1
|
ATM deficiency aggravates the progression of liver fibrosis induced by carbon tetrachloride in mice. Toxicology 2023; 484:153397. [PMID: 36526012 DOI: 10.1016/j.tox.2022.153397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Ataxia telangiectasia mutated (ATM) is a pivotal sensor during the DNA damage response that slows cell passage through the cell cycle checkpoints to facilitate DNA repair, and liver fibrosis is an irreversible pathological consequence of the sustained wound-healing process, However, the effects of ATM on the development of liver fibrosis are still not fully understood. Therefore, the aim of the study was to investigate the effects and potential mechanisms of ATM on the progression of liver fibrosis. Wild-type and ATM-deficient were administered with carbon tetrachloride (CCl4, 5 ml/kg, i.p.) for 8 weeks to induce liver fibrosis, and the liver tissues and serum were collected for analysis. KU-55933 (10 μM) was used to investigate the effects of ATM blockage on CCl4-induced hepatocyte injury in vitro. The results showed that ATM deficiency aggravated the increased serum transaminase levels and liver MDA, HYP, and 8-OHdG contents compared with the model group (p < 0.05). Sirius red staining showed that ATM deficiency exacerbated liver collagen deposition in vivo, which was associated with the activation of TGF-β1/Smad2 signaling. Furthermore, blocking ATM with KU-55933 exacerbated the production of ROS and DNA damage caused by CCl4 exposure in HepG2 cells, and KU-55933 treatment also reversed the downregulated expression of CDK1 and CDK2 after CCl4 exposure in vitro. Moreover, the loss of ATM perturbed the regulation of the hepatic cell ChK2-CDC25A/C-CDK1/2 cascade and apoptosis in vivo, which was accompanied by increased Ki67-positive and TUNEL-positive cells after chronic CCl4 treatment. In conclusion, our results indicated that ATM might be a critical regulator of liver fibrosis progression, and the underlying mechanisms of exacerbated liver fibrosis development in ATM-deficient mice might be associated with the dysregulation of hepatic cell proliferation and apoptosis.
Collapse
|
2
|
Zhao S, Fan S, Shi Y, Ren H, Hong H, Gao X, Zhang M, Qin Q, Li H. Propranolol induced apoptosis and autophagy via the ROS/JNK signaling pathway in Human Ovarian Cancer. J Cancer 2020; 11:5900-5910. [PMID: 32922532 PMCID: PMC7477428 DOI: 10.7150/jca.46556] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023] Open
Abstract
Propranolol has a significant anti-cancer effect towards various cancers. Our study aimed at investigating the underlying mechanism of Propranolol's therapeutic effect towards ovarian cancer. Specifically, Propranolol significantly reduced the viability of human ovarian cancer cell lines SKOV-3 and A2780 in a dose- and time-dependent manner. Flow cytometry analysis revealed that Propranolol induced the cell cycle arrest at G2/M phase therefore leading to apoptosis. Moreover, autophagy inhibitor 3-MA markedly enhanced the Propranolol-induced apoptosis. In addition, reactive oxygen species (ROS) increased dramatically after Propranolol treatment and Propranolol activated the phosphorylation of JNK. What is more, p38 inhibitor SB203580 and JNK inhibitor SP600125 attenuated the upregulated expression of LC3-II and cleaved-caspase-3 by the effect of Propranolol. ROS exclusive inhibitor antioxidant N-acetyl cysteine (NAC) weakens the phosphorylation of JNK proteins induced by Propranolol. In summary, these results suggested that Propranolol induced cell apoptosis and protective autophagy through the ROS/JNK signaling pathway in human ovarian cancer cells.
Collapse
Affiliation(s)
- Shujun Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Zhengzhou, 450000, P.R.China.,Zhengzhou Key Laboratory of Gynecological Oncology, 450052 Zhengzhou, China
| | - Suzhen Fan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Zhengzhou, 450000, P.R.China
| | - Yanyu Shi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Zhengzhou, 450000, P.R.China
| | - Hongyan Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Zhengzhou, 450000, P.R.China
| | - Hanqing Hong
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Zhengzhou, 450000, P.R.China
| | - Xiang Gao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Zhengzhou, 450000, P.R.China
| | - Min Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Zhengzhou, 450000, P.R.China
| | - Qiaohong Qin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Zhengzhou, 450000, P.R.China
| | - Hongyu Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, No.7 Kangfuqian Street, Zhengzhou, 450000, P.R.China.,Zhengzhou Key Laboratory of Gynecological Oncology, 450052 Zhengzhou, China
| |
Collapse
|
3
|
Tu HF, Chen MY, Lai JCY, Chen YL, Wong YW, Yang CC, Chen HY, Hsia SM, Shih YH, Shieh TM. Arecoline-regulated ataxia telangiectasia mutated expression level in oral cancer progression. Head Neck 2019; 41:2525-2537. [PMID: 30821076 DOI: 10.1002/hed.25718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 01/02/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ataxia telangiectasia mutated (ATM) regulates DNA repair and cell cycle. The present study analyzed arecoline-induced ATM expression during oral cancer progression. METHODS In vitro studies were performed using oral squamous cell carcinoma (OSCC) cell lines treated with arecoline to analyze cell response and ATM regulation. in vivo studies were performed using immunohistochemistry to detect ATM expression in normal, oral potentially malignant disorder (OPMD), and OSCC tissues. RESULTS Low-dose arecoline induced cell proliferation, ATM promoter activity, and DNA repair. High-dose arecoline induced cell cycle arrest, apoptosis, and DNA damage. ATM was overexpressed in OPMD tissues but was downregulated in OSCC tissues. ATM expression level was associated with the risk of developing dysplasia, buccal-OSCC, and with OSCC survival rate. CONCLUSION High ATM expression helps DNA repair mechanisms to maintain the cells in the OPMD stage, but low ATM expression causes DNA damage accumulation to increase cell malignancy.
Collapse
Affiliation(s)
- Hsi-Feng Tu
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Michael Yuanchien Chen
- Department of Oral & Maxillofacial Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Joseph Chieh-Yui Lai
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yi-Ling Chen
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| | - Yih-Wen Wong
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,School of Food and Safety, Taipei Medical University, Taipei, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Tzong-Ming Shieh
- Department of Dental Hygiene, College of Health Care, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Li LN, Wang L, Cheng YN, Cao ZQ, Zhang XK, Guo XL. Discovery and Characterization of 4-Hydroxy-2-pyridone Derivative Sambutoxin as a Potent and Promising Anticancer Drug Candidate: Activity and Molecular Mechanism. Mol Pharm 2018; 15:4898-4911. [PMID: 30223653 DOI: 10.1021/acs.molpharmaceut.8b00525] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sambutoxin, a representative derivative of 4-hydroxy-2-pyridone, was isolated from Hericium alpestre for the first time in this study. The possible correlation between the sambutoxin-induced suppression of tumor growth and its influence on cell-cycle arrest and apoptosis was investigated. The effects of sambutoxin on reactive oxygen species (ROS) production, DNA damage, mitochondrial transmembrane potential, cell apoptosis, and the expression of related proteins were evaluated. An in vitro cell viability study demonstrated that sambutoxin could inhibit the proliferation of various cancer cells. Treatment with sambutoxin induced the production of ROS, which caused DNA damage. Furthermore, the subsequent sambutoxin-induced activation of ATM and Chk2 resulted in G2/M arrest, accompanied by decreased expression of cdc25C, cdc2, and cyclin B1. Sambutoxin induced apoptosis by activating the mitochondrial apoptosis pathway through an increased Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (ΔΨm), cytochrome (Cyt) c release, caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) degradation. The ROS elevation induced the sustained phosphorylation of c-Jun N-terminal kinase (JNK), while SP600125, a JNK inhibitor, nearly completely reversed sambutoxin-induced apoptosis. Accordingly, an in vivo study showed that sambutoxin exhibited potential antitumor activity in a BALB/c nude mouse xenograft model without significant systemic toxicity. Moreover, the expression changes in proteins related to the G2/M phase, DNA damage, and apoptosis in vivo were consistent with those in vitro. Importantly, sambutoxin has remarkable antiproliferative effects and is a promising anticarcinogen candidate for cancer treatment.
Collapse
|
5
|
Sun ZL, Dong JL, Wu J. Juglanin induces apoptosis and autophagy in human breast cancer progression via ROS/JNK promotion. Biomed Pharmacother 2017; 85:303-312. [DOI: 10.1016/j.biopha.2016.11.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 01/23/2023] Open
|
6
|
Scheer MA, Schneider KJ, Finnigan RL, Maloney EP, Wells MA, Clemens DL. The Involvement of Acetaldehyde in Ethanol-Induced Cell Cycle Impairment. Biomolecules 2016; 6:biom6020017. [PMID: 27043646 PMCID: PMC4919912 DOI: 10.3390/biom6020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/09/2016] [Accepted: 03/24/2016] [Indexed: 01/15/2023] Open
Abstract
Background: Hepatocytes metabolize the vast majority of ingested ethanol. This metabolic activity results in hepatic toxicity and impairs the ability of hepatocytes to replicate. Previous work by our group has shown that ethanol metabolism results in a G2/M cell cycle arrest. The intent of these studies was to discern the roles of acetaldehyde and reactive oxygen, two of the major by-products of ethanol metabolism, in the G2/M cell cycle arrest. Methods: To investigate the role of ethanol metabolites in the cell cycle arrest, VA-13 and VL-17A cells were used. These are recombinant Hep G2 cells that express alcohol dehydrogenase or alcohol dehydrogenase and cytochrome P450 2E1, respectively. Cells were cultured with or without ethanol, lacking or containing the antioxidants N-acetylcysteine (NAC) or trolox, for three days. Cellular accumulation was monitored by the DNA content of the cultures. The accumulation of the cyclin-dependent kinase, Cdc2 in the inactive phosphorylated form (p-Cdc2) and the cyclin-dependent kinase inhibitor p21 were determined by immunoblot analysis. Results: Cultures maintained in the presence of ethanol demonstrated a G2/M cell cycle arrest that was associated with a reduction in DNA content and increased levels of p-Cdc2 and p21, compared with cells cultured in its absence. Inclusion of antioxidants in the ethanol containing media was unable to rescue the cells from the cell cycle arrest or these ethanol metabolism-mediated effects. Additionally, culturing the cells in the presence of acetaldehyde alone resulted in increased levels of p-Cdc2 and p21. Conclusions: Acetaldehyde produced during ethanol oxidation has a major role in the ethanol metabolism-mediated G2/M cell cycle arrest, and the concurrent accumulation of p21 and p-Cdc2. Although reactive oxygen species are thought to have a significant role in ethanol-induced hepatocellular damage, they may have a less important role in the inability of hepatocytes to replace dead or damaged cells.
Collapse
Affiliation(s)
- Marc A Scheer
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Katrina J Schneider
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Nebraska and Western Iowa Veterans Administration Medical Center, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Rochelle L Finnigan
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Eamon P Maloney
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Mark A Wells
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Dahn L Clemens
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Nebraska and Western Iowa Veterans Administration Medical Center, University of Nebraska Medical Center, Omaha, NE 68105, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| |
Collapse
|