1
|
Zhang Y, Xiao Z, Li Q, Ke Y, Gu X, Pan K, Long Q, Guo Y, Yu X, Teng X, Liu L, He L, Hou D. A water-soluble drug nanoparticle-loaded in situ gel for enhanced precorneal retention and its transduction mechanism of pharmacodynamic effects. Int J Pharm 2025; 670:125150. [PMID: 39746582 DOI: 10.1016/j.ijpharm.2024.125150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Timolol maleate (TM), a hydrophilic small molecule, is widely used in the clinical management of glaucoma. However, the complex physiological barriers of the eyes result in suboptimal bioavailability for traditional ophthalmic formulations. To address these challenges, we have developed an innovative pharmaceutical formulation. The nanoparticles (NPs) were formulated by a multi-step optimization process involving a Plackett-Burman design (PBD), steepest ascent design (SAD), and Box-Behnken design (BBD) to obtain TM-HA/CS@ED NPs. It was then encapsulated in an in situ gel (ISG) system consisting of deacetylated gellan gum (DGG) and xanthan gum (XG) to yield the TM-HA/CS@ED NPs ISG. The formulation demonstrated favorable safety in a series of ocular irritation assays and was characterized as a pseudoplastic fluid by rheological analyses, enhancing spreadability on the ocular surface and prolonging the retention time. Moreover, the NPs exposed after ISG dissolution exhibited strong mucosal adhesion and hydrophobicity, facilitating the hydrophilic TM to penetrate the corneal barrier. In vitro and in vivo retention evaluations and tear elimination pharmacokinetic study confirmed that TM-HA/CS@ED NPs ISG showed superior precorneal retention ability, and favorable sustained drug concentrations, resulting in sustained and stable transcorneal permeation into the eyes and significant intraocular pressure (IOP) lowering efficacy with a duration of 12 h. These results provide valuable insights into the design of ophthalmic drug delivery systems for water-soluble drugs and therapeutic interventions for glaucoma.
Collapse
Affiliation(s)
- Yangrong Zhang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhenping Xiao
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qinyu Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuancheng Ke
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xuemin Gu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Kangyiran Pan
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Qinqiang Long
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yongbin Guo
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiao Yu
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xifeng Teng
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Liu
- Guangzhou Huangpu District New Drug Application Service Center, Guangzhou 510663, PR China.
| | - Lin He
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Zhongshan 528458, PR China.
| | - Dongzhi Hou
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Huang Q, Hu J, Mei D, Li G, Rong J. Optimization of lyoprotectant for recombinant human acidic fibroblast growth factor by response surface methodology. Prep Biochem Biotechnol 2025; 55:160-170. [PMID: 39028537 DOI: 10.1080/10826068.2024.2378098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Recombinant human acidic fibroblast growth factor (rh-aFGF) is a widely used biological product, but it is unstable and its biological activity is easy to decrease. In order to maintain the long-term stability and biological activity of rh-aFGF, based on the response surface method, the freeze-drying characterization and cell proliferation rate of rh-aFGF freeze-dried powder were evaluated by scoring and Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay in this study. The optimal concentrations of trehalose, glycine and BSA were optimized, and the optimal formulation was verified by regression experiment. The results showed that trehalose, glycine and BSA had significant effects on the characterization of lyophilized rh-aFGF and cell proliferation. The optimal formulation of 5.7% trehalose, 2.04% glycine and 1.98%BSA combined with rh-aFGF could achieve the optimal freeze-dried characterization and biological activity. Using the best formulation to verify, the freeze-dried formability index of the freeze-dried powder was 23.35, and the rate of cell proliferation was 43.59%, which was close to the expected 23 and 41.69%. This study determined a freeze-dried formulation of rh-aFGF that meets the requirements of freeze-dried formalization integrity and maintains biological activity, providing reliable support for the subsequent development of related drugs.
Collapse
Affiliation(s)
- Qiwen Huang
- College of Life Science, Yangtze University, Jingzhou, PR China
| | - Jing Hu
- College of Life Science, Yangtze University, Jingzhou, PR China
| | - Dongjie Mei
- College of Life Science, Yangtze University, Jingzhou, PR China
| | - Guopan Li
- College of Life Science, Yangtze University, Jingzhou, PR China
- Jingzhou Changxin Biotechnology Co, Ltd, Jingzhou, PR China
| | - Jun Rong
- College of Life Science, Yangtze University, Jingzhou, PR China
- Jingzhou Changxin Biotechnology Co, Ltd, Jingzhou, PR China
| |
Collapse
|
3
|
Liu H, Huang J, Zhang H, Xi S, Luo T, Jiang X. Effect and mechanism of Mn 2+ on urease activity during anaerobic biological treatment of landfill leachate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41290-41300. [PMID: 38849617 DOI: 10.1007/s11356-024-33907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
As a crucial hydrolytic enzyme, urease plays a vital role in anaerobic biological treatment. It is well-known that manganese ions are abundant in landfill leachate, but their concentration fluctuates significantly. However, few studies have investigated the effect and mechanism of different concentrations of Mn2+ on urease activity during anaerobic biological treatment of landfill leachate. This paper aimed to investigate the effects and mechanisms of different concentrations of Mn2+ on urease activity. The results showed that an appropriate amount of Mn2+ could significantly enhance urease activity, while a high concentration of Mn2+ could inhibit it. Insight into the mechanisms behind this phenomenon, various methods such as Zeta potential, particle size, ultraviolet spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy, and statistical analysis were employed in our study. Research suggested that, on one hand, Mn2+ may form hydrogen bonds with the side chain amino or carboxyl groups of urease amino acid residues, affecting the structure of urease through hydrogen bonding. Additionally, Mn2+ also binds to urease through hydrophobic interactions. On the other hand, the C-OH and C-N functional groups in urease have a strong affinity for Mn2+, and changes in these functional groups can greatly enhance the activity of urease. Furthermore, under the action of high concentrations of Mn2+, while the structure of urease becomes more stable, there is also a steric hindrance phenomenon that affects the substrate from entering the catalytic center. Therefore, studying the mechanism of Mn2+ affecting urease activity has significant biological significance and provides a new perspective for exploring the impact of metals on anaerobic bioprocessing of landfill leachate.
Collapse
Affiliation(s)
- Hao Liu
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Jian Huang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Hua Zhang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Shanshan Xi
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China.
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China.
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China.
| | - Tao Luo
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Xinqin Jiang
- School of Environmental and Energy Engineering, Anhui Jianzhu University, 292, Ziyun Rd., Shushan District, Hefei, 230601, Anhui Province, China
- Anhui Provincial Key Laboratory of Environment Pollution Control and Resource Reuse, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| |
Collapse
|
4
|
Zhang X, Yin T, Wang Y, Du J, Dou J, Zhang X. Effects of scutellarin on the mechanism of cardiovascular diseases: a review. Front Pharmacol 2024; 14:1329969. [PMID: 38259289 PMCID: PMC10800556 DOI: 10.3389/fphar.2023.1329969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases represent a significant worldwide problem, jeopardizing individuals' physical and mental wellbeing as well as their quality of life as a result of their widespread incidence and fatality. With the aging society, the occurrence of Cardiovascular diseases is progressively rising each year. However, although drugs developed for treating Cardiovascular diseases have clear targets and proven efficacy, they still carry certain toxic and side effect risks. Therefore, finding safe, effective, and practical treatment options is crucial. Scutellarin is the primary constituent of Erigeron breviscapus (Vant.) Hand-Mazz. This article aims to establish a theoretical foundation for the creation and use of secure, productive, and logical medications for Scutellarin in curing heart-related illnesses. Additionally, the examination and analysis of the signal pathway and its associated mechanisms with regard to the employment of SCU in treating heart diseases will impart innovative resolving concepts for the treatment and prevention of Cardiovascular diseases.
Collapse
Affiliation(s)
- Xinyu Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Yin
- First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yincang Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiazhe Du
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinjin Dou
- Department of Cardiovascular, The First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Badr MY, Basim P, Hosny KM, Rizg WY, Naveen NR, Kurakula M, Alsulaimani F, Safhi AY, Sabei FY, Alissa M, Alamoudi AJ. Design and Evaluation of S-Protected Thiolated-Based Itopride Hydrochloride Polymeric Nanocrystals for Functional Dyspepsia: QbD-Driven Optimization, In Situ, In Vitro, and In Vivo Investigation. Pharmaceuticals (Basel) 2023; 16:925. [PMID: 37513837 PMCID: PMC10384278 DOI: 10.3390/ph16070925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Mucoadhesive nanosized crystalline aggregates (NCs) can be delivered by the gastrointestinal, nasal, or pulmonary route to improve retention at particular sites. Itopride hydrochloride (ITH) was selected as a drug candidate due to its absorption from the upper gastrointestinal tract. For drug localization and target-specific actions, mucoadhesive polymers are essential. The current work aimed to use second-generation mucoadhesive polymers (i.e., thiolated polymers) to enhance mucoadhesive characteristics. An ITH-NC formulation was enhanced using response surface methodology. Concentrations of Tween 80 and Polyvinyl pyrrolidone (PVP K-30) were selected as independent variables that could optimize the formulation to obtain the desired entrapment efficacy and particle size/diameter. It was found that a formulation prepared using Tween 80 at a concentration of 2.55% and PVP K-30 at 2% could accomplish the goals for which an optimized formulation was needed. Either xanthan gum (XG) or thiolated xanthan gum (TXG) was added to the optimized formulation to determine how they affected the mucoadhesive properties of the formulation. Studies demonstrated that there was an initial burst release of ITH from the ITH/NC/XG and ITH/NC/TXG in the early hours and then a steady release for 24 h. As anticipated, the TXG formulation had a better mucin interaction, and this was needed to ensure that the drug was distributed to tissues that produce mucus. Finally, at the measured concentrations, the ITH/NC showed minimal cytotoxicity against lung cells, indicating that it may have potential for additional in vivo research. The enhanced bioavailability and mean residence time of the designed mucoadhesive NC formulations were confirmed by pharmacokinetic studies.
Collapse
Affiliation(s)
- Moutaz Y Badr
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Pratap Basim
- ThermoFisher Scientific, Cincinnati, OH 45237, USA
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Waleed Y Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - N Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G Nagara, Karnataka 571448, India
| | | | - Fayez Alsulaimani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmohsin J Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Lai Y, Hua L, Yang J, Xu J, Chen J, Zhang S, Zhu S, Li J, Shi S. The Effect of Chinese Agarwood Essential Oil with Cyclodextrin Inclusion against PCPA-Induced Insomnia Rats. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020635. [PMID: 36677694 PMCID: PMC9864866 DOI: 10.3390/molecules28020635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To study the extraction process of agarwood active ingredients (AA) and investigate the safety and effectiveness of AA in the treatment of insomnia rats by nasal administration. METHOD A β-cyclodextrin (β-CD) inclusion compound (a-β-CD) was prepared from agarwood essential oil (AEO), and the preparation process was optimized and characterized. The safety of AA in nasal mucosa was evaluated through Bufo gargarizans maxillary mucosa and rat nasal mucosa models. Insomnia animal models were replicated by injecting p-chlorophenylalanine (PCPA), conducting behavioral tests, and detecting the expression levels of monoamine neurotransmitters (NE and 5-HT) and amino acids (GABA/Glu) in the rat hypothalamus. RESULTS The optimum inclusion process conditions of β-CD were as follows: the feeding ratio was 0.35:1.40 (g:g), the inclusion temperature was 45 °C, the inclusion time was 2 h, and the ICY% and IEO% were 53.78 ± 2.33% and 62.51 ± 3.21%, respectively. The inclusion ratio, temperature, and time are the three factors that have significant effects on the ICY% and IEO% of a-β-CD. AA presented little damage to the nasal mucosa. AA increased the sleep rate, shortened the sleep latency, and prolonged the sleep time of the rats. The behavioral test results showed that AA could ameliorate depression in insomnia rats to a certain extent. The effect on the expression of monoamine neurotransmitters and amino acids in the hypothalamus of rats showed that AA could significantly reduce NE levels and increase the 5-HT level and GABA/Glu ratio in the hypothalamus of insomnia rats. CONCLUSION The preparation of a-β-CD from AEO can reduce its irritation, improve its stability, increase its curative effect, and facilitate its storage and transport. AA have certain therapeutic effects on insomnia. The mechanism of their effect on rat sleep may involve regulating the expression levels of monoamine neurotransmitters and amino acids in the hypothalamus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Senlin Shi
- Correspondence: ; Tel./Fax: +86-13157106148
| |
Collapse
|
7
|
Monirul Islam M, HR V, Durga Bhavani P, Goudanavar PS, Naveen NR, Ramesh B, Fattepur S, Narayanappa Shiroorkar P, Habeebuddin M, Meravanige G, Telsang M, Sreeharsha N. Optimization of process parameters for fabrication of electrospun nanofibers containing neomycin sulfate and Malva sylvestris extract for a better diabetic wound healing. Drug Deliv 2022; 29:3370-3383. [PMID: 36404771 PMCID: PMC9848420 DOI: 10.1080/10717544.2022.2144963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus is one of the most concerning conditions, and its chronic consequences are almost always accompanied by infection, oxidative stress, and inflammation. Reducing excessive reactive oxygen species and the wound's inflammatory response is a necessary treatment during the acute inflammatory phase of diabetic wound healing. Malva sylvestris extract (MS) containing nanofibers containing neomycin sulfate (NS) were synthesized for this investigation, and their impact on the healing process of diabetic wounds was assessed. Using Design Expert, the electrospinning process for the fabrication of NS nanofibers (NS-NF) was adjusted for applied voltage (X1), the distance between the needle's tip and the collector (X2), and the feed rate (X3) for attaining desired entrapment efficacy [EE] and average nanofiber diameter (ND). The optimal formulation can be prepared with 19.11 kV of voltage, 20 cm of distance, and a flow rate of 0.502 mL/h utilizing the desirability approach. All the selected parameters and responses have their impact on drug delivery from nanofibers. In addition, M. sylvestris extracts have been added into the optimal formulation [MS-NS-NF] and assessed for their surface morphology, tensile strength, water absorption potential, and in vitro drug release studies. The NS and MS delivery from MS-NS-NF has been extended for more than 60 h. M. sylvestris-loaded nanofibers demonstrated superior antibacterial activity compared to plain NS nanofibers. The scaffolds featured a broad aspect and a highly linked porous fibrous network structure. Histomorphometry study and the in vitro scratch assay demonstrate the formulation's efficacy in treating diabetic wound healing. The cells treated with MS-NS-NF in vivo demonstrated that wound dressings successfully reduced both acute and chronic inflammations. To improve the healing of diabetic wounds, MS-NS-NF may be regarded as an appropriate candidate for wound dressing.
Collapse
Affiliation(s)
- Mohammed Monirul Islam
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| | - Varshini HR
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Penmetsa Durga Bhavani
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Telangana, India
| | - Prakash S. Goudanavar
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| | - N. Raghavendra Naveen
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India,CONTACT N. Raghavendra Naveen Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar, Karnataka, 571448, India or
| | - B. Ramesh
- Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Karnataka, India
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Selangor, Malaysia,Santosh Fattepur School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam40100, Selangor, Malaysia
| | | | - Mohammed Habeebuddin
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Girish Meravanige
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia
| | - Mallikarjun Telsang
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa, Saudi Arabia,Department of Pharmaceutics, Vidya Siri College of Pharmacy, Bangalore, India,Nagaraja Sreeharsha Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa31982, Saudi Arabia or
| |
Collapse
|
8
|
Bakhaidar RB, Naveen NR, Basim P, Murshid SS, Kurakula M, Alamoudi AJ, Bukhary DM, Jali AM, Majrashi MA, Alshehri S, Alissa M, Ahmed RA. Response Surface Methodology (RSM) Powered Formulation Development, Optimization and Evaluation of Thiolated Based Mucoadhesive Nanocrystals for Local Delivery of Simvastatin. Polymers (Basel) 2022; 14:polym14235184. [PMID: 36501579 PMCID: PMC9737842 DOI: 10.3390/polym14235184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
In oral administration systems, mucoadhesive polymers are crucial for drug localization and target-specific activities. The current work focuses on the application of thiolated xanthan gum (TXG) to develop and characterize a novel mucoadhesive nanocrystal (NC) system of simvastatin (SIM). Preparation of SIM-NC was optimized using response surface methodology (RSM) coupled with statistical applications. The concentration of Pluronic F-127 and vacuum pressure were optimized by central composite design. Based on this desirable approach, the prerequisites of the optimum formulation can be achieved by a formulation having 92.568 mg of F-127 and 77.85 mbar vacuum pressure to result in EE of 88.8747% and PS of 0.137.835 nm. An optimized formulation was prepared with the above conditions along with xanthan gum (XG) and TXG and various parameters were evaluated. A formulation containing TXG showed 98.25% of SIM at the end of 96 h. Regarding the mucoadhesion potential evaluated by measuring zeta potential, TXG-SIM-NC shoed the maximum zeta potential of 16,455.8 ± 869 mV at the end of 6 h. The cell viability percentage of TXG-SIM-NC (52.54 ± 3.4% with concentration of 50 µg/mL) was less than the plain SIM, with XG-SIM-NC showing the highest cytotoxicity on HSC-3 cells. In vivo pharmacokinetic studies confirm the enhanced bioavailability of formulated mucoadhesive systems of SIM-NC, with TXG-SIM-NC exhibiting the maximum.
Collapse
Affiliation(s)
- Rana B. Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Pratap Basim
- Thermo Fisher Scientific, Cincinnati, OH 45237, USA
| | - Samar S. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Deena M. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Abdulmajeed M. Jali
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed A. Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rayan A. Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
9
|
Alhakamy NA, Naveen NR, Gorityala S, Kurakula M, Hosny KM, Safhi AY, Bukhary DM, Bukhary HA, Sabei FY, Mushtaq RY, Murshid SS. Development of Novel S-Protective Thiolated-Based Mucoadhesive Tablets for Repaglinide: Pharmacokinetic Study. Polymers (Basel) 2022; 14:polym14173529. [PMID: 36080604 PMCID: PMC9460926 DOI: 10.3390/polym14173529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Mucoadhesive polymers have an essential role in drug localization and target-specific actions in oral delivery systems. The current work aims to develop and characterize a new mucoadhesive polysaccharide polymer (thiolated xanthan gum-TXG and S-Protected thiolated xanthan gum-STX) that was further utilized for the preparation of repaglinide mucoadhesive tablets. The thiolation of xanthan gum was carried out by ester formation through the reaction of the hydroxyl group of xanthan gum and the carboxyl group of thioglycolic acid. Synthesis of TXG was optimized using central composite design, and TXG prepared using 5.303 moles/L of TGA and 6.075 g/L of xanthan gum can accomplish the prerequisites of the optimized formulation. Consequently, TXG was further combined with aromatic 2-mercapto-nicotinic acid to synthesize STX. TXG and STX were further studied for Fourier-transform infrared spectroscopy, rheological investigations, and Ellman’s assay (to quantify the number of thiol/disulfide groups). A substantial rise in the viscosity of STX might be due to increased interactions of macromolecules liable for improving the mucosal adhesion strength of thiolated gum. STX was proven safe with the support of cytotoxic study data. Mucoadhesive formulations of repaglinide-containing STX showed the highest ex vivo mucoadhesion strength (12.78 g-RSX-1 and 17.57 g- RSX-2) and residence time (>16 h). The improved cross-linkage and cohesive nature of the matrix in the thiolated and S-protected thiolated formulations was responsible for the controlled release of repaglinide over 16 h. The pharmacokinetic study revealed the greater AUC (area under the curve) and long half-life with the RSX-2 formulation, confirming that formulations based on S-protected thiomers can be favorable drug systems for enhancing the bioavailability of low-solubility drugs.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, India
| | - Shashank Gorityala
- Bioanalytical Chemistry, Labcorp Drug Development, Madison, WI 53704, USA
| | - Mallesh Kurakula
- Product Development Department, CURE Pharmaceutical, Oxnard, CA 93033, USA
- Correspondence: (M.K.); (K.M.H.)
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (M.K.); (K.M.H.)
| | - Awaji Y. Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Deena M. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Haitham A. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Fahad Y. Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Rayan Y. Mushtaq
- Department of Pharmaceutics, College of Clinical Pharmacy, Immam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Samar S. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Yang C, Zhao Q, Yang S, Wang L, Xu X, Li L, Al-Jamal WT. Intravenous Administration of Scutellarin Nanoparticles Augments the Protective Effect against Cerebral Ischemia-Reperfusion Injury in Rats. Mol Pharm 2022; 19:1410-1421. [PMID: 35441510 PMCID: PMC9066406 DOI: 10.1021/acs.molpharmaceut.1c00942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
This
study investigates the protective effect of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with
scutellarin (SCU), a flavone isolated from the traditional Chinese
medicineErigeron breviscapus (Vant.)
Hand.-Mazz., in reducing cerebral ischemia/reperfusion (I/R) injury in vivo. The focal cerebral I/R injury model was established
by occluding the middle cerebral artery for 1 h in male Sprague-Dawley
(SD) rats. Our SCU-PLGA NPs exhibited an extended in vitro release profile and prolonged blood circulation in rats with cerebral
ischemia. More importantly, when administered intravenously once a
day for 3 days, SCU-PLGA NPs increased the SCU level in the ischemic
brain, compared to free SCU, resulting in a significant reduction
of the cerebral infarct volume after cerebral I/R. Furthermore, SCU-PLGA
NPs reversed the histopathological changes caused by cerebral I/R
injury, as well as attenuated cell apoptosis in the brain tissue,
as confirmed by hematoxylin and eosin, and TUNEL staining. Our findings
have revealed that our injectable SCU-PLGA NPs provide promising protective
effects against cerebral I/R injury, which could be used in combination
with the existing conventional thrombolytic therapies to improve stroke
management.
Collapse
Affiliation(s)
- Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China.,School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Qing Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Shanshan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Libin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xingyuan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lisu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/ Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Wafa T Al-Jamal
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
11
|
Sreeharsha N, Naveen NR, Anitha P, Goudanavar PS, Ramkanth S, Fattepur S, Telsang M, Habeebuddin M, Anwer MK. Development of Nanocrystal Compressed Minitablets for Chronotherapeutic Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15030311. [PMID: 35337109 PMCID: PMC8950040 DOI: 10.3390/ph15030311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
The present work aimed to develop a chronotherapeutic system of valsartan (VS) using nanocrystal formulation to improve dissolution. VS nanocrystals (VS-NC) were fabricated using modified anti-solvent precipitation by employing a Box−Behnken design to optimize various process variables. Based on the desirability approach, a formulation containing 2.5% poloxamer, a freezing temperature of −25 °C, and 24 h of freeze-drying time can fulfill the optimized formulation’s requirements to result in a particle size of 219.68 nm, 0.201 polydispersity index, and zeta potential of −38.26 mV. Optimized VS-NC formulation was compressed (VNM) and coated subsequently with ethyl cellulose and HPMC E 5. At the same time, fast dissolving tablets of VS were designed, and the best formulation was loaded with VNM into a capsule size 1 (average fill weight—400−500 mg, lock length—19.30 mm, external diameter: Cap—6.91 mm; Body—6.63 mm). The final tab in cap (tablet-in-capsule) system was studied for in vitro dissolution profile to confirm the chronotherapeutic release of VS. As required, a bi-pulse release of VS was identified with a lag time of 5 h. The accelerated stability studies confirmed no significant changes in the dissolution profiles of the tab in cap system (f2 similarity profile: >90). To conclude, the tab in cap system was successfully developed to induce a dual pulsatile release, which will ensure bedtime dosing with release after a lag-time to match with early morning circadian spikes.
Collapse
Affiliation(s)
- Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, Karnataka, India
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Nimbagal Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India;
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Posina Anitha
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet 516126, Andhra Pradesh, India;
| | - Prakash S. Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar 571448, Karnataka, India;
| | - Sundarapandian Ramkanth
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore 641032, Tamilnadu, India;
| | - Santosh Fattepur
- School of Pharmacy, Management and Science University, Seksyen 13, Shah Alam 40100, Selangor, Malaysia
- Correspondence: (N.S.); (N.R.N.); (S.F.)
| | - Mallikarjun Telsang
- Department of Medicine, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohammed Habeebuddin
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Alkharj 11942, Saudi Arabia;
| |
Collapse
|
12
|
Liu XY, Hong Y, Zhao GP, Zhang HK, Zhai QY, Wang Q. Microalgae-based swine wastewater treatment: Strain screening, conditions optimization, physiological activity and biomass potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151008. [PMID: 34662604 DOI: 10.1016/j.scitotenv.2021.151008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 05/28/2023]
Abstract
Using microalgae to treat swine wastewater (SW) can achieve wastewater purification and biomass recovery at the same time. The algae species suitable for growth in SW were screened in this study, and the response surface combined with the desirability function method was used for multi-objective optimization to obtain high algal biomass and pollutant removal. Chlorophyll fluorescence parameters and biomass composition were analyzed to evaluate the cell physiological activity and its application potential. Chlorella sp. HL was selected as the most suitable species for growth in SW, and after 9 d of cultivation, the maximum specific growth rate and highest algal density were achieved 0.51 d-1 and 2.43 × 107 cells/mL, respectively. In addition, the removal of total phosphate and chemical oxygen demand were reached 69.13% and 72.95%, respectively. The optimum conditions for maximum algal density and highest pollutant removal were determined as the light intensity of 58.73 μmol/m2/s, inoculation density of 5.0 × 106 cells/mL, and a light/dark ratio of 3 using response surface model, and the predicted overall desirability value was 0.96. The potential maximum quantum yield of PSII (Fv/Fm) of Chlorella sp. HL in the early stage of cultivation was 0.60-0.70, while under high light and long photoperiod, the value of Fv/Fm and performance index of Chlorella decreased, trapped and dissipated energy flux per reaction center increased. The higher heating value of 18.25 MJ/kg indicated that the Chlorella cultivated in SW could be a good feedstock for biofuel production.
Collapse
Affiliation(s)
- Xiao-Ya Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Guang-Pu Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hong-Kai Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qing-Yu Zhai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qiao Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
13
|
Hu Q, Fu X, Su Y, Wang Y, Gao S, Wang X, Xu Y, Yu C. Enhanced oral bioavailability of koumine by complexation with hydroxypropyl-β-cyclodextrin: preparation, optimization, ex vivo and in vivo characterization. Drug Deliv 2021; 28:2415-2426. [PMID: 34763595 PMCID: PMC8592623 DOI: 10.1080/10717544.2021.1998248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Koumine (KME) is an active alkaloid extracted from Gelsemium elegans, and its diverse bioactivities have been studied for decades. However, KME exhibits poor solubility and low oral bioavailability, which hampers its potential therapeutic exploitation. This work aimed to develop optimized inclusion complexes to improve the bioavailability of KME. The KME/hydroxypropyl-β-cyclodextrin (KME/HP-β-CD) inclusion complexes were prepared by the solvent evaporation method and later optimized using the Box-Behnken design. The optimal KME/HP-β-CD was characterized by scanning electron microscopy, Fourier transforms infrared spectroscopy, differential scanning calorimetry, and nuclear magnetic resonance spectroscopy. The physicochemical characterization results revealed that the crystalline state of KME was transformed into an amorphous form, forming KME/HP-β-CD inclusion complexes. Compared with KME, the solubility and in vitro release rate of KME/HP-β-CD was significantly enhanced by 52.34- and 1.3-fold, respectively. Further research was performed to investigate the intestinal absorption characteristics and in vivo bioavailability in rats. The optimal KME/HP-β-CD showed enhanced absorptive permeability and relative bioavailability increased more than two-fold compared to that of raw KME. These results indicate that the optimal KME/HP-β-CD can be used as an effective drug carrier to improve the solubility, intestinal absorption, and bioavailability of KME.
Collapse
Affiliation(s)
- Qing Hu
- School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiaoling Fu
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yanping Su
- School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yanfang Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Sihuan Gao
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiaoqin Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ying Xu
- School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Changxi Yu
- School of Pharmacy, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Kurakula M, Naveen N. R, Patel B, Manne R, Patel DB. Preparation, Optimization and Evaluation of Chitosan-Based Avanafil Nanocomplex Utilizing Antioxidants for Enhanced Neuroprotective Effect on PC12 Cells. Gels 2021; 7:gels7030096. [PMID: 34287358 PMCID: PMC8293062 DOI: 10.3390/gels7030096] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
(1) Introduction: in recent decades, interdisciplinary research on the utilization of natural products as “active moiety carriers” was focused on due to their superior safety profile, biodegradability, biocompatibility and the ability for sustained or controlled release activity. The nano-based neuroprotective strategy is explored as an imperative treatment for diabetic neuropathy (DN). Avanafil (AV), that selectively inhibits the degradation of cGMP-specific phosphodiesterase, thereby increasing the levels of cGMP, makes a decisive mediator for cytoprotection. (2) Methods: AVnanocomplex formulations were prepared by a modified anti-solvent precipitation method and the method was optimized by Box–Behnken design. An optimized formulation was characterized and evaluated for various in vitro parameters; (3) results:based on the desirability approach, the formulation containing 2.176 g of chitosan, 7.984 g of zein and 90% v/v ethanol concentration can fulfill the prerequisites of optimum formulation (OB-AV-NC).OB-AV-NC was characterized and evaluated for various parameters. The neuroprotective mechanism of AV was evaluated by pretreatment of PC12 cells with plain AV, avanafil nanocomplex (NC) without antioxidants (AV-NC) and with antioxidants (α-Lipoic acid LP; Ellagic Acid EA), AV-LP-EA-Nanocomplex has also shown considerable attenuation in intracellular reactive oxygen species (ROS) and lipid peroxidation with a significant increase in the PC 12 viability under HG conditions in comparison to pure AV; (4) conclusion: the nanocomplex of AV prepared to utilize natural polymers and antioxidants aided for high solubility of AV and exhibited desired neuroprotective activity.This can be one of the promisingstrategy to translate the AV nanocomplex with safety and efficacy in treating DN.
Collapse
Affiliation(s)
- Mallesh Kurakula
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
- Correspondence: ; Tel.: +1-901-297-7693
| | - Raghavendra Naveen N.
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G.Nagar 571448, Karnataka, India;
| | - Bhaumik Patel
- Product Development Department, Cure Pharmaceutical Corporation, Los Angeles, CA 90025, USA;
| | - Ravi Manne
- Chemtex Environmental Laboratory, Quality Control, and Assurance Department, Port Arthur, TX 77642, USA;
| | - Devang B. Patel
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA;
| |
Collapse
|
15
|
Formulation of Tablets in Capsule system: Statistical optimization for chronotherapeutic drug delivery of propranolol hydrochloride. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
β-Cyclodextrin Inclusion Complex Containing Litsea cubeba Essential Oil: Preparation, Optimization, Physicochemical, and Antifungal Characterization. COATINGS 2020. [DOI: 10.3390/coatings10090850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Litsea cubeba essential oil (LCEO), as naturally plant-derived products, possess good antimicrobial activities against many pathogens, but their high volatility and poor water solubility limit greatly the application in food industry. In this research, inclusion complex based on β-cyclodextrin (β-CD) and LCEO, was prepared by saturated aqueous solution method. An optimum condition using the response surface methodology (RSM) based on Box–Behnken design (BBD) was obtained with the inclusion time of 2 h and β-CD/LCEO ratio of 4.2 at 44 °C. Under the condition, the greatest yield of 71.71% with entrapment efficiency of 33.60% and loading capacity of 9.07% was achieved. In addition, the structure and characteristic of LCEO/β-CD inclusion complex (LCEO/βCD-IC) were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR), which indicated that LCEO/βCD-IC was successfully formed. The particle size of LCEO/βCD-IC was determined to be 17.852 μm. Thermal properties of LCEO/βCD-IC evaluated by thermogravimetric-differential scanning calorimetry (TG-DTA) illustrated better thermal stability of the aimed product compared with the physical mixture. Furthermore, the tests of antifungal activity showed that LCEO/βCD-IC was able to control the growth of Penicillium italicum, Penicillium digitatum, and Geotrichum citri-aurantii isolated from postharvest citrus. Our present study confirmed that LCEO/βCD-IC might be further applied as an alternative to chemical fungicides for protecting citrus fruit from postharvest disease.
Collapse
|
17
|
Designing, structural determination and biological effects of rifaximin loaded chitosan- carboxymethyl chitosan nanogel. Carbohydr Polym 2020; 248:116782. [PMID: 32919570 DOI: 10.1016/j.carbpol.2020.116782] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
Due to the poor solubility and permeability of rifaximin (RFX), it is not effective against intracellular pathogens although it shows strong activity against most bacteria. To develop an effective mucoadhesive drug delivery system with a targeted release in bacterial infection site, RFX-loaded chitosan (CS)/carboxymethyl-chitosan (CMCS) nanogel was designed and systematically evaluated. FTIR, DSC, and XRD demonstrated that the nanogel was formed by interactions between the positively charged NH3+ on CS and CMCS, and the negatively charged COO on CMCS. RFX was encapsulated into the optimized nanogel in amorphous form. The nanogel was a uniform spherical shape with a mean diameter of 171.07 nm. It had excellent sustained release, strong mucin binding ability, and pH-responsive properties of quicker swelling and release at acidic pH. It showed low hemolytic ratio and high antioxidant activity. The present investigation indicated that the CS-nanogel could be potentially used as a promising bacterial responsiveness drug delivery system.
Collapse
|
18
|
Kurakula M, Naveen NR. In Situ Gel Loaded with Chitosan-Coated Simvastatin Nanoparticles: Promising Delivery for Effective Anti-Proliferative Activity against Tongue Carcinoma. Mar Drugs 2020; 18:md18040201. [PMID: 32283782 PMCID: PMC7231276 DOI: 10.3390/md18040201] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
The goal of this study is to develop optimized chitosan-coated Simvastatin (SIM) nanoparticles (NPs) loaded in an in situ gel (ISG) formulation via a face-centered central composite design (FCCCD). Coated SIM-NPs were doped with Quercetin (QRC) using a modified nanoprecipitation method. The concentrations of poloxamer 188 (A) and chitosan (B) at five different levels, plus/minus alpha (+1.414 and −1.414: axial points), plus/minus 1 (factorial points) and the center point were optimized for particle size (PS-Y1), entrapment efficacy (EE-Y2) and stability index (SI-Y3). Based on the desirability approach, a formulation containing poloxamer 188 0.24% and chitosan 0.43% renders the prerequisites of optimum formulation for preparing SIM–QRC NP-loaded ISG. Scanning microscopy showed spherical SIM-NPs, indicating monodispersity in the range of 0.50 ± 0.04 nm with a charge of +32.42 mV. The optimized formulation indicated the highest EE 79.67% and better stability at 4 °C. Drug release from SIM–QRC NP-loaded ISG was slower to plateau by up to 96 h and, at the end of 168 h, only 65.12% of SIM was released in a more controlled manner in comparison to SIM–QRC NPs and plain SIM. ISG formulation showed a considerable increase in apoptosis occurrence through caspase-3 mediation and it also enhanced the tumor suppressor protein levels. Enhanced biological activity of SIM was observed due to QRC enabling promising drug and polymer synergistic interaction. The proposed formulation can provide a breakthrough in localized therapy, overcoming the potential drawbacks of systemic chemotherapy for tongue carcinoma.
Collapse
Affiliation(s)
- Mallesh Kurakula
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN 38152, USA
- Correspondence:
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Annamacharya College of Pharmacy, New Boyanapalli, Rajampet, Andhra Pradesh 516126, India;
| |
Collapse
|
19
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
20
|
Sharma N, Singh V, Pandey AK, Mishra BN, Kulsoom M, Dasgupta N, Khan S, El-Enshasy HA, Haque S. Preparation and Evaluation of the ZnO NP-Ampicillin/Sulbactam Nanoantibiotic: Optimization of Formulation Variables Using RSM Coupled GA Method and Antibacterial Activities. Biomolecules 2019; 9:E764. [PMID: 31766572 PMCID: PMC6995637 DOI: 10.3390/biom9120764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/10/2019] [Accepted: 11/17/2019] [Indexed: 12/18/2022] Open
Abstract
Nanoparticles (NPs) possessing antibacterial activity represent an effective way of overcoming bacterial resistance. In the present work, we report a novel formulation of a nanoantibiotic formed using Ampicillin/sulbactam (Ams) and a zinc oxide nanoparticle (ZnO NP). 'ZnO NP-Ams' nanoantibiotic formulation is optimized using response surface methodology coupled genetic algorithm approach. The optimized formulation of nanoantibiotic (ZnO NP: 49.9 μg/mL; Ams: 33.6 μg/mL; incubation time: 27 h) demonstrated 15% enhanced activity compared to the unoptimized formulation against K. pneumoniae. The reactive oxygen species (ROS) generation was directly proportional to the interaction time of nanoantibiotic and K. pneumoniae after the initial lag phase of ~18 h as evident from 2'-7'-Dichlorodihydrofluorescein diacetate assay. A low minimum inhibitory concentration (6.25 μg/mL) of nanoantibiotic formulation reveals that even a low concentration of nanoantibiotic can prove to be effective against K. pneumoniae. The importance of nanoantibiotic formulation is also evident by the fact that the 100 μg/mL of Ams and 25 µg of ZnO NP was required individually to inhibit the growth of K. pneumonia, whereas only 6.25 μg/mL of optimized nanoantibiotic formulation (ZnO NP and Ams in the ratio of 49.9: 33.6 in μg/mL and conjugation time of 27 h) was needed for the same.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Sitapur Road, Lucknow-226021, Uttar Pradesh, India; (N.S.); (V.S.); (A.K.P.); (B.N.M.); (M.K.); (N.D.)
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Sitapur Road, Lucknow-226021, Uttar Pradesh, India; (N.S.); (V.S.); (A.K.P.); (B.N.M.); (M.K.); (N.D.)
| | - Asheesh Kumar Pandey
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Sitapur Road, Lucknow-226021, Uttar Pradesh, India; (N.S.); (V.S.); (A.K.P.); (B.N.M.); (M.K.); (N.D.)
| | - Bhartendu Nath Mishra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Sitapur Road, Lucknow-226021, Uttar Pradesh, India; (N.S.); (V.S.); (A.K.P.); (B.N.M.); (M.K.); (N.D.)
| | - Maria Kulsoom
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Sitapur Road, Lucknow-226021, Uttar Pradesh, India; (N.S.); (V.S.); (A.K.P.); (B.N.M.); (M.K.); (N.D.)
| | - Nandita Dasgupta
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Sitapur Road, Lucknow-226021, Uttar Pradesh, India; (N.S.); (V.S.); (A.K.P.); (B.N.M.); (M.K.); (N.D.)
| | - Saif Khan
- Department of Basic Sciences, College of Dental Sciences, University of Ha’il, Ha’il-2440, Saudi Arabia;
| | - Hesham A. El-Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 81310, Johor, Malaysia
- City of Scientific Research and Technological Applications, New Burg Al Arab, Alexandria 21934, Egypt
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan-45142, Saudi Arabia
| |
Collapse
|
21
|
Sorasitthiyanukarn FN, Muangnoi C, Thaweesest W, Rojsitthisak P, Rojsitthisak P. Enhanced cytotoxic, antioxidant and anti-inflammatory activities of curcumin diethyl disuccinate using chitosan-tripolyphosphate nanoparticles. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Yang C, Zhang Y, Cai P, Yuan S, Ma Q, Song Y, Wei H, Wu Z, Wu Z, Qi X. Highly specific colon-targeted transformable capsules containing indomethacin immediate-release pellets for colon cancers therapy. J Drug Target 2019; 28:102-110. [PMID: 31100991 DOI: 10.1080/1061186x.2019.1620751] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Generally, definite intestine targeting and immediate drug releasing are both important for the treatment of colon cancer via oral administration of anti-cancer drugs. We developed a highly specific oral colon-targeted pulsatile capsule, based on the effective enzyme-responsive 'pulse plug', which can be degraded under mannanase abundant in colon. Indomethacin (IN) solid dispersion immediate-release pellets were filled in an insoluble capsule body, a guar gum-lactose-hydroxypropyl methylcellulose (HPMC) composed tablet was embedded on the top of capsule as the 'pulse plug', and then covered by enteric soluble cap. In this study, the influence of the proportion of guar gum/lactose/HPMC, the viscosity of HPMC, and the tablet weight on the degradation behaviour of the plug tablet was investigated. The drug-releasing profiles of those pulsatile capsules in different simulated colon medium verified the 'pulse plug' could realise the colon-targeted pulsatile drug-releasing. Furthermore, the rabbit pharmacokinetic experiments showed that the in vivo time lag of drug loaded pulsatile capsules was significantly extended to 5.61 ± 0.08 h (p<.01), compared with that (0.33 ± 0.47 h) of the marketed tablets (YUNPENG®). These results indicated that colon-targeted pulsatile capsules would be effective oral delivering system for colon cancers therapy.
Collapse
Affiliation(s)
- Chen Yang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Yu Zhang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Peng Cai
- Department of General Surgery, Xuzhou City Hospital of Traditional Chinese Medicine, Xuzhou, PR China
| | - Shirui Yuan
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Qiaofang Ma
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Ya Song
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Haobo Wei
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Ziheng Wu
- Parkville Campus, Monash University, Clayton, VIC, Australia
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
23
|
Son GH, Na YG, Huh HW, Wang M, Kim MK, Han MG, Byeon JJ, Lee HK, Cho CW. Systemic Design and Evaluation of Ticagrelor-Loaded Nanostructured Lipid Carriers for Enhancing Bioavailability and Antiplatelet Activity. Pharmaceutics 2019; 11:E222. [PMID: 31071977 PMCID: PMC6572397 DOI: 10.3390/pharmaceutics11050222] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Ticagrelor (TGL), a P2Y12 receptor antagonist, is classified as biopharmaceutics classification system (BCS) class IV drug due to its poor solubility and permeability, resulting in low oral bioavailability. Nanostructured lipid carriers (NLC) are an efficient delivery system for the improvement of bioavailability of BCS class IV drugs. Hence, we prepared TGL-loaded NLC (TGL-NLC) to enhance the oral bioavailability and antiplatelet activity of TGL with a systemic design approach. The optimized TGL-NLC with Box-Behnken design showed a small particle size of 87.6 nm and high encapsulation efficiency of 92.1%. Scanning electron microscope (SEM), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) were performed to investigate the characteristics of TGL-NLC. Furthermore, TGL-NLC exhibited biocompatible cytotoxicity against Caco-2 cells. Cellular uptake of TGL-NLC was 1.56-fold higher than that of raw TGL on Caco-2 cells. In pharmacokinetic study, the oral bioavailability of TGL-NLC was 254.99% higher than that of raw TGL. In addition, pharmacodynamic study demonstrated that the antiplatelet activity of TGL-NLC was superior to that of raw TGL, based on enhanced bioavailability of TGL-NLC. These results suggest that TGL-NLC can be applied for efficient oral absorption and antiplatelet activity of TGL.
Collapse
Affiliation(s)
- Gi-Ho Son
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
- Present affiliation: Korea United Pharmaceutical Co. Ltd., 25-23, Nojangongdan-gil. Jeondong-myeon, Sejong 30011, Korea.
| | - Young-Guk Na
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Hyun Wook Huh
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Miao Wang
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Min-Ki Kim
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Min-Gu Han
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jin-Ju Byeon
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Hong-Ki Lee
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Cheong-Weon Cho
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
24
|
Chen KY, Zeng SY. Fabrication of Quaternized Chitosan Nanoparticles Using Tripolyphosphate/Genipin Dual Cross-Linkers as a Protein Delivery System. Polymers (Basel) 2018; 10:E1226. [PMID: 30961151 PMCID: PMC6290633 DOI: 10.3390/polym10111226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022] Open
Abstract
Various amounts of 2-((acryloyloxy)ethyl)trimethylammonium chloride were grafted onto chitosan (CS) via redox polymerization method to obtain water-soluble quaternized CS (QCS). The QCS nanoparticles loaded with bovine serum albumin (BSA) were then produced by ionic gelation with tripolyphosphate (TPP) and further covalently cross-linked with genipin. The formation of QCS nanoparticles was optimized as a function of monomer grafting yield, QCS/TPP weight ratio, and QCS/genipin weight ratio by Box-Behnken design and response surface methodology. The results showed that QCS nanoparticles prepared with a grafting yield of 50%, QCS/TPP weight ratio of 7.67, and QCS/genipin weight ratio of 60 had a particle size of 193.68 ± 44.92 nm, polydispersity of 0.232, zeta potential of +23.97 mV and BSA encapsulation efficiency of 46.37 ± 2.89%, which were close to the predicted values from mathematical models. In vitro drug release studies at pH 1.2 and pH 7.4 exhibited that the release rate of BSA was significantly decreased and the release period was significantly prolonged after QCS nanoparticles cross-linking with genipin. Therefore, QCS nanoparticles cross-linked with TPP/genipin dual cross-linkers may be a promising protein drug carrier for a prolonged and sustained delivery.
Collapse
Affiliation(s)
- Kuo-Yu Chen
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| | - Si-Ying Zeng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan.
| |
Collapse
|
25
|
Liu S, Ho PC. Intranasal administration of brain-targeted HP-β-CD/chitosan nanoparticles for delivery of scutellarin, a compound with protective effect in cerebral ischaemia. J Pharm Pharmacol 2017; 69:1495-1501. [PMID: 28809432 DOI: 10.1111/jphp.12797] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/17/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Scutellarin (SCU) is a traditional Chinese medicine used for the treatment of ischaemic cerebrovascular disease, but its clinic applications have been limited due to its poor water solubility, poor bioavailability and short half-life. In comparison with the conventional oral and intravenous administration, nasal administration may help targeting the drug more directly to brain. Thus, we proposed to employ a novel SCU-loaded HP-β-CD/chitosan nanoparticles (CD/CS-SCU-NPs) to deliver SCU to brain through the nasal route. METHODS CD/CS-SCU-NPs were prepared by an ionic cross-linking method. The NPs formulation was tested in vivo in C57BL mice. The concentrations of SCU in brain and plasma after intranasal and oral administration of the CD/CS-SCU-NPs and after intranasal administration of SCU solution (SCU-SL) were determined and brain targeting parameters were calculated. KEY FINDINGS Compared to the intranasal administration of SCU-SL, intranasal and oral administration of the CD/CS-SCU-NPs increased accumulation of SCU in brain, indicating that CD/CS-SCU-NPs have obvious brain targeting advantage, although the advantage is more evident after intranasal administration. CONCLUSIONS Findings from in-vivo study indicated that much higher SCU brain exposure was observed after intranasal administration of the CD/CS-SCU-NPs. Administration of CD/CS-SCU-NPs through the nasal route would have potential to treat ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Pharmacy, National University of Singapore, Singapore City, Singapore
| | - Paul C Ho
- Department of Pharmacy, National University of Singapore, Singapore City, Singapore
| |
Collapse
|