1
|
Bernardi S, Vallati M, Gatta R. Artificial Intelligence-Based Management of Adult Chronic Myeloid Leukemia: Where Are We and Where Are We Going? Cancers (Basel) 2024; 16:848. [PMID: 38473210 DOI: 10.3390/cancers16050848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Artificial intelligence (AI) is emerging as a discipline capable of providing significant added value in Medicine, in particular in radiomic, imaging analysis, big dataset analysis, and also for generating virtual cohort of patients. However, in coping with chronic myeloid leukemia (CML), considered an easily managed malignancy after the introduction of TKIs which strongly improved the life expectancy of patients, AI is still in its infancy. Noteworthy, the findings of initial trials are intriguing and encouraging, both in terms of performance and adaptability to different contexts in which AI can be applied. Indeed, the improvement of diagnosis and prognosis by leveraging biochemical, biomolecular, imaging, and clinical data can be crucial for the implementation of the personalized medicine paradigm or the streamlining of procedures and services. In this review, we present the state of the art of AI applications in the field of CML, describing the techniques and objectives, and with a general focus that goes beyond Machine Learning (ML), but instead embraces the wider AI field. The present scooping review spans on publications reported in Pubmed from 2003 to 2023, and resulting by searching "chronic myeloid leukemia" and "artificial intelligence". The time frame reflects the real literature production and was not restricted. We also take the opportunity for discussing the main pitfalls and key points to which AI must respond, especially considering the critical role of the 'human' factor, which remains key in this domain.
Collapse
Affiliation(s)
- Simona Bernardi
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- CREA-Centro di Ricerca Emato-Oncologica AIL, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Mauro Vallati
- School of Computing and Engineering, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Roberto Gatta
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
2
|
Liu J, Jiang P, Lu Z, Yu Z, Qian P. Decoding leukemia at the single-cell level: clonal architecture, classification, microenvironment, and drug resistance. Exp Hematol Oncol 2024; 13:12. [PMID: 38291542 PMCID: PMC10826069 DOI: 10.1186/s40164-024-00479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Leukemias are refractory hematological malignancies, characterized by marked intrinsic heterogeneity which poses significant obstacles to effective treatment. However, traditional bulk sequencing techniques have not been able to effectively unravel the heterogeneity among individual tumor cells. With the emergence of single-cell sequencing technology, it has bestowed upon us an unprecedented resolution to comprehend the mechanisms underlying leukemogenesis and drug resistance across various levels, including the genome, epigenome, transcriptome and proteome. Here, we provide an overview of the currently prevalent single-cell sequencing technologies and a detailed summary of single-cell studies conducted on leukemia, with a specific focus on four key aspects: (1) leukemia's clonal architecture, (2) frameworks to determine leukemia subtypes, (3) tumor microenvironment (TME) and (4) the drug-resistant mechanisms of leukemia. This review provides a comprehensive summary of current single-cell studies on leukemia and highlights the markers and mechanisms that show promising clinical implications for the diagnosis and treatment of leukemia.
Collapse
Affiliation(s)
- Jianche Liu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Zezhen Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- International Campus, Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Zebin Yu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Elhadary M, Elsabagh AA, Ferih K, Elsayed B, Elshoeibi AM, Kaddoura R, Akiki S, Ahmed K, Yassin M. Applications of Machine Learning in Chronic Myeloid Leukemia. Diagnostics (Basel) 2023; 13:diagnostics13071330. [PMID: 37046547 PMCID: PMC10093579 DOI: 10.3390/diagnostics13071330] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by dysregulated growth and the proliferation of myeloid cells in the bone marrow caused by the BCR-ABL1 fusion gene. Clinically, CML demonstrates an increased production of mature and maturing granulocytes, mainly neutrophils. When a patient is suspected to have CML, peripheral blood smears and bone marrow biopsies may be manually examined by a hematologist. However, confirmatory testing for the BCR-ABL1 gene is still needed to confirm the diagnosis. Despite tyrosine kinase inhibitors (TKIs) being the mainstay of treatment for patients with CML, different agents should be used in different patients given their stage of disease and comorbidities. Moreover, some patients do not respond well to certain agents and some need more aggressive courses of therapy. Given the innovations and development that machine learning (ML) and artificial intelligence (AI) have undergone over the years, multiple models and algorithms have been put forward to help in the assessment and treatment of CML. In this review, we summarize the recent studies utilizing ML algorithms in patients with CML. The search was conducted on the PubMed/Medline and Embase databases and yielded 66 full-text articles and abstracts, out of which 11 studies were included after screening against the inclusion criteria. The studies included show potential for the clinical implementation of ML models in the diagnosis, risk assessment, and treatment processes of patients with CML.
Collapse
Affiliation(s)
- Mohamed Elhadary
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Khaled Ferih
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | - Basel Elsayed
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
| | | | - Rasha Kaddoura
- Pharmacy Department, Heart Hospital, Hamad Medical Corporation (HMC), Doha 3050, Qatar
| | - Susanna Akiki
- Diagnostic Genomic Division, Hamad Medical Corporation (HMC), Doha 3050, Qatar
| | - Khalid Ahmed
- Department of Hematology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha 3050, Qatar
| | - Mohamed Yassin
- Hematology Section, Medical Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha 3050, Qatar
| |
Collapse
|
4
|
Wang X, Wang Y, Qi C, Qiao S, Yang S, Wang R, Jin H, Zhang J. The Application of Morphogo in the Detection of Megakaryocytes from Bone Marrow Digital Images with Convolutional Neural Networks. Technol Cancer Res Treat 2023; 22:15330338221150069. [PMID: 36700246 PMCID: PMC9896096 DOI: 10.1177/15330338221150069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The evaluation of megakaryocytes is an important part of the work up on bone marrow smear examination. It has significance in the differential diagnosis, therapeutic efficacy assessment, and predication of prognosis of many hematologic diseases. The process of manual identification of megakaryocytes are tedious and lack of reproducibility; therefore, a reliable method of automated megakaryocytic identification is urgently needed. Three hundred and thirty-three bone marrow aspirate smears were digitized by Morphogo system. Pathologists annotated megakaryocytes on the digital images of marrow smears are applied to construct a large dataset for testing the system's predictive performance. Subsequently, we obtained megakaryocyte count and classification for each sample by different methods (system-automated analysis, system-assisted analysis, and microscopic examination) to study the correlation between different counting and classification methods. Morphogo system localized cells likely to be megakaryocytes on digital smears, which were later annotated by pathologists and the system, respectively. The system showed outstanding performance in identifying megakaryocytes in bone marrow smears with high sensitivity (96.57%) and specificity (89.71%). The overall correlation between the different methods was confirmed the high consistency (r ≥ 0.7218, R2 ≥ 0.5211) with microscopic examination in classifying megakaryocytes. Morphogo system was proved as a reliable screen tool for analyzing megakaryocytes. The application of Morphogo system shows promises to advance the automation and standardization of bone marrow smear examination.
Collapse
Affiliation(s)
- Xiaofen Wang
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China
| | - Ying Wang
- Department of Medical Development, Hangzhou Zhiwei
Information&Technology Ltd., Hangzhou, China
| | - Chao Qi
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China
| | - Sai Qiao
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China
| | - Suwen Yang
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China
| | - Rongrong Wang
- Department of Clinical Pharmacy, the First Affiliated Hospital,
Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Jin
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China
| | - Jun Zhang
- Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine,
Zhejiang University, Hangzhou, Zhejiang, China,Key Laboratory of Precision Medicine in Diagnosis and Monitoring
Research of Zhejiang Province, China,Jun Zhang, Clinical Laboratory, Sir Run Run
Shaw Hospital, School of Medicine, Zhejiang University, No.3, Qingchun East
Road, Shangcheng District, Hangzhou, Zhejiang 310016, China.
Hong Jin, Clinical Laboratory, Sir
Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3, Qingchun
East Road, Shangcheng District, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|