1
|
Usmani MT, Shoaib MH, Siddiqui F, Ahmed FR, Yousuf RI, Saleem MT. Formulation development, in vivo bioequivalence and pediatric PBPK modeling studies of taste-masked ciprofloxacin chewable tablets. Sci Rep 2023; 13:16070. [PMID: 37752265 PMCID: PMC10522605 DOI: 10.1038/s41598-023-43423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023] Open
Abstract
A taste-masked chewable tablet of ciprofloxacin using ion exchange resin Kyron T-134 for enhancing compliance for the paediatric population was developed. The drug-to-resin ratio was optimized for maximum taste masking by studying the effects of soaking time (X1) and mixing time (X2) on complexation (%) using Central Composite Rotatable Design (CCRD). The resin complexes were characterized by bitterness score, DSC, FTIR, and PXRD. The complex was further formulated and optimized into chewable tablets through full factorial design, The optimized formulation was subjected to a bioequivalence study, and a virtual approach of PBPK modelling was adapted to predict the pharmacokinetics of the drug in the paediatric group. The drug resin ratio of 1:1.5 yielded an optimum drug loading of 99.05%. The optimized formulation shows minimum disintegration time with more than 99% drug release within 30 min. The formulation F-9 was found to be bioequivalent with a geometric mean ratio of Cmax, Tmax, AUC0-t, and AUC0-∞ within 90% CI. It was concluded that quality by design approach can successfully be applied to optimize the drug resin ratio and PBPK modeling is a successful predictive tool for estimating the pharmacokinetics of ciprofloxacin HCl in the paediatric population.
Collapse
Affiliation(s)
- Muhammad Talha Usmani
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
- Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Fahad Siddiqui
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
- Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Farrukh Rafiq Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Talha Saleem
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
2
|
Xu Y, Sun Q, Chen W, Han Y, Gao Y, Ye J, Wang H, Gao L, Liu Y, Yang Y. The Taste-Masking Mechanism of Chitosan at the Molecular Level on Bitter Drugs of Alkaloids and Flavonoid Glycosides from Traditional Chinese Medicine. Molecules 2022; 27:7455. [PMID: 36364280 PMCID: PMC9658633 DOI: 10.3390/molecules27217455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 09/16/2023] Open
Abstract
Taste masking of traditional Chinese medicines (TCMs) containing multiple bitter components remains an important challenge. In this study, berberine (BER) in alkaloids and phillyrin (PHI) in flavonoid glycosides, which are common bitter components in traditional Chinese medicines, were selected as model drugs. Chitosan (CS) was used to mask their unfriendly taste. Firstly, from the molecular level, we explained the taste-masking mechanism of CS on those two bitter components in detail. Based on those taste-masking mechanisms, the bitter taste of a mixture of BER and PHI was easily masked by CS in this work. The physicochemical characterization results showed the taste-masking compounds formed by CS with BER (named as BER/CS) and PHI (named as PHI/CS) were uneven in appearance. The drug binding efficiency of BER/CS and PHI/CS was 50.15 ± 2.63% and 67.10 ± 2.52%, respectively. The results of DSC, XRD, FTIR and molecular simulation further indicated that CS mainly masks the bitter taste by disturbing the binding site of bitter drugs and bitter receptors in the oral cavity via forming hydrogen bonds between its hydroxyl or amine groups and the nucleophilic groups of BER and PHI. The taste-masking evaluation results by the electronic tongue test confirmed the excellent taste-masking effects on alkaloids, flavonoid glycosides or a mixture of the two kinds of bitter components. The in vitro release as well as in vivo pharmacokinetic results suggested that the taste-masked compounds in this work could achieve rapid drug release in the gastric acid environment and did not influence the in vivo pharmacokinetic results of the drug. The taste-masking method in this work may have potential for the taste masking of traditional Chinese medicine compounds containing multiple bitter components.
Collapse
Affiliation(s)
- Yaqi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanqi Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yue Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lili Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Raghav S, Jain P, Kumar D. Alginates: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
4
|
Zou Z, Zhang B, Nie X, Cheng Y, Hu Z, Liao M, Li S. A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Adv 2020; 10:39722-39730. [PMID: 35515393 PMCID: PMC9057473 DOI: 10.1039/d0ra04316h] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
Interpenetrating polymer network (IPN) hydrogels are crosslinked by two or more polymer networks, providing free volume space in the three-dimensional network structure, and providing conditions for the sustained and controlled release of drugs. The IPN hydrogels based on the natural polymer sodium alginate can form a stable porous network structure. Due to its excellent biocompatibility, the loaded drug can be sustained to the maximum extent without affecting its pharmacological effect. Sodium alginate-based IPN hydrogels have broad application prospects in the field of sustained and controlled drug release. This paper begins with an overview of the formation of alginate-based IPN hydrogels; summarizes the types of alginate-based IPN hydrogels; and discusses the pharmaceutical applications of alginate-based IPN hydrogels. We aim to give an overview of the research on IPN hydrogels based on sodium alginate in sustained and controlled drug release systems.
Collapse
Affiliation(s)
- Zuhao Zou
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Bijun Zhang
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Xiaoqin Nie
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Yu Cheng
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Zhang Hu
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Mingneng Liao
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| | - Sidong Li
- Faculty of Chemistry and Environment Science, Guangdong Ocean University Zhanjiang 524088 China
| |
Collapse
|
5
|
Zheng C, Zheng H, Hu C, Wang Y, Wang Y, Zhao C, Ding W, Sun Q. Structural design of magnetic biosorbents for the removal of ciprofloxacin from water. BIORESOURCE TECHNOLOGY 2020; 296:122288. [PMID: 31678706 DOI: 10.1016/j.biortech.2019.122288] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Magnetic biosorbents with specific morphological and molecular structure (PMCCs) were designed for the removal of ciprofloxacin (CIP) from water. Radical polymerization method was applied to immobilize the designed polymer brushes onto core-shell shaped magnetic microspheres to fabricate PMCCs. PMCCs exhibited a maximum adsorption capacity of 527.93 mg·g-1, which is much higher than reported adsorbents, owing to the complete stretch of polymer brushes and increased active sites as well as enhanced interaction. The investigation on the adsorption behavior of PMCCs for CIP manifested that CIP adsorption well fitted the Langmuir isotherm model and pseudo-second-order kinetic model. The calculated thermodynamic parameters suggested that CIP adsorption onto PMCCs was spontaneous and exothermic. Further recycling experiments showed a loss of less than 20% in the CIP adsorption capacity after five times, demonstrating the reusability of the as-designed biosorbents.
Collapse
Affiliation(s)
- Chaofan Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Chao Hu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yili Wang
- College of Environmental Science and Engineering, Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yongjuan Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Chun Zhao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Wei Ding
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Qiang Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
6
|
Chikukwa MTR, Wesoly M, Korzeniowska AB, Ciosek-Skibinska P, Walker RB, Khamanga SMM. Assessment of taste masking of captopril by ion-exchange resins using electronic gustatory system. Pharm Dev Technol 2019; 25:281-289. [PMID: 31680590 DOI: 10.1080/10837450.2019.1687520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The objective of the study was to mask the unpleasant taste of captopril (CPT). Taste masking was achieved by complexation of CPT with a basic ion exchange resin, Dowex® 66, using the batch method. Dowex® 66 was used for the adsorption of CPT, and physical and chemical parameters of the CPT resinates complex were evaluated. A central composite design was used to generate the experiments for the manufacture of resinates using different process and formulation variables. In vitro dissolution studies were performed for 2 h in 0.01N HCl (pH 1.6) using USP Apparatus I. The compatibility of CPT and the resin was evaluated by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). The resinates were evaluated for micromeritic properties and further characterised using FTIR, DSC, and PXRD. Response surface methodology was used to determine the significance of input variables on the CPT content and release. The CPT resin ratio was found to have a significant impact on content of the resinates and on CPT release. The formulations were also studied for taste masking ability by means of an electronic gustatory system - electronic tongue.
Collapse
Affiliation(s)
| | - Małgorzata Wesoly
- Department of Microbioanalytics, Warsaw University of Technology, Warsaw, Poland
| | | | | | | | | |
Collapse
|
7
|
Al-Kasmi B, Al Rahal O, El-Zein H, Nattouf AH. Structural and in vitro in vivo evaluation for taste masking. Expert Opin Drug Deliv 2018; 15:1105-1116. [DOI: 10.1080/17425247.2018.1535590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Basheer Al-Kasmi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Okba Al Rahal
- School of Chemistry, Cardiff University, Cardiff, UK
| | - Hind El-Zein
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| | - Abdul-Hakim Nattouf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Damascus University, Syria
| |
Collapse
|
8
|
Mohammed A, Bissoon R, Bajnath E, Mohammed K, Lee T, Bissram M, John N, Jalsa NK, Lee KY, Ward K. Multistage extraction and purification of waste Sargassum natans to produce sodium alginate: An optimization approach. Carbohydr Polym 2018; 198:109-118. [PMID: 30092980 DOI: 10.1016/j.carbpol.2018.06.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/18/2018] [Accepted: 06/14/2018] [Indexed: 11/18/2022]
Abstract
Sargassum in the Caribbean region has affected the livelihood of several coastal communities due to the influx of large quantities of the seaweed in recent times. This article seeks to explore how waste Sargassum natans can be utilized to produce sodium alginate. The novelty in this research lies in the optimization process, whereby multistage extraction and precipitation were investigated over commonly used single stage processing, in an effort to maximize both yield and purity. The results showed that a maximum yield of 19% was observed after 1 stage, while the purity was 74% after 4 stages. In addition, optimization of the multistage precipitation process using the Global Optimization Toolbox in MATLAB R2017b provided a novel model which indicated that a compromise between the maximum purity and yield can be obtained at 3 stages; 71-74% and 12-16% respectively. Furthermore, characterization was done using FTIR and NMR, with results comparable to a commercial sodium alginate brand, giving absorption bands at 1610 cm-1 and 1395 cm-1 and an M/G ratio of 0.51 respectively.
Collapse
Affiliation(s)
- Akeem Mohammed
- Department of Chemical Engineering, University of the West Indies, St. Augustine, Trinidad, WI
| | - Rakesh Bissoon
- Department of Chemical Engineering, University of the West Indies, St. Augustine, Trinidad, WI
| | - Elisheba Bajnath
- Department of Chemical Engineering, University of the West Indies, St. Augustine, Trinidad, WI
| | - Kristy Mohammed
- Department of Chemical Engineering, University of the West Indies, St. Augustine, Trinidad, WI
| | - Thérèse Lee
- Department of Chemical Engineering, University of the West Indies, St. Augustine, Trinidad, WI
| | - Meera Bissram
- Department of Chemical Engineering, University of the West Indies, St. Augustine, Trinidad, WI
| | - Nigel John
- Department of Chemistry, University of the West Indies, St. Augustine, Trinidad, WI
| | - Nigel K Jalsa
- Department of Chemistry, University of the West Indies, St. Augustine, Trinidad, WI
| | - Koon-Yang Lee
- Department of Aeronautics, Imperial College London, SW7 2AZ, London, UK
| | - Keeran Ward
- Department of Chemical Engineering, University of the West Indies, St. Augustine, Trinidad, WI.
| |
Collapse
|
9
|
Shang R, Liu C, Quan P, Zhao H, Fang L. Effect of drug-ion exchange resin complex in betahistine hydrochloride orodispersible film on sustained release, taste masking and hygroscopicity reduction. Int J Pharm 2018; 545:163-169. [PMID: 29729403 DOI: 10.1016/j.ijpharm.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/05/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023]
Abstract
Orodispersible film (ODF) is a widely used oral solid dosage form. However, it's not suitable for drugs with short half-life, bitterness and strong hygroscopicity. The present study aims to develop a sustained release and stable betahistine hydrochloride ODF without bitterness. Drug-resin complex (IRDC) was prepared using batch method. In vitro dissolution experiment, e-Tongue and hygroscopicity experiment were conducted to compare the differences between ODF containing IRDC and ODF containing betahistine hydrochloride. Drug release kinetics showed that the diffusion of drug in IRDC was the rate-limiting step of drug release. DSC and FT-IR were conducted to explore the molecular mechanism of taste masking and hygroscopicity reduction. It turned out that taste masking was attributed to the ionic interaction between drug and resin and the slow dissolution of drug from IRDC. The site where drug form hydrogen bonds with water molecular was occupied by drug-resin interaction leading to hygroscopicity reduction. In summary, in this study we not only developed a betahistine hydrochloride ODF with good properties but also explored the effect of drug-resin interaction on sustained release, taste masking and hygroscopicity reduction.
Collapse
Affiliation(s)
- Rui Shang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Hanqing Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
10
|
Manoukian OS, Arul MR, Sardashti N, Stedman T, James R, Rudraiah S, Kumbar SG. Biodegradable Polymeric Injectable Implants for Long-Term Delivery of Contraceptive Drugs. J Appl Polym Sci 2018; 135:46068. [PMID: 29430061 PMCID: PMC5801541 DOI: 10.1002/app.46068] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Development of injectable, long-lasting, contraceptive drug delivery formulations and implants are highly desired to avoid unplanned pregnancies while improving patient compliance and reducing adverse side effects and treatment costs. The present study reports on the fabrication and characterization of two levonorgestrel (LNG) microsphere injectable formulations. Poly(ε-caprolactone) (PCL) with 12.5% and 24% (w/w) LNG were fabricated into microspheres, measuring 300±125 μm, via the oil-in-water (o/w) emulsion solvent evaporation technique. Formulations showed sustained drug release up to 120 days. FTIR, XRD, DSC, and TGA confirmed the absence of LNG chemical interaction with PCL as well as its molecular level distribution. The in vitro release of LNG was calculated to be Fickian diffusion controlled and properly characterized. The inclusion of multiple elevated release temperatures allowed for the application of the Arrhenius model to calculate drug release constants and representative sampling intervals, demonstrating the use of elevated temperatures for accelerated-time drug release studies.
Collapse
Affiliation(s)
- Ohan S. Manoukian
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Michael R. Arul
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Naseem Sardashti
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Teagan Stedman
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Roshan James
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Saint Joseph, Hartford, CT, 06103, USA
| | - Sangamesh G. Kumbar
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
11
|
Kouchak M, Ramezani Z, Bagheri F. Preparation and Evaluation of Taste Masking Iron Suspension: Taking Advantage of Weak Cationic Exchange Resin. AAPS PharmSciTech 2018; 19:719-729. [PMID: 28971358 DOI: 10.1208/s12249-017-0881-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/12/2017] [Indexed: 11/30/2022] Open
Abstract
The objective of this study is to use weak acid cation exchange resin to mask the taste and eliminate the teeth staining problems of ferrous sulfate liquid preparations for use in pediatrics. Amberlite IPR64 was loaded by Fe(II). Then, different suspensions of the iron-resin complex were prepared using various polymers as the suspending agents, and sorbitol as well as sucrose as sweeteners. Physical stability, rheological assessment, kinetics of Fe(II) release, and taste evaluation of suspensions were studied. The results implied that the prepared iron suspension was more stable when xanthan gum is used as the suspending agent. It was also shown that iron release in 0.7% NaCl (similar to saliva) was very negligible compared to relatively quick release in acidic medium (resembled the stomach). Overall, the volunteers confirmed that the formulations were successful in iron taste masking. The pH-dependent process of ion exchange by weak cationic resins opens an attractive approach to access a taste-masked iron suspension for infants.
Collapse
|
12
|
Mechanical microencapsulation: The best technique in taste masking for the manufacturing scale - Effect of polymer encapsulation on drug targeting. J Control Release 2017; 260:134-141. [PMID: 28603029 DOI: 10.1016/j.jconrel.2017.06.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Drug taste masking is a crucial process for the preparation of pediatric and geriatric formulations as well as fast dissolving tablets. Taste masking techniques aim to prevent drug release in saliva and at the same time to obtain the desired release profile in gastrointestinal tract. Several taste masking methods are reported, however this review has focused on a group of promising methods; complexation, encapsulation, and hot melting. The effects of each method on the physicochemical properties of the drug are described in details. Furthermore, a scoring system was established to evaluate each process using recent published data of selected factors. These include, input, process, and output factors that are related to each taste masking method. Input factors include the attributes of the materials used for taste masking. Process factors include equipment type and process parameters. Finally, output factors, include taste masking quality and yield. As a result, Mechanical microencapsulation obtained the highest score (5/8) along with complexation with cyclodextrin suggesting that these methods are the most preferable for drug taste masking.
Collapse
|
13
|
Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. INT J POLYM SCI 2016. [DOI: 10.1155/2016/7697031] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over the last decades, alginates, natural multifunctional polymers, have increasingly drawn attention as attractive compounds in the biomedical and pharmaceutical fields due to their unique physicochemical properties and versatile biological activities. The focus of the paper is to describe biological and pharmacological activity of alginates and to discuss the present use and future possibilities of alginates as a tool in drug formulation. The recent technological advancements with using alginates, issues related to alginates suitability as matrix for three-dimensional tissue cultures, adjuvants of antibiotics, and antiviral agents in cell transplantation in diabetes or neurodegenerative diseases treatment, and an update on the antimicrobial and antiviral therapy of the alginate based drugs are also highlighted.
Collapse
|