1
|
Zheng F, Tian R, Lu H, Liang X, Shafiq M, Uchida S, Chen H, Ma M. Droplet Microfluidics Powered Hydrogel Microparticles for Stem Cell-Mediated Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401400. [PMID: 38881184 DOI: 10.1002/smll.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Stem cell-related therapeutic technologies have garnered significant attention of the research community for their multi-faceted applications. To promote the therapeutic effects of stem cells, the strategies for cell microencapsulation in hydrogel microparticles have been widely explored, as the hydrogel microparticles have the potential to facilitate oxygen diffusion and nutrient transport alongside their ability to promote crucial cell-cell and cell-matrix interactions. Despite their significant promise, there is an acute shortage of automated, standardized, and reproducible platforms to further stem cell-related research. Microfluidics offers an intriguing platform to produce stem cell-laden hydrogel microparticles (SCHMs) owing to its ability to manipulate the fluids at the micrometer scale as well as precisely control the structure and composition of microparticles. In this review, the typical biomaterials and crosslinking methods for microfluidic encapsulation of stem cells as well as the progress in droplet-based microfluidics for the fabrication of SCHMs are outlined. Moreover, the important biomedical applications of SCHMs are highlighted, including regenerative medicine, tissue engineering, scale-up production of stem cells, and microenvironmental simulation for fundamental cell studies. Overall, microfluidics holds tremendous potential for enabling the production of diverse hydrogel microparticles and is worthy for various stem cell-related biomedical applications.
Collapse
Affiliation(s)
- Fangqiao Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Ruizhi Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongxu Lu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Liang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hangrong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Ma
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Gheorghita D, Grosu E, Robu A, Ditu LM, Deleanu IM, Gradisteanu Pircalabioru G, Raiciu AD, Bita AI, Antoniac A, Antoniac VI. Essential Oils as Antimicrobial Active Substances in Wound Dressings. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196923. [PMID: 36234263 PMCID: PMC9570933 DOI: 10.3390/ma15196923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/13/2023]
Abstract
Wound dressings for skin lesions, such as bedsores or pressure ulcers, are widely used for many patients, both during hospitalization and in subsequent treatment at home. To improve the treatment and shorten the healing time and, therefore, the cost, numerous types of wound dressings have been developed by manufacturers. Considering certain inconveniences related to the intolerance of some patients to antibiotics and the antimicrobial, antioxidant, and curative properties of certain essential oils, we conducted research by incorporating these oils, based on polyvinyl alcohol/ polyvinyl pyrrolidone (PVA/PVP) biopolymers, into dressings. The objective of this study was to study the potential of a polymeric matrix for wound healing, with polyvinyl alcohol as the main material and polyvinyl pyrrolidone and hydroxypropyl methylcellulose (HPMC) as secondary materials, together with additives (plasticizers poly(ethylene glycol) (PEG) and glycerol), stabilizers (Zn stearate), antioxidants (vitamin A and vitamin E), and four types of essential oils (fennel, peppermint, pine, and thyme essential oils). For all the studied samples, the combining compatibility, antimicrobial, and cytotoxicity properties were investigated. The obtained results demonstrated a uniform morphology for almost all the samples and adequate barrier properties for contact with suppurating wounds. The results show that the obtained samples containing essential oils have a good inhibitory effect on, or antimicrobial properties against, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The MTT assay showed that the tested samples were not toxic and did not lead to cell death. The results showed that the essential oils used provide an effective solution as active substances in wound dressings.
Collapse
Affiliation(s)
- Daniela Gheorghita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Lia Mara Ditu
- Faculty of Biology, University of Bucharest, 1-3 Intr. Portocalelor Street, 060101 Bucharest, Romania
| | - Iuliana Mihaela Deleanu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| | - Anca-Daniela Raiciu
- Faculty of Pharmacy, Titu Maiorescu University, 22 Dambovnicului Street, 040441 Bucharest, Romania
- S.C. Hofigal Import Export S.A., 2 Intrarea Serelor Street, 042124 Bucharest, Romania
| | - Ana-Iulia Bita
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Correspondence:
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
| | - Vasile Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei Street, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei Street, 050094 Bucharest, Romania
| |
Collapse
|
3
|
Liu H, Zhang S, Zhou Z, Xing M, Gao Y. Two-Layer Sustained-Release Microneedles Encapsulating Exenatide for Type 2 Diabetes Treatment. Pharmaceutics 2022; 14:pharmaceutics14061255. [PMID: 35745827 PMCID: PMC9230706 DOI: 10.3390/pharmaceutics14061255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Daily administration of multiple injections can cause inconvenience and reduce compliance in diabetic patients; thus, microneedle (MN) administration is favored due to its various advantages. Accordingly, the two-layer sustained-release MNs (TS-MNs) were fabricated by encapsulating exenatide (EXT) in calcium alginate (CA) gel in this work. The TS-MNs were composed of a sodium alginate (SA) tip and a water-soluble matrix-containing calcium chloride (CaCl2). Subsequently, the calcium ion (Ca2+) contained in the matrix layer penetrated the tip layer for cross-linking, leaving the drug in the cross-linked network. The patches have adequate mechanical strength to pierce the skin; then, the matrix layer is dissolved, leaving the tip layer to achieve sustained release. Additionally, the TS-MNs encapsulating EXT retained high activity during long-term storage at room temperature. The pharmacokinetic results indicated that the plasma concentrations of EXT were sustained for 48 h in the EXT MN group, which agreed with the in vitro release test. Furthermore, they had high relative bioavailability (83.04%). Moreover, the hypoglycemic effect was observed to last for approximately 24 h after a single administration and remained effective after multiple administrations without drug resistance. These results suggest that the TS-MNs are a promising depot for the sustained delivery of encapsulated EXT.
Collapse
Affiliation(s)
- Han Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Zequan Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China; (H.L.); (S.Z.); (Z.Z.); (M.X.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
- Correspondence: ; Tel.: +86-10-82543581
| |
Collapse
|
4
|
Khan F, Atif M, Haseen M, Kamal S, Khan MS, Shahid S, Nami SAA. Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B 2021; 10:170-203. [PMID: 34889937 DOI: 10.1039/d1tb01345a] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absorbent polymers or hydrogel polymer materials have an enhanced water retention capacity and are widely used in agriculture and medicine. The controlled release of bioactive molecules (especially drug proteins) by hydrogels and the encapsulation of living cells are some of the active areas of drug discovery research. Hydrogel-based delivery systems may result in a therapeutically advantageous outcome for drug delivery. They can provide various sequential therapeutic agents including macromolecular drugs, small molecule drugs, and cells to control the release of molecules. Due to their controllable degradability, ability to protect unstable drugs from degradation and flexible physical properties, hydrogels can be used as a platform in which various chemical and physical interactions with encapsulated drugs for controlled release in the system can be studied. Practically, hydrogels that possess biodegradable properties have aroused greater interest in drug delivery systems. The original three-dimensional structure gets broken down into non-toxic substances, thus confirming the excellent biocompatibility of the gel. Chemical crosslinking is a resource-rich method for forming hydrogels with excellent mechanical strength. But in some cases the crosslinker used in the synthesis of the hydrogels may cause some toxicity. However, the physically cross-linked hydrogel preparative method is an alternative solution to overcome the toxicity of cross-linkers. Hydrogels that are responsive to stimuli formed from various natural and synthetic polymers can show significant changes in their properties under external stimuli such as temperature, pH, light, ion changes, and redox potential. Stimulus-responsive hydrogels have a wider range of applications in biomedicine including drug delivery, gene delivery and tissue regeneration. Stimulus-responsive hydrogels loaded with multiple drugs show controlled and sustained drug release and can act as drug carriers. By integrating stimulus-responsive hydrogels, such as those with improved thermal responsiveness, pH responsiveness and dual responsiveness, into textile materials, advanced functions can be imparted to the textile materials, thereby improving the moisture and water retention performance, environmental responsiveness, aesthetic appeal, display and comfort of textiles. This review explores the stimuli-responsive hydrogels in drug delivery systems and examines super adsorbent hydrogels and their application in the field of agriculture.
Collapse
Affiliation(s)
- Faisal Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Atif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Haseen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Shahid Kamal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Shumaila Shahid
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shahab A A Nami
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
5
|
Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. Ther Deliv 2021; 13:51-65. [PMID: 34821516 DOI: 10.4155/tde-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.
Collapse
|
6
|
Báez-Díaz C, Blanco-Blázquez V, Sánchez-Margallo FM, López E, Martín H, Espona-Noguera A, Casado JG, Ciriza J, Pedraz JL, Crisóstomo V. Intrapericardial Delivery of APA-Microcapsules as Promising Stem Cell Therapy Carriers in an Experimental Acute Myocardial Infarction Model. Pharmaceutics 2021; 13:1824. [PMID: 34834235 PMCID: PMC8626005 DOI: 10.3390/pharmaceutics13111824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
The administration of cardiosphere-derived cells (CDCs) after acute myocardial infarction (AMI) is very promising. CDC encapsulation in alginate-poly-l-lysine-alginate (APA) could increase cell survival and adherence. The intrapericardial (IP) approach potentially achieves high concentrations of the therapeutic agent in the infarcted area. We aimed to evaluate IP therapy using a saline vehicle as a control (CON), a dose of 30 × 106 CDCs (CDCs) or APA microcapsules containing 30 × 106 CDCs (APA-CDCs) at 72 h in a porcine AMI model. Magnetic resonance imaging (MRI) was used to determine the left ventricular ejection fraction (LVEF), infarct size (IS), and indexed end diastolic and systolic volumes (EDVi; ESVi) pre- and 10 weeks post-injection. Programmed electrical stimulation (PES) was performed to test arrhythmia inducibility before euthanasia. Histopathological analysis was carried out afterwards. The IP infusion was successful in all animals. At 10 weeks, MRI revealed significantly higher LVEF in the APA-CDC group compared with CON. No significant differences were observed among groups in IS, EDVi, ESVi, PES and histopathological analyses. In conclusion, the IP injection of CDCs (microencapsulated or not) was feasible and safe 72 h post-AMI in the porcine model. Moreover, CDCs APA encapsulation could have a beneficial effect on cardiac function, reflected by a higher LVEF at 10 weeks.
Collapse
Affiliation(s)
- Claudia Báez-Díaz
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Virginia Blanco-Blázquez
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Francisco Miguel Sánchez-Margallo
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Esther López
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Helena Martín
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| | - Albert Espona-Noguera
- Centro de Investigaciones y Estudios Avanzados Lucio Lascaray (CIEA), Laboratorio de Desarrollo y Evaluación de Medicamentos, 01006 Vitoria Gasteiz, Spain; (A.E.-N.); (J.L.P.)
- CIBER bbn, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Javier G. Casado
- Immunology Unit-Institute of Molecular Pathology Biomarkers, Veterinary Faculty, University of Extremadura, 10003 Cáceres, Spain;
| | - Jesús Ciriza
- CIBER bbn, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, 50018 Zaragoza, Spain
| | - José Luis Pedraz
- Centro de Investigaciones y Estudios Avanzados Lucio Lascaray (CIEA), Laboratorio de Desarrollo y Evaluación de Medicamentos, 01006 Vitoria Gasteiz, Spain; (A.E.-N.); (J.L.P.)
- CIBER bbn, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Verónica Crisóstomo
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain; (V.B.-B.); (F.M.S.-M.); (V.C.)
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, 10071 Cáceres, Spain; (E.L.); (H.M.)
| |
Collapse
|
7
|
Kupikowska-Stobba B, Grzeczkowicz M, Lewińska D. A one-step in vitro continuous flow assessment of protein release from core-shell polymer microcapsules designed for therapeutic protein delivery. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Evaluation of calcium alginate bead formation kinetics: An integrated analysis through light microscopy, rheology and microstructural SAXS. Carbohydr Polym 2021; 269:118293. [PMID: 34294319 DOI: 10.1016/j.carbpol.2021.118293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 11/23/2022]
Abstract
Ca(II)-alginate beads are being produced for a broad spectrum of biotechnological uses. Despite the simplicity of their manufacturing process, in these highly complex arrangements, the final properties of the material strongly depend on the supramolecular scaffolding. Here we present a cost-effective automatized Optical Video Microscopy approach for in situ evaluation of the kinetics of alginate bead formation. With simple mathematic modeling of the acquired data, we obtained key parameters that reveal valuable information on the system: the time course of gel-front migration correlates with the plateau of the storage module, and total volume shrinkage is highly related to the stabilization of shear strain and shear stress at the yield point. Our results provide feasible and reproducible tools, which allow for a better interpretation of bead formation kinetics and a rapid screening technique to use while designing gelling materials with specific properties for technological applications.
Collapse
|
9
|
Yin H, Li J, Huang H, Wang Y, Qian X, Ren J, Xue F, Dai J, Tang F. Microencapsulated phages show prolonged stability in gastrointestinal environments and high therapeutic efficiency to treat Escherichia coli O157:H7 infection. Vet Res 2021; 52:118. [PMID: 34521472 PMCID: PMC8439058 DOI: 10.1186/s13567-021-00991-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
Escherichia coli (E. coli) O157:H7 bacterial infection causes severe disease in mammals and results in substantial economic losses worldwide. Due to the development of antibiotic resistance, bacteriophage (phage) therapy has become an alternative to control O157:H7 infection. However, the therapeutic effects of phages are frequently disappointing because of their low resistance to the gastrointestinal environment. In this study, to improve the stability of phages in the gastrointestinal tract, E. coli O157:H7 phages were microencapsulated and their in vitro stability and in vivo therapeutic efficiency were investigated. The results showed that compared to free phages, the resistance of microencapsulated phages to simulated gastric fluid and bile salts significantly increased. The microencapsulated phages were efficiently released into simulated intestinal fluid, leading to a better therapeutic effect in rats infected with E. coli O157:H7 compared to the effects of the free phages. In addition, the microencapsulated phages were more stable during storage than the free phages, showing how phage microencapsulation can play an essential role in phage therapy.
Collapse
Affiliation(s)
- Hanjie Yin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haosheng Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuxin Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinjie Qian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,China Pharmaceutical University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Lab of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Artificial cells for the treatment of liver diseases. Acta Biomater 2021; 130:98-114. [PMID: 34126265 DOI: 10.1016/j.actbio.2021.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Liver diseases have become an increasing health burden and account for over 2 million deaths every year globally. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they also suffer limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. Artificial cells have demonstrated advantages in long-term storage, targeting capability, and tuneable features. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment. First, the design of artificial cells and their biomimicking functions are summarized. Then, systems that mimic cell surface properties are introduced with two concepts highlighted: cell membrane-coated artificial cells and synthetic lipid-based artificial cells. Next, cell microencapsulation strategy is summarized and discussed. Finally, challenges and future perspectives of artificial cells are outlined. STATEMENT OF SIGNIFICANCE: Liver diseases have become an increasing health burden. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they have limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment, including the design of artificial cells and their biomimicking functions, two systems that mimic cell surface properties (cell membrane-coated artificial cells and synthetic lipid-based artificial cells), and cell microencapsulation strategy. We also outline the challenges and future perspectives of artificial cells.
Collapse
|
11
|
Lopez-Mendez TB, Santos-Vizcaino E, Pedraz JL, Orive G, Hernandez RM. Cell microencapsulation technologies for sustained drug delivery: Latest advances in efficacy and biosafety. J Control Release 2021; 335:619-636. [PMID: 34116135 DOI: 10.1016/j.jconrel.2021.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
The development of cell microencapsulation systems began several decades ago. However, today few systems have been tested in clinical trials. For this reason, in the last years, researchers have directed efforts towards trying to solve some of the key aspects that still limit efficacy and biosafety, the two major criteria that must be satisfied to reach the clinical practice. Regarding the efficacy, which is closely related to biocompatibility, substantial improvements have been made, such as the purification or chemical modification of the alginates that normally form the microspheres. Each of the components that make up the microcapsules has been carefully selected to avoid toxicities that can damage the encapsulated cells or generate an immune response leading to pericapsular fibrosis. As for the biosafety, researchers have developed biological circuits capable of actively responding to the needs of the patients to precisely and accurately release the demanded drug dose. Furthermore, the structure of the devices has been subject of study to adequately protect the encapsulated cells and prevent their spread in the body. The objective of this review is to describe the latest advances made by scientist to improve the efficacy and biosafety of cell microencapsulation systems for sustained drug delivery, also highlighting those points that still need to be optimized.
Collapse
Affiliation(s)
- Tania B Lopez-Mendez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), BTI Biotechnology Institute, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
12
|
Hajifathaliha F, Mahboubi A, Bolourchian N, Mohit E, Nematollahi L. Multilayer Alginate Microcapsules For Live Cell Microencapsulation; Is There Any Preference For Selecting Cationic Polymers? IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:173-182. [PMID: 34567154 PMCID: PMC8457712 DOI: 10.22037/ijpr.2020.114096.14660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Since 1980 after introducing the concept of live cell encapsulation by Lim et al., this technology has received enormous attention. Several studies have been conducted to improve this technique; different polymers, either natural or synthetic, have been used as microcapsules` making materials and different substances as coating layers. Literature review leads us to the conclusion that alginate (Alg) multilayer microcapsules and, in particular, alginate-poly l-lysine (PLL)-alginate (APA) are the most used structures for live cell encapsulation. Although, disadvantages of PLL (e.g., weak mechanical strength and low biocompatibility) made researchers work on other cationic polymers to find an alternative. This review aims to discuss more popularly suggested cationic polymers such as poly l-ornithine (PLO), chitosan, etc. As alternatives for PLL and, more importantly, we want to take a closer look to see which one of these systems are closer to clinical applications.
Collapse
Affiliation(s)
- Fariba Hajifathaliha
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Mahboubi
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Noushin Bolourchian
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
13
|
Microencapsulation of Coenzyme Q10 and bile acids using ionic gelation vibrational jet flow technology for oral delivery. Ther Deliv 2020; 11:791-805. [PMID: 33225829 DOI: 10.4155/tde-2020-0082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Developing new delivery dosage forms with robust delivery and safety profiles remains a challenge to the pharmaceutical industry in terms of optimum gut absorption, consistent dosing and bioavailability; particularly for orally administered drugs that are poorly water soluble. Coenzyme Q10 is an example of a poorly water-soluble compound with low bioavailability, and significant inter-individual variation after oral administration; limiting its optimum efficacy, as a powerful antioxidant with significant promise in treating hearing disorders. Microencapsulation technology is one way to optimize drug bioavailability and absorption profile. One example is Ionic Gelation Vibrational Jet Flow techniques, using new encapsulating parameters to determine the nature of formed capsules. Bile acids are an example of an excipient that can be used to improve membrane permeability; and will be examined. This review addresses the applications of microencapsulation technology on oral delivery and efficacy profiles of poorly water-soluble drugs, focusing on Coenzyme Q10.
Collapse
|
14
|
Hajifathaliha F, Mahboubi A, Mohit E, Bolourchian N, Khalaj V, Nematollahi L. Comparison of Linear Poly Ethylene Imine (LPEI) and Poly L-Lysine (PLL) in Fabrication of CHOK 1 Cell-Loaded Multilayer Alginate Microcapsules. Adv Pharm Bull 2020; 10:290-296. [PMID: 32373499 PMCID: PMC7191236 DOI: 10.34172/apb.2020.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/20/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose: Poly l-lysine (PLL) has been introduced as a strengthening covering layer for alginate microcapsules which are the most convenient way for cell encapsulation. Some disadvantages of PLL such as high price and low biocompatibility have prompted scientists to find better alternatives. Linear poly ethylene imine (LPEI), thanks to its highly similar structure to PLL, could be considered as a proper cost-effective alternative. In this study LPEI and PLL were compared as covering layers of cell-loaded alginate-LPEI-alginate (cALA) and alginate-PLL-alginate (cAPA) microcapsules. Methods: In addition to the physico-mechanical properties, the encapsulation efficiency, cell survival post encapsulation, cell viability, and cellular metabolic activity within the microcapsules were evaluated using trypan blue, live/dead cell staining, and MTT test, respectively. Results: Physico-mechanical evaluation of the microcapsules revealed that the cell microencapsulation process did not affect their shape, size, and mechanical stability. Although the encapsulation efficiency for cALA and cAPA was not different (P >0.05), cell survival post encapsulation was higher in cALA than in cAPA (P<0.05) which could be the reason for the higher cell viability and also cellular metabolic activity within these microcapsules in comparison to cAPA. Conclusion: Here, based on these results, ALA could be introduced as a preferable alternative to APA for cell encapsulation.
Collapse
Affiliation(s)
- Fariba Hajifathaliha
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Noushin Bolourchian
- Student Research Committee, Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Khalaj
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Nematollahi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Ashimova A, Yegorov S, Negmetzhanov B, Hortelano G. Cell Encapsulation Within Alginate Microcapsules: Immunological Challenges and Outlook. Front Bioeng Biotechnol 2019; 7:380. [PMID: 31850335 PMCID: PMC6901392 DOI: 10.3389/fbioe.2019.00380] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022] Open
Abstract
Cell encapsulation is a bioengineering technology that provides live allogeneic or xenogeneic cells packaged in a semipermeable immune-isolating membrane for therapeutic applications. The concept of cell encapsulation was first proposed almost nine decades ago, however, and despite its potential, the technology has yet to deliver its promise. The few clinical trials based on cell encapsulation have not led to any licensed therapies. Progress in the field has been slow, in part due to the complexity of the technology, but also because of the difficulties encountered when trying to prevent the immune responses generated by the various microcapsule components, namely the polymer, the encapsulated cells, the therapeutic transgenes and the DNA vectors used to genetically engineer encapsulated cells. While the immune responses induced by polymers such as alginate can be minimized using highly purified materials, the need to cope with the immunogenicity of encapsulated cells is increasingly seen as key in preventing the immune rejection of microcapsules. The encapsulated cells are recognized by the host immune cells through a bidirectional exchange of immune mediators, which induce both the adaptive and innate immune responses against the engrafted capsules. The potential strategies to cope with the immunogenicity of encapsulated cells include the selective diffusion restriction of immune mediators through capsule pores and more recently inclusion in microcapsules of immune modulators such as CXCL12. Combining these strategies with the use of well-characterized cell lines harboring the immunomodulatory properties of stem cells should encourage the incorporation of cell encapsulation technology in state-of-the-art drug development.
Collapse
Affiliation(s)
- Assem Ashimova
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sergey Yegorov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Pedagogical Mathematics and Natural Science, Faculty of Education and Humanities, Suleyman Demirel University, Almaty, Kazakhstan
| | - Baurzhan Negmetzhanov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|