1
|
Xu H, Russell SN, Steiner K, O'Neill E, Jones KI. Targeting PI3K-gamma in myeloid driven tumour immune suppression: a systematic review and meta-analysis of the preclinical literature. Cancer Immunol Immunother 2024; 73:204. [PMID: 39105848 PMCID: PMC11303654 DOI: 10.1007/s00262-024-03779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
The intricate interplay between immune and stromal cells within the tumour microenvironment (TME) significantly influences tumour progression. Myeloid cells, including tumour-associated macrophages (TAMs), neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs), contribute to immune suppression in the TME (Nakamura and Smyth in Cell Mol Immunol 17(1):1-12 (2020). https://doi.org/10.1038/s41423-019-0306-1 ; DeNardo and Ruffell in Nat Rev Immunol 19(6):369-382 (2019). https://doi.org/10.1038/s41577-019-0127-6 ). This poses a significant challenge for novel immunotherapeutics that rely on host immunity to exert their effect. This systematic review explores the preclinical evidence surrounding the inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) as a strategy to reverse myeloid-driven immune suppression in solid tumours. EMBASE, MEDLINE, and PubMed databases were searched on 6 October 2022 using keyword and subject heading terms to capture relevant studies. The studies, focusing on PI3Kγ inhibition in animal models, were subjected to predefined inclusion and exclusion criteria. Extracted data included tumour growth kinetics, survival endpoints, and immunological responses which were meta-analysed. PRISMA and MOOSE guidelines were followed. A total of 36 studies covering 73 animal models were included in the review and meta-analysis. Tumour models covered breast, colorectal, lung, skin, pancreas, brain, liver, prostate, head and neck, soft tissue, gastric, and oral cancer. The predominant PI3Kγ inhibitors were IPI-549 and TG100-115, demonstrating favourable specificity for the gamma isoform. Combination therapies, often involving chemotherapy, radiotherapy, immune checkpoint inhibitors, biological agents, or vaccines, were explored in 81% of studies. Analysis of tumour growth kinetics revealed a statistically significant though heterogeneous response to PI3Kγ monotherapy, whereas the tumour growth in combination treated groups were more consistently reduced. Survival analysis showed a pronounced increase in median overall survival with combination therapy. This systematic review provides a comprehensive analysis of preclinical studies investigating PI3Kγ inhibition in myeloid-driven tumour immune suppression. The identified studies underscore the potential of PI3Kγ inhibition in reshaping the TME by modulating myeloid cell functions. The combination of PI3Kγ inhibition with other therapeutic modalities demonstrated enhanced antitumour effects, suggesting a synergistic approach to overcome immune suppression. These findings support the potential of PI3Kγ-targeted therapies, particularly in combination regimens, as a promising avenue for future clinical exploration in diverse solid tumour types.
Collapse
Affiliation(s)
- Haonan Xu
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Keaton Ian Jones
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Chen CL, Syahirah R, Ravala SK, Yen YC, Klose T, Deng Q, Tesmer JJG. Molecular basis for Gβγ-mediated activation of phosphoinositide 3-kinase γ. Nat Struct Mol Biol 2024; 31:1198-1207. [PMID: 38565696 PMCID: PMC11329362 DOI: 10.1038/s41594-024-01265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
The conversion of phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 3,4,5-triphosphate by phosphoinositide 3-kinase γ (PI3Kγ) is critical for neutrophil chemotaxis and cancer metastasis. PI3Kγ is activated by Gβγ heterodimers released from G protein-coupled receptors responding to extracellular signals. Here we determined cryo-electron microscopy structures of Sus scrofa PI3Kγ-human Gβγ complexes in the presence of substrates/analogs, revealing two Gβγ binding sites: one on the p110γ helical domain and another on the p101 C-terminal domain. Comparison with PI3Kγ alone reveals conformational changes in the kinase domain upon Gβγ binding that are similar to Ras·GTP-induced changes. Assays of variants perturbing the Gβγ binding sites and interdomain contacts altered by Gβγ binding suggest that Gβγ recruits the enzyme to membranes and allosterically regulates activity via both sites. Studies of zebrafish neutrophil migration align with these findings, paving the way for in-depth investigation of Gβγ-mediated activation mechanisms in this enzyme family and drug development for PI3Kγ.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Sandeep K Ravala
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Thomas Klose
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Cryo-EM Facility, Purdue University, West Lafayette, IN, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - John J G Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Sang Q, Yang L, Zhao H, Zhao L, Xu R, Liu H, Ding C, Qin Y, Zhao Y. Risk prediction model of uterine corpus endometrial carcinoma based on immune-related genes. BMC Womens Health 2024; 24:429. [PMID: 39068426 PMCID: PMC11282678 DOI: 10.1186/s12905-024-03237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Given the significant role of immune-related genes in uterine corpus endometrial carcinoma (UCEC) and the long-term outcomes of patients, our objective was to develop a prognostic risk prediction model using immune-related genes to improve the accuracy of UCEC prognosis prediction. METHODS The Limma, ESTIMATE, and CIBERSORT methods were used for cluster analysis, immune score calculation, and estimation of immune cell proportions. Univariate and multivariate analyses were utilized to develop a prognostic risk model for UCEC. Risk model scores and nomograms were used to evaluate the models. String constructs a protein-protein interaction (PPI) network of genes. The qRT-PCR, immunofluorescence, and immunohistochemistry (IHC) all confirmed the genes. RESULTS Cluster analysis divided the immune-related genes into four subtypes. 33 immune-related genes were used to independently predict the prognosis of UCEC and construct the prognosis model and risk score. The analysis of the survival nomogram indicated that the model has excellent predictive ability and strong reliability for predicting the survival of patients with UCEC. The protein-protein interaction network analysis of key genes indicates that four genes play a pivotal role in interactions: GZMK, IL7, GIMAP, and UBD. The quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence, and immunohistochemistry (IHC) all confirmed the expression of the aforementioned genes and their correlation with immune cell levels. This further revealed that GZMK, IL7, GIMAP, and UBD could potentially serve as biomarkers associated with immune levels in endometrial cancer. CONCLUSION The study identified genes related to immune response in UCEC, including GZMK, IL7, GIMAP, and UBD, which may serve as new biomarkers and therapeutic targets for evaluating immune levels in the future.
Collapse
Affiliation(s)
- Qiu Sang
- Yunnan SangGu Zhizao Biotechnology Co., Ltd, Kunming, 650201, China
| | - Linlin Yang
- Department of Gynaecology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, 650118, China.
| | - He Zhao
- Department of Gynaecology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, 650118, China
| | - Lingfeng Zhao
- Department of Gynaecology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, 650118, China
| | - Ruolan Xu
- Department of Gynaecology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, 650118, China
| | - Hui Liu
- Department of Gynaecology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, 650118, China
| | - Chunyan Ding
- Department of Gynaecology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, 650118, China
| | - Yan Qin
- Department of Gynaecology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, 650118, China
| | - Yanfei Zhao
- Department of Gynaecology, Yunnan Cancer Hospital (The Third Affiliated Hospital of Kunming Medical University), Kunming, 650118, China
| |
Collapse
|
4
|
Sun J, Zhang Z, Xia B, Yao T, Ge F, Yan F. Overexpression of PIK3CG in Cancer Cells Promotes Lung Cancer Cell Migration and Metastasis Through Enhanced MMPs Expression and Neutrophil Recruitment and Activation. Biochem Genet 2024:10.1007/s10528-024-10788-4. [PMID: 38602596 DOI: 10.1007/s10528-024-10788-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024]
Abstract
Metastasis is a major cause of death in lung cancer. The aim of this study is to analyze the role and mechanism of PI3K catalytic subunit gamma (PIK3CG, also known as p110γ) in lung cancer cell migration and metastasis. Knockdown (KD) and overexpression (OE) of PIK3CG expression in lung cancer cell lines A549 and H1299 in vitro cultured was achieved. Two PIK3CG-specific inhibitors, Eganelisib and CAY10505, were used to treat A549 and H1299 cells. An experimental lung metastasis mouse model was constructed using tail vein injection of LLC cells. Finally, a co-culture system was established using Transwell chambers. Compared with the NC group, the number of cells that completed migration and the expression levels of matrix metalloproteinases (MMPs) were significantly reduced in the KD group and Eganelisib and CAY10505 treatment groups, while the number of cells that migrated successfully and the expression levels of MMPs were significantly increased in the OE group. Lung tissues of mice injected with PIK3CG-stabilized overexpressed LLC cells showed more pronounced lung cancer growth, lung metastatic nodules, neutrophil infiltration and MMPs expression. Co-culture with neutrophils, soluble extracts of neutrophils and cathepsin G all promoted the migration of lung cancer cells. PIK3CG overexpression in tumor cells significantly promoted the migration and metastasis of lung cancer cell.
Collapse
Affiliation(s)
- Jinpeng Sun
- Department of General Surgery Ward, Cangzhou Hospital of Integrated TCM-WM, No. 31 Yellow River West Road, Canal District, Cangzhou, 061000, Hebei, China.
| | - Zhenshan Zhang
- Department of Medical Oncology, Cangzhou Hospital of Integrated TCM-WM, Cangzhou, 061000, Hebei, China
| | - Binghui Xia
- Department of General Surgery Ward, Cangzhou Hospital of Integrated TCM-WM, No. 31 Yellow River West Road, Canal District, Cangzhou, 061000, Hebei, China
| | - Tianyu Yao
- Department of Cardiology, Cangzhou Hospital of Integrated TCM-WM, Cangzhou, 061000, Hebei, China
| | - Fengyue Ge
- Department of Function Laboratory, Cangzhou Hospital of Integrated TCM-WM, Cangzhou, 061000, Hebei, China
| | - Fengmei Yan
- Department of Endoscopic Diagnosis and Treatment Center, Cangzhou Hospital of Integrated TCM-WM, Cangzhou, 061000, Hebei, China
| |
Collapse
|
5
|
Wang Y, Zou L, Song M, Zong J, Wang S, Meng L, Jia Z, Zhao L, Han X, Lu M. Establishment of skin cutaneous melanoma prognosis model based on vascular mimicry risk score. Medicine (Baltimore) 2024; 103:e36679. [PMID: 38363903 PMCID: PMC10869071 DOI: 10.1097/md.0000000000036679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/24/2023] [Indexed: 02/18/2024] Open
Abstract
Studies have indicated that Vascular mimicry (VM) could contribute to the unfavorable prognosis of skin cutaneous melanoma (SKCM). Thus, the objective of this study was to identify therapeutic targets associated with VM in SKCM and develop a novel prognostic model. Gene expression data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were utilized to identify differentially expressed genes (DEGs). By intersecting these DEGs with VM genes, we acquired VM-related DEGs specific to SKCM, and then identified prognostic-related VM genes. A VM risk score system was established based on these prognosis-associated VM genes, and patients were then categorized into high- and low-score groups using the median score. Subsequently, differences in clinical characteristics, gene set enrichment analysis (GSEA), and other analyses were further presented between the 2 groups of patients. Finally, a novel prognostic model for SKCM was established using the VM score and clinical characteristics. 26 VM-related DEGs were identified in SKCM, among the identified DEGs associated with VM in SKCM, 5 genes were found to be prognostic-related. The VM risk score system, comprised of these genes, is an independent prognostic risk factor. There were significant differences between the 2 patient groups in terms of age, pathological stage, and T stage. VM risk scores are associated with epithelial biological processes, angiogenesis, regulation of the SKCM immune microenvironment, and sensitivity to targeted drugs. The novel prognostic model demonstrates excellent predictive ability. Our study identified VM-related prognostic markers and therapeutic targets for SKCM, providing novel insights for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yubo Wang
- Dalian Medical University, Dalian, China
- Department of Trauma and Tissue Repair Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Linxuan Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingzhi Song
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Meng
- The First Affiliated Hospital of Nanhua Medical University, Hengyang, China
| | - Zhuqiang Jia
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Naqu People’s Hospital, Tibet, China
| | - Lin Zhao
- Department of Quality Management, Dalian Municipal Central Hospital, Dalian, China
| | - Xin Han
- Naqu People’s Hospital, Tibet, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ming Lu
- Department of Trauma and Tissue Repair Surgery, Dalian Municipal Central Hospital, Dalian, China
- Department of Trauma and Tissue Repair Surgery, Dalian Municipal Central Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Chen CL, Syahirah R, Ravala SK, Yen YC, Klose T, Deng Q, Tesmer JJG. Molecular basis for Gβγ-mediated activation of phosphoinositide 3-kinase γ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539492. [PMID: 37205329 PMCID: PMC10187307 DOI: 10.1101/2023.05.04.539492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The conversion of PIP2 to PIP3 by phosphoinositide 3-kinase γ (PI3Kγ) is a critical step in neutrophil chemotaxis and is essential for metastasis in many types of cancer. PI3Kγ is activated via directed interaction with Gβγ heterodimers released from cell-surface G protein-coupled receptors (GPCRs) responding to extracellular signals. To resolve how Gβγ activates PI3Kγ, we determined cryo-EM reconstructions of PI3Kγ-Gβγ complexes in the presence of various substrates/analogs, revealing two distinct Gβγ binding sites, one on the p110γ helical domain and one on the C-terminal domain of the p101 subunit. Comparison of these complexes with structures of PI3Kγ alone demonstrates conformational changes in the kinase domain upon Gβγ binding similar to those induced by Ras·GTP. Assays of variants perturbing the two Gβγ binding sites and interdomain contacts that change upon Gβγ binding suggest that Gβγ not only recruits the enzyme to membranes but also allosterically controls activity via both sites. Studies in a zebrafish model examining neutrophil migration are consistent with these results. These findings set the stage for future detailed investigation of Gβγ-mediated activation mechanisms in this enzyme family and will aid in developing drugs selective for PI3Kγ.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University. 915 W State St, West Lafayette, IN 47907
| | - Sandeep K Ravala
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Yu-Chen Yen
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Thomas Klose
- Purdue Cryo-EM Facility, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Qing Deng
- Department of Biological Sciences, Purdue University. 915 W State St, West Lafayette, IN 47907
- Purdue Institute for Inflammation, Immunology & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - John J G Tesmer
- Departments of Biological Sciences & Medicinal Chemistry and Molecular Pharmacology, Purdue University. 240 S. Martin Jischke Drive, West Lafayette, IN 47907
| |
Collapse
|
7
|
Shu L, Liu S, Tao Y. Development and validation of a prognosis prediction model based on 18 endoplasmic reticulum stress-related genes for patients with lung adenocarcinoma. Front Oncol 2022; 12:902353. [PMID: 36110953 PMCID: PMC9469654 DOI: 10.3389/fonc.2022.902353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background Endoplasmic reticulum (ER) stress had a crucial impact on cell survival, proliferation, and metastasis in various cancers. However, the role of ER stress in lung adenocarcinoma remains unclear. Method Gene expression and clinical data of lung adenocarcinoma (LUAD) samples were extracted from The Cancer Genome Atlas (TCGA) and three Gene Expression Omnibus (GEO) datasets. ER stress score (ERSS) was constructed based on hub genes selected from 799 ER stress-related genes by least absolute shrinkage and selection operator (LASSO) regression. A Cox regression model, integrating ERSS and the TNM stage, was developed to predict overall survival (OS) in TCGA cohort and was validated in GEO cohorts. Gene set enrichment analysis (GSEA), single-sample GSEA (ssGSEA), and gene mutation analyses were performed to further understand the molecular features of ERSS. The tumor immune infiltration was evaluated by ESTIMATE, CIBERSORT, and xCell algorithms. The receiver operating characteristic (ROC) curves were used to evaluate the predictive value of the risk model. p< 0.05 was considered statistically significant. Results One hundred fifty-seven differentially expressed genes (DEGs) were identified between tumor and para-carcinoma tissues, and 45 of them significantly correlated with OS. Next, we identified 18 hub genes and constructed ERSS by LASSO regression. Multivariate analysis demonstrated that higher ERSS (p< 0.0001, hazard ratio (HR) = 3.8, 95%CI: 2.8–5.2) and TNM stage (p< 0.0001, HR = 1.55, 95%CI: 1.34–1.8) were independent predictors for worse OS. The prediction model integrating ERSS and TNM stage performed well in TCGA cohort (area under the curve (AUC) at five years = 0.748) and three GEO cohorts (AUC at 5 years = 0.658, 0.717, and 0.739). Pathway enrichment analysis showed that ERSS significantly correlated with unfolded protein response. Meanwhile, pathways associated with the cell cycle, growth, and metabolism were significantly enriched in the high ERSS group. Patients with SMARCA4, TP53, and EGFR mutations showed significantly higher ERSS (p = 4e−04, 0.0027, and 0.035, respectively). Tissues with high ERSS exhibited significantly higher infiltration of M1 macrophages, activated dendritic cells, and lower infiltration of CD8+ T cells and B cells, which indicate an activated tumor antigen-presenting but suppressive immune response status. Conclusion We developed and validated an ER stress-related risk model that exhibited great predictive value for OS in patients with LUAD. Our work also expanded the understanding of the role of ER stress in LUAD.
Collapse
Affiliation(s)
- Long Shu
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute School of Basic Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongguang Tao, ; Shuang Liu,
| | - Yongguang Tao
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute School of Basic Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yongguang Tao, ; Shuang Liu,
| |
Collapse
|
8
|
Investigating the Role of Dahuang in Hepatoma Treatment Using Network Pharmacology, Molecular Docking, and Survival Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5975223. [PMID: 35872841 PMCID: PMC9307382 DOI: 10.1155/2022/5975223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
Hepatoma is one of the most common malignant tumors. The incidence rate is high in developing countries, and China has the most significant number of cases. Dahuang is a classic traditional antitumor drug commonly used in China and has also been applied to treat hepatoma. However, the potential mechanism of Dahuang in treating hepatoma is not clear. Therefore, this study is aimed at elucidating the possible molecular mechanism and key targets of Dahuang using methods of network pharmacology, molecular docking, and survival analysis. Firstly, the active ingredients and key targets of Dahuang were analyzed through public databases, and then the drug-ingredient-target-disease network diagram of Dahuang against hepatoma was constructed. Five main active components and five core targets were determined according to the enrichment degree. Enrichment analysis demonstrated that Dahuang treated hepatoma through the multiple pathways in cancer. Additionally, molecular docking predicted that aloe-emodin and PIK3CG depicted the best binding energy. Survival analysis indicated that a high/ESR1 gene expression had a relatively good prognosis for patients with hepatoma (p < 0.05). In conclusion, the current study results demonstrated that Dahuang could treat hepatoma through a variety of active ingredients, targets, and multiantitumor pathways. Moreover, it effectively improved the prognosis of hepatoma patients. ESR1 is the potential key gene that is beneficial for the survival of hepatoma patients. Also, aloe-emodin and beta-sitosterol are the two main active crucial ingredients for hepatoma treatment. The study also provided some functional bases and references for the development of new drugs, target mining, and experimental animal research of hepatoma in the future.
Collapse
|
9
|
Zhou X, Dai W, Qin Y, Qi S, Zhang Y, Tian W, Gu X, Zheng B, Xiao J, Yu W, Chen X, Su D. Electroacupuncture relieves neuropathic pain by inhibiting degradation of the ecto-nucleotidase PAP in the dorsal root ganglions of CCI mice. Eur J Pain 2022; 26:991-1005. [PMID: 35138669 DOI: 10.1002/ejp.1923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Although electroacupuncture is widely used in chronic pain management, it is quite controversial due to its unclear mechanism. We hypothesised that EA alleviates pain by inhibiting degradation of the ecto-nucleotidase prostatic acid phosphatase (PAP) and facilitating ATP dephosphorylation in dorsal root ganglions (DRGs). METHODS We applied EA in male C57 mice subjected to chronic constriction injury (CCI) and assessed extracellular ATP and 5'-nucleotidease expression in DRGs. Specifically, we used a luminescence assay, quantitative reverse transcriptase-polymerase chain reaction, western blotting, immunohistochemistry and nociceptive-related behavioural changes to gather data, and we tested for effects after PAP expression was inhibited with an adeno-associated virus (AAV). Moreover, membrane PAP degradation was investigated in cultured DRG neurons and the inhibitory effects of EA on this degradation were assessed using immunoprecipitation. RESULTS EA treatment alleviated CCI surgery induced mechanical pain hypersensitivity. Furthermore, extracellular ATP decreased significantly in both the DRGs and dorsal horn of EA-treated mice. PAP protein but not mRNA increased in L4-L5 DRGs, and inhibition of PAP expression via AAV microinjection reversed the analgesic effect of EA. Membrane PAP degradation occurred through a clathrin-mediated endocytosis pathway in cultured DRG neurons; EA treatment inhibited the phosphorylation of adaptor protein complex 2, which subsequently reduced the endocytosis of membrane PAP. CONCLUSIONS EA treatment alleviated peripheral nerve injury-induced mechanical pain hypersensitivity in mice by inhibiting membrane PAP degradation via reduced endocytosis and subsequently promote ATP dephosphorylation in DRGs.
Collapse
Affiliation(s)
- Xiaoxin Zhou
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Wanbing Dai
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Yi Qin
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Siyi Qi
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Yizhe Zhang
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Weitian Tian
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Xiyao Gu
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Beijie Zheng
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Jie Xiao
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Weifeng Yu
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Xuemei Chen
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| | - Diansan Su
- Department of Anaesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Postal Code: 200127
| |
Collapse
|
10
|
Abstract
Macropinocytosis is a critical route of nutrient acquisition in pancreatic cancer cells. Constitutive macropinocytosis is promoted by mutant KRAS, which activates the PI3Kα lipid kinase and RAC1, to drive membrane ruffling, macropinosome uptake and processing. However, our recent study on the KRASG12R mutant indicated the presence of a KRAS-independent mode of macropinocytosis in pancreatic cancer cell lines, thereby increasing the complexity of this process. We found that KRASG12R-mutant cell lines promote macropinocytosis independent of KRAS activity using PI3Kγ and RAC1, highlighting the convergence of regulation on RAC signaling. While macropinocytosis has been proposed to be a therapeutic target for the treatment of pancreatic cancer, our studies have underscored how little we understand about the activation and regulation of this metabolic process. Therefore, this review seeks to highlight the differences in macropinocytosis regulation in the two cellular subtypes while also highlighting the features that make the KRASG12R mutant atypical.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Zeng C, Yuan G, Hu Y, Wang D, Shi X, Zhu D, Hu A, Meng Y, Lu J. Repressing phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma by microRNA-142-3p restrains the progression of hepatocellular carcinoma. Bioengineered 2022; 13:1491-1506. [PMID: 34986757 PMCID: PMC8805872 DOI: 10.1080/21655979.2021.2020549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
This paper probes the mechanisms underlying miR-142-3p's modulation of hepatocellular carcinoma (HCC) invasion and apoptosis. Quantitative real-time PCR and Western blot monitored the miR-142-3p profile in HCC tissues and non-tumor tissues. The correlation between miR-142-3p expression and HCC patients' clinicopathological indicators was analyzed. miR-142-3p overexpression and knockdown models were established in HCC cell lines. Cell proliferation was gauged by the colony formation assay and BrdU staining. For measuring apoptosis, flow cytometry and Western blot were implemented. Transwell assay tested cell migration and invasion. miR-142-3p mimics or inhibitors were transfected in Huh7 and HCCLM3 cells. The targeting association between miR-142-3p and PIK3CG was predicted through bioinformatics and further verified by related experiments. The influence of PIK3CG overexpression on miR-142-3p's role in HCC was assayed. A xenografted tumor model was built in mice to validate miR-142-3p knockdown's influence on HCC in vivo. As a result, miR-142-3p exhibited a decreased profile in HCC tissues and cells. Overexpressing miR-142-3p accelerated apoptosis and suppressed the PI3K/AKT/HIF-1α signal. Knocking down miR-142-3p presented opposite effects. PIK3CG overexpression dampened the anti-tumor effect of miR-142-3p. miR-142-3p repressed HCC invasion and intensified apoptosis to restrain HCC by abating the PIK3CG-mediated PI3K/AKT/HIF-1α pathway.
Collapse
Affiliation(s)
- Chuanli Zeng
- Department of Severe Liver Disease, Ningbo HuaMei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Gang Yuan
- Department of Acute Infection, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System, Tumors of Zhejiang Province, China
| | - Yaoren Hu
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Donghui Wang
- Department of Acute Infection, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Xiaojun Shi
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Dedong Zhu
- Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Airong Hu
- Institute of Liver Disease, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yina Meng
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Jialin Lu
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|