1
|
Saba L, Cau R, Vergallo R, Kooi ME, Staub D, Faa G, Congiu T, Ntaios G, Wasserman BA, Benson J, Nardi V, Kawakami R, Lanzino G, Virmani R, Libby P. Carotid artery atherosclerosis: mechanisms of instability and clinical implications. Eur Heart J 2025:ehae933. [PMID: 39791527 DOI: 10.1093/eurheartj/ehae933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Cardiovascular disease remains a prominent cause of disability and premature death worldwide. Within this spectrum, carotid artery atherosclerosis is a complex and multifaceted condition, and a prominent precursor of acute ischaemic stroke and other cardiovascular events. The intricate interplay among inflammation, oxidative stress, endothelial dysfunction, lipid metabolism, and immune responses participates in the development of lesions, leading to luminal stenosis and potential plaque instability. Even non-stenotic plaques can precipitate a sudden cerebrovascular event, regardless of the degree of luminal encroachment. In this context, carotid imaging modalities have proved their efficacy in providing in vivo characterization of plaque features, contributing substantially to patient risk stratification and clinical management. This review emphasizes the importance of identifying high-risk individuals by use of current imaging modalities, biomarkers, and risk stratification tools. Such approaches inform early intervention and the implementation of personalized therapeutic strategies, ultimately enhancing patient outcomes in the realm of cardiovascular disease management.
Collapse
Affiliation(s)
- Luca Saba
- Department of Radiology, University of Cagliari, Via Università, 40, 09124 Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, University of Cagliari, Via Università, 40, 09124 Cagliari, Italy
| | - Rocco Vergallo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - M Eline Kooi
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Staub
- Vascular Medicine/Angiology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gavino Faa
- Department of Pathology, University of Cagliari, Cagliari, Italy
| | - Terenzio Congiu
- Department of Pathology, University of Cagliari, Cagliari, Italy
| | - George Ntaios
- Department of Internal Medicine, School of Health Sciences, University of Thessaly, Larissa University Hospital, Larissa 41132, Greece
| | - Bruce A Wasserman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, 367 East Park building, 600 N Wolfe St, Baltimore, MD 21287, USA
| | - John Benson
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Valentina Nardi
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Rika Kawakami
- Department of Cardiovascular Pathology, CVPath Institute, Inc., Gaithersburg, MD, USA
| | | | - Renu Virmani
- Department of Cardiovascular Pathology, CVPath Institute, Gaithersburg, MD, USA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Costa D, Scalise E, Ielapi N, Bracale UM, Faga T, Michael A, Andreucci M, Serra R. Omics Science and Social Aspects in Detecting Biomarkers for Diagnosis, Risk Prediction, and Outcomes of Carotid Stenosis. Biomolecules 2024; 14:972. [PMID: 39199360 PMCID: PMC11353051 DOI: 10.3390/biom14080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Carotid stenosis is characterized by the progressive narrowing of the carotid arteries due to the formation of atherosclerotic plaque, which can lead to stroke and death as major complications. Numerous biomarkers allow for its study and characterization, particularly those related to "omics" sciences. Through the most common research databases, we report representative studies about carotid stenosis biomarkers based on genomics, transcriptomics, proteomics, and metabolomics in a narrative review. To establish a priority among studies based on their internal validity, we used a quality assessment tool, the Scale for the Assessment of Narrative Review Articles (SANRA). Genes, transcriptomes, proteins, and metabolites can diagnose the disease, define plaque connotations, predict consequences after revascularization interventions, and associate carotid stenosis with other patient comorbidities. It also emerged that many aspects determining the patient's psychological and social sphere are implicated in carotid disease. In conclusion, when taking the multidisciplinary approach that combines human sciences with biological sciences, it is possible to comprehensively define a patient's health and thus improve their clinical management through precision medicine.
Collapse
Affiliation(s)
- Davide Costa
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Enrica Scalise
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Roma, Italy;
| | | | - Teresa Faga
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Ashour Michael
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (T.F.); (A.M.)
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
4
|
Ben Dhaou C, Scott ML, Orr AW. Advances in Understanding Cardiovascular Disease Pathogenesis through Next-Generation Technologies. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:476-481. [PMID: 38519246 PMCID: PMC10988757 DOI: 10.1016/j.ajpath.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/24/2024]
Affiliation(s)
- Cyrine Ben Dhaou
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana
| | - Matthew L Scott
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, Louisiana; Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana; Department of Cell Biology and Anatomy, LSU Health Shreveport, Shreveport, Louisiana.
| |
Collapse
|