11) to lag 0-14 (RR = 1.21, 95% CI = 1.13-1.28). We found that boys, children aged 7-17 years, and children in the warm season were more vulnerable to humidex. In addition, the highest attributable fraction (AF) and attributable number (AN) of humidex are at lag 0-14 (AF = 0.17, AN = 25 026). Conclusions Humidex exposure markedly increased the risk of allergic conjunctivitis, especially in highly high humidex. Appropriate public health management is needed for disease management and early intervention.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Yun Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Changming Feng
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Chenhao Yang
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, China
| | - Yue Yin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
5
|
β-Adrenoreceptors as Therapeutic Targets for Ocular Tumors and Other Eye Diseases-Historical Aspects and Nowadays Understanding. Int J Mol Sci 2023; 24:ijms24054698. [PMID: 36902129 PMCID: PMC10003534 DOI: 10.3390/ijms24054698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
β-adrenoreceptors (ARs) are members of the superfamily of G-protein-coupled receptors (GPCRs), and are activated by catecholamines, such as epinephrine and norepinephrine. Three subtypes of β-ARs (β1, β2, and β3) have been identified with different distributions among ocular tissues. Importantly, β-ARs are an established target in the treatment of glaucoma. Moreover, β-adrenergic signaling has been associated with the development and progression of various tumor types. Hence, β-ARs are a potential therapeutic target for ocular neoplasms, such as ocular hemangioma and uveal melanoma. This review aims to discuss the expression and function of individual β-AR subtypes in ocular structures, as well as their role in the treatment of ocular diseases, including ocular tumors.
Collapse
|
6
|
Eosinophils in the Gastrointestinal Tract: Key Contributors to Neuro-Immune Crosstalk and Potential Implications in Disorders of Brain-Gut Interaction. Cells 2022; 11:cells11101644. [PMID: 35626681 PMCID: PMC9139532 DOI: 10.3390/cells11101644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are innate immune granulocytes actively involved in defensive responses and in local and systemic inflammatory processes. Beyond these effector roles, eosinophils are fundamental to maintaining homeostasis in the tissues they reside. Gastrointestinal eosinophils modulate barrier function and mucosal immunity and promote tissue development through their direct communication with almost every cellular component. This is possible thanks to the variety of receptors they express and the bioactive molecules they store and release, including cytotoxic proteins, cytokines, growth factors, and neuropeptides and neurotrophines. A growing body of evidence points to the eosinophil as a key neuro-immune player in the regulation of gastrointestinal function, with potential implications in pathophysiological processes. Eosinophil–neuron interactions are facilitated by chemotaxis and adhesion molecules, and the mediators released may have excitatory or inhibitory effects on each cell type, with physiological consequences dependent on the type of innervation involved. Of special interest are the disorders of the brain–gut interaction (DBGIs), mainly functional dyspepsia (FD) and irritable bowel syndrome (IBS), in which mucosal eosinophilia and eosinophil activation have been identified. In this review, we summarize the main roles of gastrointestinal eosinophils in supporting gut homeostasis and the evidence available on eosinophil–neuron interactions to bring new insights that support the fundamental role of this neuro-immune crosstalk in maintaining gut health and contributing to the pathophysiology of DBGIs.
Collapse
|
7
|
Wang W, Du X, Ye L, Wang X, Zhang G. Distribution of serum specific IgE in children with allergic conjunctivitis and analysis of its concomitant allergic diseases. Transl Pediatr 2020; 9:636-644. [PMID: 33209726 PMCID: PMC7658764 DOI: 10.21037/tp-20-216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Allergic conjunctivitis (AC) is predominantly caused by serum specific-IgE (sIgE)-mediated type I allergy. This study aims to analyze the distribution of sIgE in children with AC, and the concomitant allergic diseases. METHODS The clinical data from 310 children, diagnosed with AC and admitted to our hospital from January 2017 to January 2019 were retrospectively collected. The children were divided into three groups: infant group (2 months to 1 year old, 91 cases), child group (1 to 3 years old, 112 cases), and preschool group (3 to 6 years old, 107 cases). Children in every group were analyzed for positive rates, the number of positive sIgE types, the distribution of positive inhaling and ingesting allergens and concomitant allergic diseases. RESULTS The sIgE positive rate of infant was significantly lower than that of the other two groups, and the number of 18.75% sIgE positive species was 1. The number of sIgE positive species in the child group and preschool group was more than 2 (78.30%, 71.15%). The positive rate of sIgE to dust mites, house dust, animal dander, eggs, beef, mutton and mango in the preschool group was significantly higher than the other groups (P<0.05). The positive rate of sIgE to milk in infant group was significantly higher than the other two groups (P<0.05). Children in the preschool group showed the highest incidence of AC, AC + allergic rhinitis, AC + allergic rhinitis + wheezing, while those in the infant group displayed the lowest incidence (P<0.05). AC + gastrointestinal allergy, AC + atopic dermatitis, AC + gastrointestinal allergy + atopic dermatitis in infant group was significantly higher than the other two groups (P<0.05). Patients in the child group displayed a significantly higher incidence of AC + infant wheezing than the other two groups (P<0.05). CONCLUSIONS We correlated children's age with the positive rate and gradual increase in types of AC allergens. Concomitant allergic diseases of children with AC at different ages conform to the natural course of allergic diseases. In clinic, improving the diagnostic efficiency of AC in children, and early interventional treatment will positively contribute to their prognosis, and reduce the risk of other allergic diseases.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Optometry Center, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Xiumei Du
- Department of Optometry Center, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Lu Ye
- Department of Optometry Center, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Xiaoli Wang
- Department of Optometry Center, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Guoyun Zhang
- Department of Optometry Center, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| |
Collapse
|