1
|
Yang H, Wang W, Xiao J, Yang R, Feng L, Xu H, Xu L, Xing Y. ROS-responsive injectable hydrogels loaded with exosomes carrying miR-4500 reverse liver fibrosis. Biomaterials 2025; 314:122887. [PMID: 39405826 DOI: 10.1016/j.biomaterials.2024.122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 11/10/2024]
Abstract
The reversal of liver fibrosis requires effective strategies to reduce oxidative stress and inhibition of hepatic stellate cell (HSC) activation. MiR-4500 regulates pathological angiogenesis and collagen mRNA stability, with the potential to inhibit fibrosis. Herein, we explored the inhibition of HSC activation in vitro by exosomes (Exos) carrying miR-4500 and encapsulated ExosmiR-4500 in an intelligent injectable hydrogel with biological activity and reactive oxygen species (ROS) responsiveness for application in oxidative stress environments. Briefly, reversible boronic ester bonds were integrated into gelatin-based hydrogels through dynamic crosslinking of quaternized chitosan (QCS) and 4-carboxyphenylboronic acid (CPBA)-modified gelatin. The QCS-CPBA-Gelatin (QCG) hydrogel scavenged excess ROS from the local microenvironment and released ExosmiR-4500 through the dissociation of boronic ester bonds, providing a favorable microenvironment and in situ sustained-release drug delivery system for ExosmiR-4500. The results showed that QCG@ExosmiR-4500 hydrogel has biocompatibility, biodegradability, and slow-release ability, which could effectively clear ROS and inhibit HSC activation and pathological angiogenesis in vitro and in vivo. Furthermore, transcriptome analysis suggests that the pharmacological mechanism of the QCG@ExosmiR-4500 hydrogel is mainly related to anti-oxidation, anti-angiogenesis, anti-fibrosis processes, and signaling pathways. Thus, our study demonstrates that an intelligently responsive ExosmiR-4500 delivery system based on injectable hydrogels is a promising strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Huili Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Wanshun Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Jiacong Xiao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Rong Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Lian Feng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Hongling Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Liubin Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Yufeng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China.
| |
Collapse
|
2
|
Zhang X, Zhang L, Tian J, Li Y, Wu M, Zhang L, Qin X, Gong L. The application and prospects of drug delivery systems in idiopathic pulmonary fibrosis. BIOMATERIALS ADVANCES 2025; 168:214123. [PMID: 39615374 DOI: 10.1016/j.bioadv.2024.214123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease primarily affecting elderly individuals aged >65 years and has a poor prognosis. No effective treatment is currently available for IPF. The two antipulmonary fibrosis drugs nintedanib and pirfenidone approved by the FDA in the United States have somewhat decelerated IPF progression. However, the side effects of these drugs can lead to poor patient tolerance and compliance with the medications. Researchers have recently developed various methods for IPF treatment, such as gene silencing and pathway inhibitors, which hold great promise in IPF treatment. Nevertheless, the nonselectivity and nonspecificity of drugs often affect their efficacies. Drug delivery systems (DDS) are crucial for delivering drugs to specific target tissues or cells, thereby minimizing potential side effects, enhancing drug bioavailability, and reducing lung deposition. This review comprehensively summarizes the current state of DDS and various delivery strategies for IPF treatment (e.g., nano-delivery, hydrogel delivery, and biological carrier delivery) to completely expound the delivery mechanisms of different drug delivery carriers. Subsequently, the advantages and disadvantages of different DDS are fully discussed. Finally, the challenges and difficulties associated with the use of different DDS are addressed so as to accelerate their rapid clinical translation.
Collapse
Affiliation(s)
- Xi Zhang
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China; Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Jiahua Tian
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunfei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Manli Wu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Longju Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China.
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China.
| |
Collapse
|
3
|
Su X, Zhong H, Zeng Y, Zhang Y, Zhang B, Guo W, Huang Q, Ye Y. Dual-ligand-functionalized nanostructured lipid carriers as a novel dehydrocavidine delivery system for liver fibrosis therapy. Colloids Surf B Biointerfaces 2025; 246:114376. [PMID: 39551037 DOI: 10.1016/j.colsurfb.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Liver fibrosis is a common stage of various chronic liver diseases, often developing into liver cirrhosis, and even liver cancer. Activated hepatic stellate cells (aHSCs) have been shown to promote the development of liver fibrosis. Therefore, dual-targeted combination therapy for liver may be an effective strategy for the treatment of liver fibrosis. PURPOSE In this study, the novel nanostructured lipid carriers (GA&GalNH2-DC-NLCs) were prepared for Dehydrocavidine (DC), glycyrrhetinic acid (GA) and galactose-PEG2000-NH2 (GalNH2) were selected as targeted ligand-modified nanostructured lipid carriers (NLCs), which enables dual-targeting to the liver for the treatment of liver fibrosis. STUDY DESIGN To study the targeting effect of GA&GalNH2-DC-NLCs on liver and its therapeutic effect on liver fibrosis, we established aHSC-T6 cell model and rat model of liver fibrosis for study. RESULTS GA&GalNH2-DC-NLCs promoted drug liver targeting efficiency and apoptosis rate by upregulating the expression of Bax. It showed that compared with no and/or GA-modified NLCs and GalNH2-modified NLCs, GA&GalNH2-DC-NLCs exhibited less extracellular matrix (ECM) deposition, induced apoptosis of aHSCs, and stronger anti-fibrosis effects in vivo. This may be due the fact that GA or GalNH2-modifified NLCs simultaneously block HSCs activation and inhibit the IL-6/STAT3 pathway. CONCLUSION GA&GalNH2-DC-NLCs is thus a potential strategy for liver fibrosis treatment.
Collapse
Affiliation(s)
- Xiaodan Su
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Huashuai Zhong
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Yongzhu Zeng
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yuyan Zhang
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin 541199, China
| | - Wei Guo
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Qiujie Huang
- Department of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China.
| | - Yong Ye
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning 530021, China; Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Nanning 530021, China.
| |
Collapse
|
4
|
Liu MX, Cai YT, Wang RJ, Zhu PF, Liu YC, Sun H, Ling Y, Zhu WZ, Chen J, Zhang XL. Aggregation-Induced Emission CN-Based Nanoparticles to Alleviate Hypoxic Liver Fibrosis via Triggering HSC Ferroptosis and Enhancing Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33021-33037. [PMID: 38888460 DOI: 10.1021/acsami.4c04361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Hypoxia can lead to liver fibrosis and severely limits the efficacy of photodynamic therapy (PDT). Herein, carbon nitride (CN)-based hybrid nanoparticles (NPs) VPSGCNs@TSI for light-driven water splitting were utilized to solve this problem. CNs were doped with selenide glucose (Se-glu) to enhance their red/NIR region absorption. Then, vitamin A-poly(ethylene glycol) (VA-PEG) fragments and aggregation-induced emission (AIE) photosensitizers TSI were introduced into Se-glu-doped CN NPs (VPSGCNs) to construct VPSGCNs@TSI NPs. The introduction of VA-PEG fragments enhanced the targeting of the NPs to activated hepatic stellate cells (HSCs) and reduced their toxicity to ordinary liver cells. VPSGCN units could trigger water splitting to generate O2 under 660 nm laser irradiation, improve the hypoxic environment of the fibrosis site, downregulate HIF-1α expression, and activate HSC ferroptosis via the HIF-1α/SLC7A11 pathway. In addition, generated O2 could also increase the reactive oxygen species (ROS) production of TSI units in a hypoxic environment, thereby completely reversing hypoxia-triggered PDT resistance to enhance the PDT effect. The combination of water-splitting materials and photodynamic materials showed a 1 + 1 > 2 effect in increasing oxygen levels in liver fibrosis, promoting ferroptosis of activated HSCs and reversing PDT resistance caused by hypoxia.
Collapse
Affiliation(s)
- Ming-Xuan Liu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yu-Ting Cai
- School of Pharmacy, Nantong University, Nantong 226001, PR China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | - Ruo-Jia Wang
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Peng-Fei Zhu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yan-Chao Liu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Hao Sun
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Wei-Zhong Zhu
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | - Xiao-Ling Zhang
- School of Pharmacy, Nantong University, Nantong 226001, PR China
| |
Collapse
|
5
|
Zhang H, Li Y, Liu Y. An updated review of the pharmacological effects and potential mechanisms of hederagenin and its derivatives. Front Pharmacol 2024; 15:1374264. [PMID: 38962311 PMCID: PMC11220241 DOI: 10.3389/fphar.2024.1374264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Hederagenin (HG) is a natural pentacyclic triterpenoid that can be isolated from various medicinal herbs. By modifying the structure of HG, multiple derivatives with superior biological activities and safety profiles have been designed and synthesized. Accumulating evidence has demonstrated that HG and its derivatives display multiple pharmacological activities against cancers, inflammatory diseases, infectious diseases, metabolic diseases, fibrotic diseases, cerebrovascular and neurodegenerative diseases, and depression. Previous studies have confirmed that HG and its derivatives combat cancer by exerting cytotoxicity, inhibiting proliferation, inducing apoptosis, modulating autophagy, and reversing chemotherapy resistance in cancer cells, and the action targets involved mainly include STAT3, Aurora B, KIF7, PI3K/AKT, NF-κB, Nrf2/ARE, Drp1, and P-gp. In addition, HG and its derivatives antagonize inflammation through inhibiting the production and release of pro-inflammatory cytokines and inflammatory mediators by regulating inflammation-related pathways and targets, such as NF-κB, MAPK, JAK2/STAT3, Keap1-Nrf2/HO-1, and LncRNA A33/Axin2/β-catenin. Moreover, anti-pathogen, anti-metabolic disorder, anti-fibrosis, neuroprotection, and anti-depression mechanisms of HG and its derivatives have been partially elucidated. The diverse pharmacological properties of HG and its derivatives hold significant implications for future research and development of new drugs derived from HG, which can lead to improved effectiveness and safety profiles.
Collapse
Affiliation(s)
- Huize Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Li X, Yu M, Zhao Q, Yu Y. Prospective therapeutics for intestinal and hepatic fibrosis. Bioeng Transl Med 2023; 8:e10579. [PMID: 38023697 PMCID: PMC10658571 DOI: 10.1002/btm2.10579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
Currently, there are no effective therapies for intestinal and hepatic fibrosis representing a considerable unmet need. Breakthroughs in pathogenesis have accelerated the development of anti-fibrotic therapeutics in recent years. Particularly, with the development of nanotechnology, the harsh environment of the gastrointestinal tract and inaccessible microenvironment of fibrotic lesions seem to be no longer considered a great barrier to the use of anti-fibrotic drugs. In this review, we comprehensively summarize recent preclinical and clinical studies on intestinal and hepatic fibrosis. It is found that the targets for preclinical studies on intestinal fibrosis is varied, which could be divided into molecular, cellular, and tissues level, although little clinical trials are ongoing. Liver fibrosis clinical trials have focused on improving metabolic disorders, preventing the activation and proliferation of hepatic stellate cells, promoting the degradation of collagen, and reducing inflammation and cell death. At the preclinical stage, the therapeutic strategies have focused on drug targets and delivery systems. At last, promising remedies to the current challenges are based on multi-modal synergistic and targeted delivery therapies through mesenchymal stem cells, nanotechnology, and gut-liver axis providing useful insights into anti-fibrotic strategies for clinical use.
Collapse
Affiliation(s)
- Xin Li
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Mengli Yu
- Department of Gastroenterology, The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yang Yu
- College of Pharmaceutical SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
7
|
Baiken Y, Markhametova Z, Ashimova A, Zhulamanova A, Nogaibayeva A, Kozina L, Matkarimov B, Aituov B, Gaipov A, Myngbay A. Elevated Levels of Plasma Collagen Triple Helix Repeat Containing 1 (CTHRC1) Is Strongly Associated with eGFR and Albuminuria in Chronic Kidney Disease. Medicina (B Aires) 2023; 59:medicina59040651. [PMID: 37109608 PMCID: PMC10146339 DOI: 10.3390/medicina59040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Chronic kidney disease (CKD) has various etiologies, making it impossible to fully understand its complex pathophysiology. Elevated levels of plasma creatinine, proteinuria, and albuminuria and declined eGFR are traits observed in CKD patients. The current study attempts to highlight the collagen triple helix repeat containing 1 (CTHRC1) protein as a putative blood biomarker for CKD in addition to existing recognized indicators of CKD progression. Methods: A total of 26 CKD patients and 18 healthy controls were enrolled in this study. Clinical characteristics and complete blood and biochemical analyses were collected, and human ELISA kits were used to detect possible CKD biomarkers. Results: The study’s findings showed that CTHRC1 correlates with key clinical markers of kidney function such as 24 h urine total protein, creatinine, urea, and uric acid. In addition, CTHRC1 demonstrated a strong significant difference (p ≤ 0.0001) between the CKD and control group. Conclusions: Our research demonstrates that the plasma level of CTHRC1 can distinguish between those with CKD and healthy patients. Plasma CTHRC1 levels may aid in the diagnosis of CKD given the current state of knowledge, and these results call for further investigation in a wider, more diverse patient group.
Collapse
|
8
|
Hironaka T, Takizawa N, Yamauchi Y, Horii Y, Nakaya M. The well-developed actin cytoskeleton and Cthrc1 expression by actin-binding protein drebrin in myofibroblasts promote cardiac and hepatic fibrosis. J Biol Chem 2023; 299:102934. [PMID: 36690273 PMCID: PMC9988570 DOI: 10.1016/j.jbc.2023.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Fibrosis is mainly triggered by inflammation in various tissues, such as heart and liver tissues, and eventually leads to their subsequent dysfunction. Fibrosis is characterized by the excessive accumulation of extracellular matrix proteins (e.g., collagens) produced by myofibroblasts. The well-developed actin cytoskeleton of myofibroblasts, one of the main features differentiating them from resident fibroblasts in tissues under inflammatory conditions, contributes to maintaining their ability to produce excessive extracellular matrix proteins. However, the molecular mechanisms via which the actin cytoskeleton promotes the production of fibrosis-related genes in myofibroblasts remain unclear. In this study, we found, via single-cell analysis, that developmentally regulated brain protein (drebrin), an actin-binding protein, was specifically expressed in cardiac myofibroblasts with a well-developed actin cytoskeleton in fibrotic hearts. Moreover, our immunocytochemistry analysis revealed that drebrin promoted actin cytoskeleton formation and myocardin-related transcription factor-serum response factor signaling. Comprehensive single-cell analysis and RNA-Seq revealed that the expression of collagen triple helix repeat containing 1 (Cthrc1), a fibrosis-promoting secreted protein, was regulated by drebrin in cardiac myofibroblasts via myocardin-related transcription factor-serum response factor signaling. Furthermore, we observed the profibrotic effects of drebrin exerted via actin cytoskeleton formation and the Cthrc1 expression regulation by drebrin in liver myofibroblasts (hepatic stellate cells). Importantly, RNA-Seq demonstrated that drebrin expression levels increased in human fibrotic heart and liver tissues. In summary, our results indicated that the well-developed actin cytoskeleton and Cthrc1 expression due to drebrin in myofibroblasts promoted cardiac and hepatic fibrosis, suggesting that drebrin is a therapeutic target molecule for fibrosis.
Collapse
Affiliation(s)
- Takanori Hironaka
- Department of Disease Control, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Noburo Takizawa
- Department of Disease Control, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuto Yamauchi
- Department of Disease Control, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuma Horii
- Department of Disease Control, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Michio Nakaya
- Department of Disease Control, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
9
|
Xu T, Liu X, Wang S, Kong H, Yu X, Liu C, Song H, Gao P, Zhang X. Effect of Pheretima aspergillum on reducing fibrosis: A systematic review and meta-analysis. Front Pharmacol 2022; 13:1039553. [PMID: 36618931 PMCID: PMC9816480 DOI: 10.3389/fphar.2022.1039553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/07/2022] [Indexed: 12/25/2022] Open
Abstract
Background: Pheretima aspergillum (common name: Earthworm, Chinese name: dilong) has been used in traditional Chinese medicine for thousands of years. Recently, a few scientific studies have investigated the antifibrotic effects of Dilong extract (DE) and produced controversial results. We conducted a meta-analysis to make an informed decision on the antifibrotic effects of Dilong extract. Methods: The studies on antifibrotic effects of Dilong extract published until July 2022 in the scientific databases [PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), VIP database for Chinese Technical Periodicals, SinoMed and WanFang database] were reviewed. The RevMan 5.4.1 software was used for standardized mean difference (SMD) analysis. Two researchers independently reviewed all the studies, and their quality was assessed using the Cochrane risk of bias tool. Results: A total of 325 studies were found in the scientific databases; however, only 13 studies met the criteria for analysis. Dilong extract treatment was associated with antifibrotic effects via inhibiting the transforming growth factor beta 1 (TGF-β1, SMD = -3.16, 95% CI: -4.18, -2.14, p < .00001) and alpha-smooth muscle actin (α-SMA: SMD = -2.57, 95% CI: -3.47, -1.66, p < .00001). Conclusion: Dilong extract effectively reduces tissue fibrosis; thus, further scientific studies should be conducted to investigate and develop it for clinical use. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022357141.
Collapse
Affiliation(s)
- Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaonan Liu
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojun Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Congying Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huaying Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Peng Gao, ; Xin Zhang,
| | - Xin Zhang
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Peng Gao, ; Xin Zhang,
| |
Collapse
|
10
|
Imai K, Ishimoto T, Doke T, Tsuboi T, Watanabe Y, Katsushima K, Suzuki M, Oishi H, Furuhashi K, Ito Y, Kondo Y, Maruyama S. Long non-coding RNA lnc-CHAF1B-3 promotes renal interstitial fibrosis by regulating EMT-related genes in renal proximal tubular cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:139-150. [PMID: 36700051 PMCID: PMC9841231 DOI: 10.1016/j.omtn.2022.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Renal interstitial fibrosis (RIF) is a common pathological manifestation of chronic kidney diseases. Epithelial-mesenchymal transition (EMT) of tubular epithelial cells is considered a major cause of RIF. Although long non-coding RNAs (lncRNAs) are reportedly involved in various pathophysiological processes, the roles and underlying molecular mechanisms of lncRNAs in the progression of RIF are poorly understood. In this study, we investigated the function of lncRNAs in RIF. Microarray assays showed that expression of the lncRNA lnc-CHAF1B-3 (also called claudin 14 antisense RNA 1) was significantly upregulated in human renal proximal tubular cells by both transforming growth factor-β1 (TGF-β1) and hypoxic stimulation, accompanied with increased expression of EMT-related genes. Knockdown of lnc-CHAF1B-3 significantly suppressed TGF-β1-induced upregulated expression of collagen type I alpha 1, cadherin-2, plasminogen activator inhibitor-1, snail family transcriptional repressor I (SNAI1) and SNAI2. Quantitative reverse transcriptase PCR analyses of paraffin-embedded kidney biopsy samples from IgA nephropathy patients revealed lnc-CHAF1B-3 expression was correlated positively with urinary protein levels and correlated negatively with estimated glomerular filtration rate. In situ hybridization demonstrated that lnc-CHAF1B-3 is expressed only in proximal tubules. These findings suggest lnc-CHAF1B-3 affects the progression of RIF by regulating EMT-related signaling. Thus, lnc-CHAF1B-3 is a potential target in the treatment of RIF.
Collapse
Affiliation(s)
- Kentaro Imai
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan,Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan,Corresponding author: Takuji Ishimoto, Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan.
| | - Tomohito Doke
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toshiki Tsuboi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yu Watanabe
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Keisuke Katsushima
- Department of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Miho Suzuki
- Department of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hideto Oishi
- Department of Nephrology, Komaki City Hospital, Komaki, Aichi, 485-8520, Japan
| | - Kazuhiro Furuhashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Yutaka Kondo
- Department of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
11
|
Jiao S, Huang W, Cao Z, Chen Y, Chen S, Yang Z, Wang W, Yao H, Wang X, Li Z, Zhang L. Design, synthesis and biological evaluation studies of novel anti-fibrosis agents bearing sulfoxide moiety. Bioorg Med Chem 2022; 75:117096. [PMID: 36395681 DOI: 10.1016/j.bmc.2022.117096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Fibrosis, a chronic disease with high morbidity and mortality, is mainly characterized by excessive accumulation of extracellular matrix (ECM). At present, pathogenesis of fibrosis is incompletely understood, and there is an urgent need to develop safe and effective drugs. In this study, we designed and synthesized a series of novel small-molecule compounds through structural modification and fragment hybridization. Among them, a potential anti-fibrosis drug compd.1 was founded to be able to dose-dependently down-regulate ACTA2 and CTGF mRNA levels in human hepatic stellate cells (LX-2) treated with TGF-β. In addition, compd.1 significantly improved the bridging fibrosis and collagen content in the CCl4-induced liver fibrosis mice model. Moreover, compd.1 reduced lung inflammation and fibrotic area in bleomycin-induced pulmonary fibrosis mice model. These findings suggested that compd.1 is a promising candidate for further anti-fibrosis researches, and extended chemical space might help us to explore better anti-fibrosis drug.
Collapse
Affiliation(s)
- Shixuan Jiao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wanqiu Huang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhijun Cao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ya Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Siliang Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhongcheng Yang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenxin Wang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huixin Yao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuekun Wang
- College of Pharmacy, Liaocheng University, Liaocheng 252059, China
| | - Zheng Li
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Luyong Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Biswas S, Yadav N, Juneja P, Mourya AK, Kaur S, Tripathi DM, Chauhan VS. Conformationally Restricted Dipeptide-Based Nanoparticles for Delivery of siRNA in Experimental Liver Cirrhosis. ACS OMEGA 2022; 7:36811-36824. [PMID: 36278038 PMCID: PMC9583317 DOI: 10.1021/acsomega.2c05292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Liver cirrhosis is a major health problem with multiple associated complications. The presently available drug delivery systems showed moderate site-specific delivery of antifibrotic molecules to the diseased liver; therefore, research on more effective and selective delivery systems in the context of liver cirrhosis remains a necessity in clinical investigation. The aim of the present study was to develop a peptide-based targeted nanocarrier to deliver an oligonucleotide to the hepatic sinusoidal and perivascular regions of the cirrhotic liver. We have synthesized and characterized a conformationally restricted targeted pentapeptide (RΔFRGD), which contains an unnatural amino acid, α,β-dehydrophenylalanine (ΔF). The RΔFRGD self-assembled into spherical nanoparticles (NPs) and was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Next, we investigated the delivery potential of the pentapeptide-based NPs to make a stable complex with a well-established small interference RNA and studied its site-specific delivery in experimental liver cirrhosis. We used siNR4A1 of the orphan nuclear receptor 4A1 (NR4A1), a well-known regulatory checkpoint for controlling liver fibrosis. Peptide NPs and their complex with siNR4A1 showed high biocompatibility against various mammalian cell lines. Hepatic tissue biodistribution analysis illustrated that targeted NPs predominantly accumulated in the cirrhotic liver compared to normal rats, specifically in sinusoidal and perivascular areas. A significant downregulation of the NR4A1 mRNA expression (-70%) andlower levels of the NR4A1/GAPDH ratio (-55%) were observed in the RΔFRGD-siNR4A1 nanocomplex-treated group in comparison to the RΔFRGD-vehicle group (RΔFRGD-Veh) at the gene and protein levels, respectively. In addition, in vivo inhibition of NR4A1 produced a significant aggravation in hepatic fibrosis compared with siRNA-vehicle-treated rats (+41% in the MT stain). The novel pentapeptide-based targeted delivery system can be further evaluated and validated for therapeutic purposes in various pathological conditions.
Collapse
Affiliation(s)
- Saikat Biswas
- International
Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi 110067, India
| | - Nitin Yadav
- International
Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi 110067, India
| | - Pinky Juneja
- Institute
of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| | | | - Savneet Kaur
- Institute
of Liver and Biliary Sciences, New Delhi, Delhi 110070, India
| | | | - Virander Singh Chauhan
- International
Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi 110067, India
| |
Collapse
|
13
|
D-Carvone Attenuates CCl 4-Induced Liver Fibrosis in Rats by Inhibiting Oxidative Stress and TGF-ß 1/SMAD3 Signaling Pathway. BIOLOGY 2022; 11:biology11050739. [PMID: 35625467 PMCID: PMC9138456 DOI: 10.3390/biology11050739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022]
Abstract
D-carvone is a natural monoterpene found in abundance in the essential oil of aromatic medicinal plants with a wide range of pharmacological values. However, the impact of D-carvone on liver fibrosis remains unclear. This study aimed to evaluate the anti-fibrotic potential of D-carvone in a rat model of liver fibrosis and to clarify the possible underlying mechanisms. Liver fibrosis was induced in rats by carbon tetrachloride, CCl4 (2.5 mL/kg, interperitoneally every 72 h for 8 weeks). Oral treatment of rats with D-carvone (50 mg/kg, daily) started on the 3rd week of CCl4 administration. D-carvone significantly enhanced liver functions (ALT, AST), oxidant/antioxidant status (MDA, SOD, GSH, total antioxidant capacity; TAC), as well as histopathological changes. Moreover, D-carvone effectively attenuated the progression of liver fibrosis, evident by the decreased collagen deposition and fibrosis score by Masson trichrome staining (MT) and α-SMA protein expression. Moreover, D-carvone administration resulted in a significant downregulation of the pro-fibrogenic markers TGF-β1 and SMAD3 and upregulation of MMP9. These findings reveal the anti-fibrotic effect of D-carvone and suggest regulation of the TGF-β1/SMAD3 pathway, together with the antioxidant activity as a mechanistic cassette, underlines this effect. Therefore, D-carvone could be a viable candidate for inhibiting liver fibrosis and other oxidative stress-related hepatic diseases. Clinical studies to support our hypothesis are warranted.
Collapse
|
14
|
Gu L, Zhang F, Wu J, Zhuge Y. Nanotechnology in Drug Delivery for Liver Fibrosis. Front Mol Biosci 2022; 8:804396. [PMID: 35087870 PMCID: PMC8787125 DOI: 10.3389/fmolb.2021.804396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a reversible disease course caused by various liver injury etiologies, and it can lead to severe complications, such as liver cirrhosis, liver failure, and even liver cancer. Traditional pharmacotherapy has several limitations, such as inadequate therapeutic effect and side effects. Nanotechnology in drug delivery for liver fibrosis has exhibited great potential. Nanomedicine improves the internalization and penetration, which facilitates targeted drug delivery, combination therapy, and theranostics. Here, we focus on new targets and new mechanisms in liver fibrosis, as well as recent designs and development work of nanotechnology in delivery systems for liver fibrosis treatment.
Collapse
Affiliation(s)
- Lihong Gu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Zhang
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Yuzheng Zhuge
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
15
|
Ren L, Li J, Liu L, Wu W, Zhao D, Zhang K, Xin X, Yang L, Yin L. Resolving hepatic fibrosis via suppressing oxidative stress and an inflammatory response using a novel hyaluronic acid modified nanocomplex. Biomater Sci 2021; 9:8259-8269. [PMID: 34761752 DOI: 10.1039/d1bm01499d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic fibrosis remains a serious threat to human health globally and there are no effective antifibrotic pharmacotherapeutic strategies, to date. Upon the activation of hepatic stellate cells, excess deposition of the extracellular matrix occurs, acting as a trigger that generates reactive oxygen species and an inflammatory response, thereby exacerbating the development of hepatic fibrosis and inflammation. In this study, we incorporated an idea that targets key pathways for developing novel anti-fibrosis nanomedicine. Previous studies have reported the potential of LY294002 (LY) as a PI3K/Akt inhibitor that suppresses the HSC activation and fibrosis development; however, its poor water solubility impedes further investigation. Moreover, the proliferation of HSC, severe oxidative stress and inflammatory conditions could be undermined by oridonin (ORD) treatment. Herein, we developed an HA-ORD/LY-Lips nanocomplex, where LY294002 was encapsulated into liposomes to prepare LY-Lips while ORD was conjugated with a hyaluronic acid (HA) polymer acting as a prodrug HA-ORD. The complex exerts great potential in improving the liver-targeted drug release. We adopted a series of in vitro and in vivo evaluations which demonstrate that HA-ORD/LY-Lips can significantly avert activation of hepatic stellate cells via scavenging reactive oxygen species and suppressing an inflammatory response. Our work implements a proof of concept strategy for fibrosis treatment based on the dual antioxidative and anti-inflammatory mechanisms, which may be applicable to treat liver fibrosis associated with a dysregulated inflammatory microenvironment.
Collapse
Affiliation(s)
- Lianjie Ren
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China. .,Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China. .,Center for Drug Evaluation, NMPA, Beijing 100022, China
| | - Jingjing Li
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China. .,Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lisha Liu
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China. .,Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Wantao Wu
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China. .,Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Di Zhao
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China. .,Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Kai Zhang
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China. .,Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaofei Xin
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China. .,Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Yang
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China. .,Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lifang Yin
- Jiangsu Province Engineering Research Center for R&D and Evaluation of Intelligent Drugs and Key Functional Excipients, China Pharmaceutical University, Nanjing 210009, China. .,Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
16
|
Yeh CF, Chou C, Yang KC. Mechanotransduction in fibrosis: Mechanisms and treatment targets. CURRENT TOPICS IN MEMBRANES 2021; 87:279-314. [PMID: 34696888 DOI: 10.1016/bs.ctm.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
To perceive and integrate the environmental cues, cells and tissues sense and interpret various physical forces like shear, tensile, and compression stress. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical and mechanical signals to guide cell fate and achieve tissue homeostasis. Disruption of this mechanical homeostasis by tissue injury elicits multiple cellular responses leading to pathological matrix deposition and tissue stiffening, and consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes, leading to tissue/organ fibrosis. This review focuses on the molecular mechanisms linking mechanotransduction to fibrosis and uncovers the potential therapeutic targets to halt or resolve fibrosis.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Caroline Chou
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Washington University in St. Louis, St. Louis, MO, United States
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
17
|
Li SS, Sun Q, Hua MR, Suo P, Chen JR, Yu XY, Zhao YY. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front Pharmacol 2021; 12:719880. [PMID: 34483931 PMCID: PMC8415231 DOI: 10.3389/fphar.2021.719880] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis. Wnt signaling is induced, and β-catenin is activated, associated with the development and progression of renal fibrosis. Wnt/β-catenin controls the expression of various downstream mediators such as snail1, twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1, transient receptor potential canonical 6, and renin-angiotensin system components in epithelial cells, fibroblast, and macrophages. In addition, Wnt/β-catenin is usually intertwined with other signaling pathways to promote renal interstitial fibrosis. Actually, given the crucial of Wnt/β-catenin signaling in renal fibrogenesis, blocking this signaling may benefit renal interstitial fibrosis. There are several antagonists of Wnt signaling that negatively control Wnt activation, and these include soluble Fzd-related proteins, the family of Dickkopf 1 proteins, Klotho and Wnt inhibitory factor-1. Furthermore, numerous emerging small-molecule β-catenin inhibitors cannot be ignored to prevent and treat renal fibrosis. Moreover, we reviewed the knowledge focusing on anti-fibrotic effects of natural products commonly used in kidney disease by inhibiting the Wnt/β-catenin signaling pathway. Therefore, in this review, we summarize recent advances in the regulation, downstream targets, role, and mechanisms of Wnt/β-catenin signaling in renal fibrosis pathogenesis. We also discuss the therapeutic potential of targeting this pathway to treat renal fibrosis; this may shed new insights into effective treatment strategies to prevent and treat renal fibrosis.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China.,The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China.,The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Meng-Ru Hua
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Jia-Rong Chen
- Department of Clinical Pharmacy, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| |
Collapse
|