1
|
Kang L, Kohen M, McCarthy I, Hammelef E, Kim HS, Bapputty R, Gubitosi-Klug R, Orge FH, Kern T, Medof ME. Critical Role of CD55 in Controlling Wound Healing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1142-1149. [PMID: 38372645 DOI: 10.4049/jimmunol.2300628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/26/2024] [Indexed: 02/20/2024]
Abstract
How reparative processes are coordinated following injury is incompletely understood. In recent studies, we showed that autocrine C3a and C5a receptor (C3ar1 and C5ar1) G protein-coupled receptor signaling plays an obligate role in vascular endothelial growth factor receptor 2 growth signaling in vascular endothelial cells. We documented the same interconnection for platelet-derived growth factor receptor growth signaling in smooth muscle cells, epidermal growth factor receptor growth signaling in epidermal cells, and fibroblast growth factor receptor signaling in fibroblasts, indicative of a generalized cell growth regulatory mechanism. In this study, we examined one physiological consequence of this signaling circuit. We found that disabling CD55 (also known as decay accelerating factor), which lifts restraint on autocrine C3ar1/C5ar1 signaling, concomitantly augments the growth of each cell type. The mechanism is heightened C3ar1/C5ar1 signaling resulting from the loss of CD55's restraint jointly potentiating growth factor production by each cell type. Examination of the effect of lifted CD55 restraint in four types of injury (burn, corneal denudation, ear lobe puncture, and reengraftment of autologous skin) showed that disabled CD55 function robustly accelerated healing in all cases, whereas disabled C3ar1/C5ar1 signaling universally retarded it. In wild-type mice with burns or injured corneas, applying a mouse anti-mouse CD55 blocking Ab (against CD55's active site) to wounds accelerated the healing rate by 40-70%. To our knowledge, these results provide new insights into mechanisms that underlie wound repair and open up a new tool for accelerating healing.
Collapse
Affiliation(s)
- Lorna Kang
- Institute of Pathology, Case Western Reserve University, Cleveland, OH
| | - Maryo Kohen
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH
| | - Isaac McCarthy
- Institute of Pathology, Case Western Reserve University, Cleveland, OH
| | - Emma Hammelef
- Institute of Pathology, Case Western Reserve University, Cleveland, OH
| | - Hae Suk Kim
- Institute of Pathology, Case Western Reserve University, Cleveland, OH
| | - R Bapputty
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH
- Department of Pediatrics, Rainbow Babies Hospitals, Cleveland Medical Center, Cleveland, OH; and
| | - Rose Gubitosi-Klug
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH
- Department of Pediatrics, Rainbow Babies Hospitals, Cleveland Medical Center, Cleveland, OH; and
| | - Faruk H Orge
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH
- Department of Pediatrics, Rainbow Babies Hospitals, Cleveland Medical Center, Cleveland, OH; and
| | - Timothy Kern
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - M Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
2
|
An FQ, Zhou G, Harland MT, Hussain W, Strainic MG, Jain MK, Medof ME. KLF4 and CD55 expression and function depend on each other. Front Immunol 2024; 14:1290684. [PMID: 38406578 PMCID: PMC10884306 DOI: 10.3389/fimmu.2023.1290684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/30/2023] [Indexed: 02/27/2024] Open
Abstract
The transcription factor Kruppel-like factor 4 (KLF4) regulates the expression of immunosuppressive and anti-thrombotic proteins. Despite its importance in maintaining homeostasis, the signals that control its expression and the mechanism of its transactivation remain unclarified. CD55 [aka decay accelerating factor (DAF)], now known to be a regulator of T and B cell responses, biases between pro- and anti-inflammatory processes by controlling autocrine C3a and C5a receptor (C3ar1/C5ar1) signaling in cells. The similarity in CD55's and KLF4's regulatory effects prompted analyses of their functional relationship. In vascular endothelial cells (ECs), CD55 upregulation accompanied KLF4 expression via a p-CREB and CREB Binding Protein (CBP) mechanism. In both ECs and macrophages, CD55 expression was essential for KLF4's downregulation of pro-inflammatory/pro-coagulant proteins and upregulation of homeostatic proteins. Mechanistic studies showed that upregulation of KLF4 upregulated CD55. The upregulated CD55 in turn enabled the recruitment of p-CREB and CBP to KLF4 needed for its transcription. Activation of adenylyl cyclase resulting from repression of autocrine C3ar1/C5ar1 signaling by upregulated CD55 concurrently led to p-CREB and CBP recruitment to KLF4-regulated genes, thereby conferring KLF4's transactivation. Accordingly, silencing CD55 in statin-treated HUVEC disabled CBP transfer from the E-selectin to the eNOS promoter. Importantly, silencing CD55 downregulated KLF4's expression. It did the same in untreated HUVEC transitioning from KLF4low growth to KLF4hi contact inhibition. KLF4's and CD55's function in ECs and macrophages thus are linked via a novel mechanism of gene transactivation. Because the two proteins are co-expressed in many cell types, CD55's activity may be broadly tied to KLF4's immunosuppressive and antithrombotic activities.
Collapse
Affiliation(s)
- Feng-Qi An
- Institute of Pathology Case Western Reserve University and Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Guangjin Zhou
- Cardiovascular Research of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Micah T. Harland
- Institute of Pathology Case Western Reserve University and Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Wasim Hussain
- Institute of Pathology Case Western Reserve University and Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Michael G. Strainic
- Institute of Pathology Case Western Reserve University and Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mukesh K. Jain
- Cardiovascular Research of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - M. Edward Medof
- Institute of Pathology Case Western Reserve University and Cardiovascular Research Institute, Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| |
Collapse
|
3
|
Yang X, Fu Q, Zhang W, An Q, Zhang Z, Li H, Chen X, Chen Z, Cheng Y, Chen S, Man C, Du L, Chen Q, Wang F. Overexpression of Pasteurella multocida OmpA induces transcriptional changes and its possible implications for the macrophage polarization. Microb Pathog 2023; 183:106212. [PMID: 37353176 DOI: 10.1016/j.micpath.2023.106212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Pasteurella multocida (P. multocida) is a highly infectious, zoonotic pathogen. Outer membrane protein A (OmpA) is an important virulence component of the outer membrane of P. multocida. OmpA mediates bacterial biofilm formation, eukaryotic cell infection, and immunomodulation. It is unclear how OmpA affects the host immune response. We estimated the role of OmpA in the pathogenesis of P. multocida by investigating the effect of OmpA on the immune cell transcriptome. Changes in the transcriptome of rat alveolar macrophages (NR8383) upon overexpression of P. multocida OmpA were demonstrated. A model cell line for stable transcription of OmpA was constructed by infecting NR8383 cells with OmpA-expressing lentivirus. RNA was extracted from cells and sequenced on an Illumina HiSeq platform. Key gene analysis of genes in the RNA-seq dataset were performed using various bioinformatics methods, such as gene ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, Gene Set Enrichment Analysis, and Protein-Protein Interaction Analysis. Our findings revealed 1340 differentially expressed genes. Immune-related pathways that were significantly altered in rat alveolar macrophages under the effect of OmpA included focal adhesion, extracellular matrix and vascular endothelial growth factor signaling pathways, antigen processing and presentation, nucleotide oligomerization domain-like receptor and Toll-like receptor signaling pathways, and cytokine-cytokine receptor interaction. The key genes screened were Vegfa, Igf2r, Fabp5, P2rx1, C5ar1, Nedd4l, Gas6, Cxcl1, Pf4, Pdgfb, Thbs1, Col7a1, Vwf, Ccl9, and Arg1. Data of associated pathways and altered gene expression indicated that OmpA might cause the conversion of rat alveolar macrophages to M2-like. The related pathways and key genes can serve as a reference for OmpA of P. multitocida and host interaction mechanism studies.
Collapse
Affiliation(s)
- Xiaohong Yang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Qiaoyu Fu
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Wencan Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Qi An
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Hong Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Xiangying Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zhen Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Yiwen Cheng
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
4
|
Fang B, Jin S, Du W, Cai W. Anlotinib and fruquintinib co-administrated with warfarin increases the risk of bleeding: Studied from pharmacokinetic and pharmacodynamic perspectives. Eur J Pharm Sci 2023; 188:106507. [PMID: 37364727 DOI: 10.1016/j.ejps.2023.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Recent studies have reported a higher risk of bleeding among patients that are co-administrated with vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) and anticoagulant, which raises our concern about the possible TKIs-warfarin pharmacokinetic and pharmacodynamic interaction that could be life-threatening to tumor patients who take warfarin for preventing deep vein thrombosis (DVT). METHODS Influences of anlotinib and fruquintinib on the pharmacokinetic and dynamic behavior of warfarin were estimated. Influence on the activity of cytochrome P450 (CYP450) enzymes was detected in vitro through rat liver microsomes. Quantitative analysis of blood concentration in rats was finished by a validated UHPLC-MS/MS method. Furthermore, pharmacodynamic interactions were studied in rats by monitoring prothrombin time (PT) and activated partial thromboplastin time (APTT), while Inferior vena cava (IVC) stenosis-induced DVT model was built to further investigate the antithrombotic effect after co-administration. RESULTS Anlotinib inhibited the activity of cyp2c6, cyp3a1/2 and cyp1a2 in rat liver microsomes in a dose-dependent manner, meanwhile enhanced the AUC0∼t and AUC0∼∞ of R-warfarin. However, fruquintinib showed no effects on pharmacokinetics of warfarin. Anlotinib and fruquintinib co-administrated with warfarin was found to exert more significant increase on PT and APTT values than that taking warfarin alone. In IVC stenosis-induced DVT model rats, the co-administration groups significantly reduced the length of thrombus compared with the single warfarin group. CONCLUSIONS Anlotinib and fruquintinib enhanced the anticoagulated and antithrombotic effect of warfarin. The anlotinib-induced interaction may due to the inhibition of the metabolism of warfarin. The mechanism of the pharmacodynamic interaction between fruquintinib and warfarin should be further investigated.
Collapse
Affiliation(s)
- Boyu Fang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong, Shanghai 201203, China
| | - Shasha Jin
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong, Shanghai 201203, China
| | - Wandi Du
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong, Shanghai 201203, China
| | - Weimin Cai
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, 3728 Jinke Road, Pudong, Shanghai 201203, China.
| |
Collapse
|