1
|
de Souza AJS, de Souza AF, Zimpel CK, Ayupe MC, de Araújo MV, Machado RRG, Salles E, Salgado CL, Tavares MS, Silva-Pereira TT, de Souza PC, Durigon EL, Heinemann MB, Brandão PE, da Fonseca DM, Guimarães AMDS, de Sá LRM. Hepatic endotheliitis in Golden Syrian hamsters (Mesocricetus auratus) experimentally infected with SARS-CoV-2. Rev Inst Med Trop Sao Paulo 2024; 66:e44. [PMID: 39082483 PMCID: PMC11295288 DOI: 10.1590/s1678-9946202466044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Hepatic injuries in COVID-19 are not yet fully understood and indirect pathways (without viral replication in the liver) have been associated with the activation of vascular mechanisms of liver injury in humans infected with SARS-CoV-2. Golden Syrian hamsters are an effective model for experimental reproduction of moderate and self-limiting lung disease during SARS-CoV-2 infection. As observed in humans, this experimental model reproduces lesions of bronchointerstitial pneumonia and pulmonary vascular lesions, including endotheliitis (attachment of lymphoid cells to the luminal surface of endothelium). Extrapulmonary vascular lesions are well documented in COVID-19, but such extrapulmonary vascular lesions have not yet been described in the Golden Syrian hamster model of SARS-CoV-2 infection. The study aimed to evaluate microscopic liver lesions in Golden Syrian hamsters experimentally infected with SARS-CoV-2. In total, 38 conventional Golden Syrian hamsters, divided into infected group (n=24) and mock-infected group (n=14), were euthanized at 2-, 3-, 4-, 5-, 7-, 14-, and 15-days post infection with SARS-CoV-2. Liver fragments were evaluated by histopathology and immunohistochemical detection of SARS-CoV-2 Spike S2 antigens. The frequencies of portal vein endotheliitis, lobular activity, hepatocellular degeneration, and lobular vascular changes were higher among SARS-CoV-2-infected animals. Spike S2 antigen was not detected in liver. The main results indicate that SARS-CoV-2 infection exacerbated vascular and inflammatory lesions in the liver of hamsters with pre-existing hepatitis of unknown origin. A potential application of this animal model in studies of the pathogenesis and evolution of liver lesions associated with SARS-CoV-2 infection still needs further evaluation.
Collapse
Affiliation(s)
- Alex Junior Souza de Souza
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, São Paulo, São Paulo, Brazil
| | - Antônio Francisco de Souza
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Cristina Kraemer Zimpel
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, São Paulo, Brazil
| | - Marina Caçador Ayupe
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
| | - Marcelo Valdemir de Araújo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
- Instituto Butantan, Centro de Desenvolvimento e Inovação, Laboratório de Virologia, São Paulo, São Paulo, Brazil
| | - Rafael Rahal Guaragna Machado
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Erika Salles
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
| | - Caio Loureiro Salgado
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
| | - Mariana Silva Tavares
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Taiana Tainá Silva-Pereira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Paula Carolina de Souza
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
| | - Edison Luiz Durigon
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, São Paulo, Brazil
| | - Paulo Eduardo Brandão
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal, São Paulo, São Paulo, Brazil
| | - Denise Morais da Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, São Paulo, São Paulo, Brazil
| | - Ana Marcia de Sá Guimarães
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, São Paulo, Brazil
| | - Lilian Rose Marques de Sá
- Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Patologia, São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Carroll TD, Wong T, Morris MK, Di Germanio C, Ma ZM, Stone M, Ball E, Fritts L, Rustagi A, Simmons G, Busch M, Miller CJ. Vaccine-Boosted CCP Decreases Virus Replication and Hastens Resolution of Infection Despite Transiently Enhancing Disease in SARS-CoV-2-Infected Hamsters. J Infect Dis 2024; 229:1702-1710. [PMID: 38213276 PMCID: PMC11175670 DOI: 10.1093/infdis/jiad568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024] Open
Abstract
Definitive data demonstrating the utility of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) for treating immunocompromised patients remains elusive. To better understand the mechanism of action of CCP, we studied viral replication and disease progression in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected hamsters treated with CCP obtained from recovered COVID-19 patients that were also vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. Vaxplas transiently enhanced disease severity and lung pathology in hamsters treated near peak viral replication due to immune complex and activated complement deposition in pulmonary endothelium, and recruitment of M1 proinflammatory macrophages into the lung parenchyma. However, aside from one report, transient enhanced disease has not been reported in CCP recipient patients, and the transient enhanced disease in Vaxplas hamsters may have been due to mismatched species IgG-FcR interactions, infusion timing, or other experimental factors. Despite transient disease enhancement, Vaxplas dramatically reduced virus replication in lungs and improved infection outcome in SARS-CoV-2-infected hamsters.
Collapse
Affiliation(s)
- Timothy D Carroll
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
- California National Primate Research Center, University of California Davis, Davis, California, USA
| | - Talia Wong
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Mary Kate Morris
- Division of Viral and Rickettsial Diseases, California Department of Public Health, Richmond, California, USA
| | | | - Zhong-min Ma
- California National Primate Research Center, University of California Davis, Davis, California, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
| | - Erin Ball
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Linda Fritts
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
- California National Primate Research Center, University of California Davis, Davis, California, USA
| | - Arjun Rustagi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, California, USA
| | - Michael Busch
- Vitalant Research Institute, San Francisco, California, USA
| | - Christopher J Miller
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
- California National Primate Research Center, University of California Davis, Davis, California, USA
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
3
|
Carroll TD, Wong T, Morris MK, Di Germanio C, Ma ZM, Stone M, Ball E, Fritts L, Rustagi A, Simmons G, Busch M, Miller CJ. Administration of vaccine-boosted COVID-19 convalescent plasma to SARS-CoV-2 infected hamsters decreases virus replication in lungs and hastens resolution of the infection despite transiently enhancing disease and lung pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.553458. [PMID: 37662344 PMCID: PMC10473650 DOI: 10.1101/2023.08.22.553458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The utility of COVID-19 convalescent plasma (CCP) for treatment of immunocompromised patients who are not able to mount a protective antibody response against SARS-CoV-2 and who have contraindications or adverse effects from currently available antivirals remains unclear. To better understand the mechanism of protection in CCP, we studied viral replication and disease progression in SARS-CoV-2 infected hamsters treated with CCP plasma obtained from recovered COVID patients that had also been vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. We found that Vaxplas dramatically reduced virus replication in the lungs and improved infection outcome in SARS-CoV-2 infected hamsters. However, we also found that Vaxplas transiently enhanced disease severity and lung pathology in treated animals likely due to the deposition of immune complexes, activation of complement and recruitment of increased numbers of macrophages with an M1 proinflammatory phenotype into the lung parenchyma.
Collapse
Affiliation(s)
- Timothy D. Carroll
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
- California National Primate Research Center, University of California Davis, Davis, California, USA
| | - Talia Wong
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Mary Kate Morris
- Division of Viral and Rickettsial Diseases, California Department of Public Health, Richmond, California, USA
| | | | - Zhong-min Ma
- California National Primate Research Center, University of California Davis, Davis, California, USA
| | - Mars Stone
- Vitalant Research Institute, San Francisco, CA, USA
| | - Erin Ball
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Linda Fritts
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
- California National Primate Research Center, University of California Davis, Davis, California, USA
| | - Arjun Rustagi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | | | | | - Christopher J. Miller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
- California National Primate Research Center, University of California Davis, Davis, California, USA
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
4
|
Li Z, Zhang Z, Zhang Z, Wang Z, Li H. Cognitive impairment after long COVID-19: current evidence and perspectives. Front Neurol 2023; 14:1239182. [PMID: 37583958 PMCID: PMC10423939 DOI: 10.3389/fneur.2023.1239182] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
COVID-19, caused by the SARS-CoV-2 virus, is a respiratory infectious disease. While most patients recover after treatment, there is growing evidence that COVID-19 may result in cognitive impairment. Recent studies reveal that some individuals experience cognitive deficits, such as diminished memory and attention, as well as sleep disturbances, suggesting that COVID-19 could have long-term effects on cognitive function. Research indicates that COVID-19 may contribute to cognitive decline by damaging crucial brain regions, including the hippocampus and anterior cingulate cortex. Additionally, studies have identified active neuroinflammation, mitochondrial dysfunction, and microglial activation in COVID-19 patients, implying that these factors may be potential mechanisms leading to cognitive impairment. Given these findings, the possibility of cognitive impairment following COVID-19 treatment warrants careful consideration. Large-scale follow-up studies are needed to investigate the impact of COVID-19 on cognitive function and offer evidence to support clinical treatment and rehabilitation practices. In-depth neuropathological and biological studies can elucidate precise mechanisms and provide a theoretical basis for prevention, treatment, and intervention research. Considering the risks of the long-term effects of COVID-19 and the possibility of reinfection, it is imperative to integrate basic and clinical research data to optimize the preservation of patients' cognitive function and quality of life. This integration will also offer valuable insights for responding to similar public health events in the future. This perspective article synthesizes clinical and basic evidence of cognitive impairment following COVID-19, discussing potential mechanisms and outlining future research directions.
Collapse
Affiliation(s)
- Zhitao Li
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhuoya Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyong Wang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Li
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|