1
|
Hendrikx T, Lang S, Rajcic D, Wang Y, McArdle S, Kim K, Mikulski Z, Schnabl B. Hepatic pIgR-mediated secretion of IgA limits bacterial translocation and prevents ethanol-induced liver disease in mice. Gut 2023; 72:1959-1970. [PMID: 36690432 PMCID: PMC10841342 DOI: 10.1136/gutjnl-2022-328265] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/28/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Alcohol-associated liver disease is accompanied by microbial dysbiosis, increased intestinal permeability and hepatic exposure to translocated microbial products that contribute to disease progression. A key strategy to generate immune protection against invading pathogens is the secretion of IgA in the gut. Intestinal IgA levels depend on the polymeric immunoglobulin receptor (pIgR), which transports IgA across the epithelial barrier into the intestinal lumen and hepatic canaliculi. Here, we aimed to address the function of pIgR during ethanol-induced liver disease. DESIGN pIgR and IgA were assessed in livers from patients with alcohol-associated hepatitis and controls. Wild-type and pIgR-deficient (pIgR-/- ) littermates were subjected to the chronic-binge (NIAAA model) and Lieber-DeCarli feeding model for 8 weeks. Hepatic pIgR re-expression was established in pIgR-/- mice using adeno-associated virus serotype 8 (AAV8)-mediated pIgR expression in hepatocytes. RESULTS Livers of patients with alcohol-associated hepatitis demonstrated an increased colocalisation of pIgR and IgA within canaliculi and apical poles of hepatocytes. pIgR-deficient mice developed increased liver injury, steatosis and inflammation after ethanol feeding compared with wild-type littermates. Furthermore, mice lacking pIgR demonstrated increased plasma lipopolysaccharide levels and more hepatic bacteria, indicating elevated bacterial translocation. Treatment with non-absorbable antibiotics prevented ethanol-induced liver disease in pIgR-/- mice. Injection of AAV8 expressing pIgR into pIgR-/- mice prior to ethanol feeding increased intestinal IgA levels and ameliorated ethanol-induced steatohepatitis compared with pIgR-/- mice injected with control-AAV8 by reducing bacterial translocation. CONCLUSION Our results highlight that dysfunctional hepatic pIgR enhances alcohol-associated liver disease due to impaired antimicrobial defence by IgA in the gut.
Collapse
Affiliation(s)
- Tim Hendrikx
- Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Sonja Lang
- University Hospital of Cologne, Clinic for Gastroenterology and Hepatology, Cologne, Germany
| | - Dragana Rajcic
- Laboratory Medicine, Medical University of Vienna, Wien, Austria
| | - Yanhan Wang
- Medicine, University of California, La Jolla, California, USA
| | - Sara McArdle
- La Jolla Institute for Immunology, La Jolla, California, USA
| | - Kenneth Kim
- La Jolla Institute for Immunology, La Jolla, California, USA
| | | | - Bernd Schnabl
- Medicine, University of California, La Jolla, California, USA
| |
Collapse
|
2
|
Yeligar SM, Harris FL, Brown LAS, Hart CM. Pharmacological reversal of post-transcriptional alterations implicated in alcohol-induced alveolar macrophage dysfunction. Alcohol 2023; 106:30-43. [PMID: 36328183 PMCID: PMC10080543 DOI: 10.1016/j.alcohol.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Alcohol use disorders (AUD) cause alveolar macrophage (AM) immune dysfunction and increase risk of lung infections. Excessive alcohol use causes AM oxidative stress, which impairs AM phagocytosis and pathogen clearance from the alveolar space. Alcohol induces expression of NADPH oxidases (Noxes), primary sources of oxidative stress in AM. In contrast, alcohol decreases AM peroxisome proliferator-activated receptor gamma (PPARγ), a critical regulator of AM immune function. To explore the underlying molecular mechanisms for these effects of alcohol, we hypothesized that ethanol promotes CCAAT/enhancer-binding protein beta (C/EBPβ)-mediated suppression of Nox-related microRNAs (miRs), in turn enhancing AM Nox expression, oxidative stress, and phagocytic dysfunction. We also hypothesized that PPARγ activation with pioglitazone (PIO) would reverse alcohol-induced C/EBPβ expression and attenuate AM oxidative stress and phagocytic dysfunction. Cells from the mouse AM cell line (MH-S) were exposed to ethanol in vitro or primary AM were isolated from mice fed ethanol in vivo. Ethanol enhanced C/EBPβ expression, decreased Nox 1-related miR-1264 and Nox 2-related miR-107 levels, and increased Nox1, Nox2, and Nox 4 expression in MH-S cells in vitro and mouse AM in vivo. These alcohol-induced AM derangements were abrogated by loss of C/EBPβ, overexpression of miRs-1264 or -107, or PIO treatment. These findings identify C/EBPβ and Nox-related miRs as novel therapeutic targets for PPARγ ligands, which could provide a translatable strategy to mitigate susceptibility to lung infections in people with a history of AUD. These studies further clarify the molecular underpinnings for a previous clinical trial using short-term PIO treatment to improve AM immunity in AUD individuals.
Collapse
Affiliation(s)
- Samantha M Yeligar
- Emory University, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, Georgia, United States; Atlanta Veterans Affairs Health Care System, Decatur, Georgia, United States.
| | - Frank L Harris
- Emory University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory + Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, Georgia, United States
| | - Lou Ann S Brown
- Emory University, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory + Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, Georgia, United States
| | - C Michael Hart
- Emory University, Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Atlanta, Georgia, United States; Atlanta Veterans Affairs Health Care System, Decatur, Georgia, United States
| |
Collapse
|
3
|
Muralidharan A, Bauer C, Katafiasz DM, Pham D, Oyewole OO, Morwitzer MJ, Roy E, Bailey KL, Reid SP, Wyatt TA. Malondialdehyde acetaldehyde adduction of surfactant protein D attenuates SARS-CoV-2 spike protein binding and virus neutralization. Alcohol Clin Exp Res 2023; 47:95-103. [PMID: 36352814 PMCID: PMC9878066 DOI: 10.1111/acer.14974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Over 43% of the world's population regularly consumes alcohol. Although not commonly known, alcohol can have a significant impact on the respiratory environment. Living in the time of the COVID-19 pandemic, alcohol misuse can have a particularly deleterious effect on SARS-CoV-2-infected individuals and, in turn, the overall healthcare system. Patients with alcohol use disorders have higher odds of COVID-19-associated hospitalization and mortality. Even though the detrimental role of alcohol on COVID-19 outcomes has been established, the underlying mechanisms are yet to be fully understood. Alcohol misuse has been shown to induce oxidative damage in the lungs through the production of reactive aldehydes such as malondialdehyde and acetaldehyde (MAA). MAA can then form adducts with proteins, altering their structure and function. One such protein is surfactant protein D (SPD), which plays an important role in innate immunity against pathogens. METHODS AND RESULTS In this study, we examined whether MAA adduction of SPD (SPD-MAA) attenuates the ability of SPD to bind SARS-CoV-2 spike protein, reversing SPD-mediated virus neutralization. Using ELISA, we show that SPD-MAA is unable to competitively bind spike protein and prevent ACE2 receptor binding. Similarly, SPD-MAA fails to inhibit entry of wild-type SARS-CoV-2 virus into Calu-3 cells, a lung epithelial cell line, as well as ciliated primary human bronchial epithelial cells isolated from healthy individuals. CONCLUSIONS Overall, MAA adduction of SPD, a consequence of alcohol overconsumption, represents one mechanism of compromised lung innate defense against SARS-CoV-2, highlighting a possible mechanism underlying COVID-19 severity and related mortality in patients who misuse alcohol.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Christopher Bauer
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Dawn M. Katafiasz
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Danielle Pham
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Opeoluwa O. Oyewole
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - M. Jane Morwitzer
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Enakshi Roy
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kristina L. Bailey
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Veterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - St Patrick Reid
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Todd A. Wyatt
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Veterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Environmental, Agricultural and Occupational Health, College of Public HealthUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
4
|
Nissen CG, Mosley DD, Kharbanda KK, Katafiasz DM, Bailey KL, Wyatt TA. Malondialdehyde Acetaldehyde-Adduction Changes Surfactant Protein D Structure and Function. Front Immunol 2022; 13:866795. [PMID: 35669781 PMCID: PMC9164268 DOI: 10.3389/fimmu.2022.866795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Alcohol consumption with concurrent cigarette smoking produces malondialdehyde acetaldehyde (MAA)-adducted lung proteins. Lung surfactant protein D (SPD) supports innate immunity via bacterial aggregation and lysis, as well as by enhancing macrophage-binding and phagocytosis. MAA-adducted SPD (SPD-MAA) has negative effects on lung cilia beating, macrophage function, and epithelial cell injury repair. Because changes in SPD multimer structure are known to impact SPD function, we hypothesized that MAA-adduction changes both SPD structure and function. Purified human SPD and SPD-MAA (1 mg/mL) were resolved by gel filtration using Sephadex G-200 and protein concentration of each fraction determined by Bradford assay. Fractions were immobilized onto nitrocellulose by slot blot and assayed by Western blot using antibodies to SPD and to MAA. Binding of SPD and SPD-MAA was determined fluorometrically using GFP-labeled Streptococcus pneumoniae (GFP-SP). Anti-bacterial aggregation of GFP-SP and macrophage bacterial phagocytosis were assayed by microscopy and permeability determined by bacterial phosphatase release. Viral injury was measured as LDH release in RSV-treated airway epithelial cells. Three sizes of SPD were resolved by gel chromatography as monomeric, trimeric, and multimeric forms. SPD multimer was the most prevalent, while the majority of SPD-MAA eluted as trimer and monomer. SPD dose-dependently bound to GFP-SP, but SPD-MAA binding to bacteria was significantly reduced. SPD enhanced, but MAA adduction of SPD prevented, both aggregation and macrophage phagocytosis of GFP-SP. Likewise, SPD increased bacterial permeability while SPD-MAA did not. In the presence of RSV, BEAS-2B cell viability was enhanced by SPD, but not protected by SPD-MAA. Our results demonstrate that MAA adduction changes the quaternary structure of SPD from multimer to trimer and monomer leading to a decrease in the native anti-microbial function of SPD. These findings suggest one mechanism for increased pneumonia observed in alcohol use disorders.
Collapse
Affiliation(s)
- Claire G. Nissen
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Deanna D. Mosley
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Dawn M. Katafiasz
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kristina L. Bailey
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Todd A. Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|