1
|
Smith ML, Sergi Z, Mignogna KM, Rodriguez NE, Tatom Z, MacLeod L, Choi KB, Philip V, Miles MF. Identification of Genetic and Genomic Influences on Progressive Ethanol Consumption in Diversity Outbred Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.554349. [PMID: 37745421 PMCID: PMC10515943 DOI: 10.1101/2023.09.15.554349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Genetic factors play a significant role in the risk for development of alcohol use disorder (AUD). Using 3-bottle choice intermittent access ethanol (IEA), we have employed the Diversity Outbred (DO) mouse panel as a model of alcohol use disorder in a genetically diverse population. Through use of gene expression network analysis techniques, in combination with expression quantitative trait loci (eQTL) mapping, we have completed an extensive analysis of the influence of genetic background on gene expression changes in the prefrontal cortex (PFC). This approach revealed that, in DO mice, genes whose expression was significantly disrupted by intermittent ethanol in the PFC also tended to be those whose expression correlated to intake. This finding is in contrast to previous studies of both mice and nonhuman primates. Importantly, these analyses identified genes involved in myelination in the PFC as significantly disrupted by IEA, correlated to ethanol intake, and having significant eQTLs. Genes that code for canonical components of the myelin sheath, such as Mbp, also emerged as key drivers of the gene expression response to intermittent ethanol drinking. Several regulators of myelination were also key drivers of gene expression, and had significant QTLs, indicating that genetic background may play an important role in regulation of brain myelination. These findings underscore the importance of disruption of normal myelination in the PFC in response to prolonged ethanol exposure, that genetic variation plays an important role in this response, and that this interaction between genetics and myelin disruption in the presence of ethanol may underlie previously observed behavioral changes under intermittent access ethanol drinking such as escalation of consumption.
Collapse
Affiliation(s)
- M L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K M Mignogna
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - N E Rodriguez
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Tatom
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - L MacLeod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K B Choi
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - V Philip
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - M F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
2
|
Kamens HM, Flarend G, Horton WJ. The role of nicotinic receptors in alcohol consumption. Pharmacol Res 2023; 190:106705. [PMID: 36813094 PMCID: PMC10083870 DOI: 10.1016/j.phrs.2023.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/22/2023]
Abstract
The use of alcohol causes significant morbidity and mortality across the globe. Alcohol use disorder (AUD) is defined by the excessive use of this drug despite a negative impact on the individual's life. While there are currently medications available to treat AUD, they have limited efficacy and several side effects. As such, it is essential to continue to look for novel therapeutics. One target for novel therapeutics is nicotinic acetylcholine receptors (nAChRs). Here we systematically review the literature on the involvement of nAChRs in alcohol consumption. Data from both genetic and pharmacology studies provide evidence that nAChRs modulate alcohol intake. Interestingly, pharmacological modulation of all nAChR subtypes examined can decrease alcohol consumption. The reviewed literature demonstrates that nAChRs should continue to be investigated as novel therapeutics for AUD.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Geneva Flarend
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States
| | - William J Horton
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
3
|
DeCristofano L, Decker S, Schulte MK, Suryanarayanan A. Desformylflustrabromine (dFBr), a positive allosteric modulator of the α 4β 2 nicotinic receptor modulates the hypnotic response to ethanol. Alcohol 2021; 93:35-44. [PMID: 33652092 DOI: 10.1016/j.alcohol.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Binge drinking can increase an individual's risk of developing alcohol use disorder (AUD). Ethanol targets multiple neurotransmitter systems; however, not much is known about its effects on the cholinergic system. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels, the heteromeric α4β2 nAChR being a commonly expressed subtype. Desformylflustrabromine (dFBr), a positive allosteric modulator (PAM), increases the efficacy of α4β2 nAChR in vitro and has previously been shown to have translational potential. In this study, we investigated whether dFBr modulates the hypnotic response to ethanol. METHODS Ethanol-induced loss of righting reflex (LORR) duration was measured in the presence and absence of dFBr. The β2 nAChR selective antagonist dihydro-β-erythroidine (DHβE) was used to study the involvement of the β2 subunit. Additionally, we used a crosslinking-based western blot assay to estimate changes in total versus intracellular α4 nAChR protein in thalamic tissue of rats treated with vehicle, dFBr, ethanol, or ethanol and dFBr. Lastly, using Xenopus oocyte two-electrode voltage clamp (TEVC) studies, we determined the effects of ethanol and dFBr on α4β2 nAChR. RESULTS Pretreatment with 6 mg/kg dFBr reduced ethanol-induced LORR duration as compared to rats treated with ethanol alone. LORR studies with DHβE suggest that dFBr reduced ethanol-induced LORR duration via the β2 nAChR subunit. Crosslinking-based western analyses revealed that ethanol caused early increases in total and presumably surface thalamic α4 nAChR subunit protein levels. This ethanol-induced α4 nAChR upregulation was significantly reduced in rats pretreated with 6 mg/kg dFBr. In TEVC studies, ethanol potentiated ACh-induced currents in α4β2 nAChR, while it slightly reduced dFBr potentiation of maximal ACh currents. CONCLUSIONS Our results suggest that thalamic nAChRs containing the α4 subunit are rapidly upregulated by a single intoxicating dose of ethanol. Furthermore, dFBr, an α4β2 nAChR-selective PAM, significantly attenuates the hypnotic response to ethanol via actions on β2 nAChR. Overall, these results indicate that dFBr represents an option to reverse ethanol intoxication.
Collapse
|
4
|
Miller CN, Kamens HM. The role of nicotinic acetylcholine receptors in alcohol-related behaviors. Brain Res Bull 2020; 163:135-142. [PMID: 32707263 DOI: 10.1016/j.brainresbull.2020.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/23/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022]
Abstract
Alcohol use disorder (AUD) causes an alarming economic and health burden in the United States. Unfortunately, this disease does not exist in isolation; AUD is highly comorbid with nicotine use. Results from both human and animal models demonstrate a genetic correlation between alcohol and nicotine behaviors. These data support the idea of shared genetic and neural mechanisms underlying these behaviors. Nicotine acts directly at nicotinic acetylcholine receptors (nAChR) to have its pharmacological effect. Interestingly, alcohol also acts both directly and indirectly at these receptors. Research utilizing genetically engineered rodents and pharmacological manipulations suggest a role for nAChR in several ethanol behaviors. The current manuscript collates this literature and discusses findings that implicate specific nAChR subunits in ethanol phenotypes. These data suggest future directions for targeting nAChR as novel therapeutics for AUD.
Collapse
Affiliation(s)
- C N Miller
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| | - H M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
5
|
Wang J, Blasio A, Chapman HL, Doebelin C, Liaw V, Kuryatov A, Giovanetti SM, Lindstrom J, Lin L, Cameron MD, Kamenecka TM, Pomrenze MB, Messing RO. Promoting activity of (α4) 3(β2) 2 nicotinic cholinergic receptors reduces ethanol consumption. Neuropsychopharmacology 2020; 45:301-308. [PMID: 31394567 PMCID: PMC6901472 DOI: 10.1038/s41386-019-0475-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
There is increasing interest in developing drugs that act at α4β2 nicotinic acetylcholine receptors (nAChRs) to treat alcohol use disorder. The smoking cessation agent varenicline, a partial agonist of α4β2 nAChRs, reduces alcohol intake, but its use can be limited by side effects at high therapeutic doses. There are two stoichiometric forms of α4β2 nAChRs, (α4)3(β2)2 and (α4)2(β2)3. Here we investigated the hypothesis that NS9283, a positive allosteric modulator selective for the (α4)3(β2)2 form, reduces ethanol consumption. NS9283 increased the potency of varenicline to activate and desensitize (α4)3(β2)2 nAChRs in vitro without affecting other known targets of varenicline. In male and female C57BL/6J mice, NS9283 (10 mg/kg) reduced ethanol intake in a two-bottle choice, intermittent drinking procedure without affecting saccharin intake, ethanol-induced incoordination or ethanol-induced loss of the righting reflex. Subthreshold doses of NS9283 (2.5 mg/kg) plus varenicline (0.1 mg/kg) synergistically reduced ethanol intake in both sexes. Finally, despite having no aversive valence of its own, NS9283 enhanced ethanol-conditioned place aversion. We conclude that compounds targeting the (α4)3(β2)2 subtype of nAChRs can reduce alcohol consumption, and when administered in combination with varenicline, may allow use of lower varenicline doses to decrease varenicline side effects.
Collapse
Affiliation(s)
- Jingyi Wang
- Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX, USA.
| | - Angelo Blasio
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Holly L. Chapman
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Christelle Doebelin
- 0000000122199231grid.214007.0Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Victor Liaw
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Alexander Kuryatov
- 0000 0004 1936 8972grid.25879.31Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Simone M. Giovanetti
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Jon Lindstrom
- 0000 0004 1936 8972grid.25879.31Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Li Lin
- 0000000122199231grid.214007.0DMPK core, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Michael D. Cameron
- 0000000122199231grid.214007.0DMPK core, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Theodore M. Kamenecka
- 0000000122199231grid.214007.0Department of Molecular Medicine, The Scripps Research Institute, Scripps Florida, Jupiter, FL USA
| | - Matthew B. Pomrenze
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| | - Robert O. Messing
- 0000 0004 1936 9924grid.89336.37Departments of Neuroscience and Neurology, The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
6
|
Bagdas D, Diester CM, Riley J, Carper M, Alkhlaif Y, AlOmari D, Alayoubi H, Poklis JL, Damaj MI. Assessing nicotine dependence using an oral nicotine free-choice paradigm in mice. Neuropharmacology 2019; 157:107669. [PMID: 31220484 DOI: 10.1016/j.neuropharm.2019.107669] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 01/30/2023]
Abstract
Models to assess the addictive-like properties of nicotine in mice are limited. Therefore, we aimed to characterize and validate an addiction index by using an oral nicotine free-choice paradigm in mice. Adult C57BL/6J, DBA/2J, or genetically modified mice carrying deletions for nicotinic acetylcholine receptor (nAChR) subunits, (n = 8-10/sex/group) were given a choice of water or nicotine (10-960 μg/ml) solution using a two-bottle free-choice (2BC) paradigm. In general, oral nicotine intake and preference were higher in female mice compared to males. Absence of nicotine led to withdrawal, and intermittent access resulted in an escalation in consumption and greater nicotine withdrawal than continuous exposure. Additionally, oral nicotine consumption increased nucleus accumbens tyrosine hydroxylase levels. While β2 and α6 KO mice showed a significant decrease in nicotine intake, deletion of α5 nAChRs increased nicotine consumption at high concentrations. Deletion of the α7 subunit altered the observed sex difference in nicotine consumption, with females consuming less than males. The α4β2 partial agonist varenicline decreased oral nicotine consumption. Although addition of quinine to the nicotine solution lowered nicotine intake, mice primed with nicotine did not lower their intake after quinine addition. Nicotine deprivation followed by re-exposure showed increased nicotine consumption, and DBA/2J mice consumed less nicotine compared to C57BL/6J. We validated the mouse 2BC paradigm to study nicotine's addictive-like properties including nicotine intake, preference, withdrawal, and escalation of nicotine consumption during binge drinking or after reinstatement of a deprivation period.
Collapse
Affiliation(s)
- Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA; The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Clare M Diester
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Jason Riley
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Moriah Carper
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Dana AlOmari
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Hala Alayoubi
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA; The Center for the Study for Tobacco Products, Virginia Commonwealth University, Richmond, VA, 23298-0613, USA.
| |
Collapse
|
7
|
Nissen NI, Anderson KR, Wang H, Lee HS, Garrison C, Eichelberger SA, Ackerman K, Im W, Miwa JM. Augmenting the antinociceptive effects of nicotinic acetylcholine receptor activity through lynx1 modulation. PLoS One 2018; 13:e0199643. [PMID: 29969495 PMCID: PMC6029753 DOI: 10.1371/journal.pone.0199643] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) of the cholinergic system have been linked to antinociception, and therefore could be an alternative target for pain alleviation. nAChR activity has been shown to be regulated by the nicotinic modulator, lynx1, which forms stable complexes with nAChRs and has a negative allosteric action on their function. The objective in this study was to investigate the contribution of lynx1 to nicotine-mediated antinociception. Lynx1 contribution was investigated by mRNA expression analysis and electrophysiological responses to nicotine in the dorsal raphe nucleus (DRN), a part of the pain signaling pathway. In vivo antinociception was investigated in a test of nociception, the hot-plate analgesia assay with behavioral pharmacology. Lynx1/α4β2 nAChR interactions were investigated using molecular dynamics computational modeling. Nicotine evoked responses in serotonergic and GABAergic neurons in the DRN are augmented in slices lacking lynx1 (lynx1KO). The antinociceptive effect of nicotine and epibatidine is enhanced in lynx1KO mice and blocked by mecamylamine and DHβE. Computer simulations predict preferential binding affinity of lynx1 to the α:α interface that exists in the stoichiometry of the low sensitivity (α4)3(β2)2 nAChRs. Taken together, these data point to a role of lynx1 in mediating pain signaling in the DRN through preferential affinity to the low sensitivity α4β2 nAChRs. This study suggests that lynx1 is a possible alternative avenue for nociceptive modulation outside of opioid-based strategies.
Collapse
Affiliation(s)
- Neel I. Nissen
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Kristin R. Anderson
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Huaixing Wang
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Hui Sun Lee
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Carly Garrison
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | | | - Kasarah Ackerman
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Wonpil Im
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
| | - Julie M. Miwa
- Department of Biological Science, Lehigh University, Bethlehem, PA, United States of America
- * E-mail:
| |
Collapse
|
8
|
Dawson A, Wolstenholme JT, Roni MA, Campbell VC, Jackson A, Slater C, Bagdas D, Perez EE, Bettinger JC, De Biasi M, Miles MF, Damaj MI. Knockout of alpha 5 nicotinic acetylcholine receptors subunit alters ethanol-mediated behavioral effects and reward in mice. Neuropharmacology 2018; 138:341-348. [PMID: 29944862 DOI: 10.1016/j.neuropharm.2018.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/03/2023]
Abstract
Evidence suggests that there is an association between polymorphisms in the α5 nicotinic acetylcholine receptor (nAChR) subunit and risk of developing alcohol dependence in humans. The α5 nAChR subunit has also recently been shown to modulate some of the acute response to ethanol in mice. The aim of the current study was to further characterize the role of α5-containing (α5*) nAChRs in acute ethanol responsive behaviors, ethanol consumption and ethanol preference in mice. We conducted a battery of tests in male α5 knockout (KO) mice for a range of ethanol-induced behaviors including hypothermia, hypnosis, and anxiolysis. We also investigated the effects of α5* nAChR on ethanol reward using the Conditioned Place Preference (CPP) assay. Further, we tested the effects of gene deletion on drinking behaviors using the voluntary ethanol consumption in a two-bottle choice assay and Drinking in the Dark (DID, with or without stress) paradigm. We found that deletion of the α5 nAChR subunit enhanced ethanol-induced hypothermia, hypnosis, and an anxiolytic-like response in comparison to wild-type controls. The α5 KO mice showed reduced CPP for ethanol, suggesting that the rewarding properties of ethanol are decreased in mutant mice. Interestingly, Chrna5 gene deletion had no effect on basal ethanol drinking behavior, or ethanol metabolism, but did decrease ethanol intake in the DID paradigm following restraint stress. Taken together, we provide new evidence that α5 nAChRs are involved in some but not all of the behavioral effects of ethanol. Our results highlight the importance of nAChRs as a possible target for the treatment of alcohol dependence.
Collapse
Affiliation(s)
- Anton Dawson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Monzurul A Roni
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy, Hampton, VA, 23668, USA
| | - Vera C Campbell
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy, Hampton, VA, 23668, USA
| | - Asti Jackson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Cassandra Slater
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Erika E Perez
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - Mariella De Biasi
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298-0613, USA.
| |
Collapse
|
9
|
Touchette JC, Maertens JJ, Mason MM, O'Rourke KY, Lee AM. The nicotinic receptor drug sazetidine-A reduces alcohol consumption in mice without affecting concurrent nicotine consumption. Neuropharmacology 2018; 133:63-74. [PMID: 29355641 PMCID: PMC5858984 DOI: 10.1016/j.neuropharm.2018.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 01/01/2023]
Abstract
Alcohol and nicotine addiction are frequently co-morbid. The nicotinic acetylcholine receptors (nAChRs) are critical for both alcohol and nicotine addiction mechanisms, since nAChR drugs that reduce nicotine consumption have been shown to also reduce alcohol consumption. Sazetidine-A, a pre-clinical nAChR drug with agonist and desensitizing effects at α4β2 and α7 nAChRs, has been reported to reduce alcohol consumption and nicotine self-administration in rats when administered at high doses. However, this effect has not been replicated in mice. In this study, we examined the effect of sazetidine-A on alcohol and nicotine consumption in male and female mice utilizing voluntary oral consumption procedures previously developed in our lab. We found that sazetidine-A (1 mg/kg, i.p) reduced overnight alcohol consumption, but did not affect nicotine consumption when presented either alone or concurrently with alcohol. Sazetidine-A did not reduce water or saccharin consumption at any dose tested. In a chronic co-consumption experiment in which either alcohol or nicotine was re-introduced after one week of forced abstinence, sazetidine-A attenuated post-abstinence consumption of alcohol but not nicotine. Sazetidine-A also significantly reduced alcohol consumption in an acute, binge drinking-in-the-dark procedure. Finally, we tested the effect of sazetidine-A on alcohol withdrawal, and found that sazetidine-A significantly reduced handling-induced convulsions during alcohol withdrawal. Collectively, these data suggest a novel role for the nAChR targets of sazetidine-A in specifically mediating alcohol consumption, separate from the involvement of nAChRs in mediating nicotine consumption. Delineation of this pathway may provide insight into novel therapies for the treatment of alcohol use disorders.
Collapse
Affiliation(s)
| | - Jamie J Maertens
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Margaret M Mason
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kyu Y O'Rourke
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Anna M Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Kamens HM, Silva C, Peck C, Miller CN. Varenicline modulates ethanol and saccharin consumption in adolescent male and female C57BL/6J mice. Brain Res Bull 2017; 138:20-25. [PMID: 28778837 DOI: 10.1016/j.brainresbull.2017.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 11/27/2022]
Abstract
Adolescence is a critical period in brain development that coincides with the initiation of alcohol use. Nicotinic acetylcholine receptors (nAChR) have been shown to modulate ethanol behaviors in adult humans and in animal models; however, the role of these receptors in adolescent ethanol behaviors has not been explored. Throughout adolescence, nAChR expression undergoes large-scale developmental changes which may alter behavioral responses to ethanol. Here we examined the effect of varenicline, a nAChR partial agonist, on ethanol consumption, ataxia, sedation, and metabolism in adolescent male and female C57BL/6J mice. The effect of varenicline on ethanol consumption was tested through the Drinking-in-the-Dark (DID) paradigm that models binge-like ethanol consumption. To ensure that results were specific for ethanol, we also tested the effect of varenicline on saccharin consumption. Additionally, varenicline was administered 30min prior to an acute injection of ethanol before being tested for ataxia on the balance beam, sedation using the loss of righting reflex, or ethanol metabolism. Varenicline dose dependently decreased ethanol consumption, but also influenced saccharin intake. Varenicline showed no significant effect on ethanol metabolism, ataxia, or sedation. Unlike its effects in adult animals, varenicline is able to reduce ethanol consumption without increasing the ataxic and sedative effects of ethanol. This work suggests that the neurobiological mechanisms of ethanol behaviors may change across the lifespan and highlights the need for more research on the role of nAChRs in ethanol behaviors throughout development.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States.
| | - Constanza Silva
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Colette Peck
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| | - Carley N Miller
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, 16802, United States
| |
Collapse
|
11
|
Zhang B, Madden P, Gu J, Xing X, Sankar S, Flynn J, Kroll K, Wang T. Uncovering the transcriptomic and epigenomic landscape of nicotinic receptor genes in non-neuronal tissues. BMC Genomics 2017; 18:439. [PMID: 28583088 PMCID: PMC5460472 DOI: 10.1186/s12864-017-3813-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/23/2017] [Indexed: 02/17/2023] Open
Abstract
Background Nicotinic acetylcholine receptors (nAChRs) play an important role in cellular physiology and human nicotine dependence, and are closely associated with many human diseases including cancer. For example, previous studies suggest that nAChRs can re-wire gene regulatory networks in lung cancer cell lines. However, the tissue specificity of nAChRs genes and their regulation remain unexplored. Result In this study, we integrated data from multiple large genomic consortiums, including ENCODE, Roadmap Epigenomics, GTEx, and FANTOM, to define the transcriptomic and epigenomic landscape of all nicotinic receptor genes across many different human tissues and cell types. We found that many important nAChRs, including CHRNA3, CHRNA4, CHRNA5, and CHRNB4, exhibited strong non-neuronal tissue-specific expression patterns. CHRNA3, CHRNA5, and CHRNB4 were highly expressed in human colon and small intestine, and CHRNA4 was highly expressed in human liver. By comparing the epigenetic marks of CHRNA4 in human liver and hippocampus, we identified a novel liver-specific transcription start site (TSS) of CHRNA4. We further demonstrated that CHRNA4 was specifically transcribed in hepatocytes but not transcribed in hepatic sinusoids and stellate cells, and that transcription factors HNF4A and RXRA were likely upstream regulators of CHRNA4. Our findings suggest that CHRNA4 has distinct transcriptional regulatory mechanisms in human liver and brain, and that this tissue-specific expression pattern is evolutionarily conserved in mouse. Finally, we found that liver-specific CHRNA4 transcription was highly correlated with genes involved in the nicotine metabolism, including CYP2A6, UGT2B7, and FMO3. These genes were significantly down-regulated in liver cancer patients, whereas CHRNA4 is also significantly down-regulated in cancer-matched normal livers. Conclusions Our results suggest important non-neuronally expressed nicotinic acetylcholine receptors in the human body. These non-neuronal expression patterns are highly tissue-specific, and are epigenetically conserved during evolution in the context of non-conserved DNA sequence. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3813-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Zhang
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, Room 3212, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA. .,Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, Room 5211, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA.
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Junchen Gu
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, Room 5211, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, Room 5211, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA
| | - Savita Sankar
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, Room 3212, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA
| | - Jennifer Flynn
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, Room 5211, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA
| | - Kristen Kroll
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University School of Medicine, Room 3212, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA
| | - Ting Wang
- Center for Genome Sciences and Systems Biology, Department of Genetics, Washington University School of Medicine, Room 5211, 4515 McKinley Research Building, 4515 McKinley Ave, St. Louis, MO, 63110, USA.
| |
Collapse
|
12
|
Cross SJ, Lotfipour S, Leslie FM. Mechanisms and genetic factors underlying co-use of nicotine and alcohol or other drugs of abuse. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 43:171-185. [PMID: 27532746 DOI: 10.1080/00952990.2016.1209512] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Concurrent use of tobacco and alcohol or psychostimulants represents a major public health concern, with use of one substance influencing consumption of the other. Co-abuse of these drugs leads to substantial negative health outcomes, reduced cessation, and high economic costs, but the underlying mechanisms are poorly understood. Epidemiological data suggest that tobacco use during adolescence plays a particularly significant role. Adolescence is a sensitive period of development marked by major neurobiological maturation of brain regions critical for reward processing, learning and memory, and executive function. Nicotine exposure during this time produces a unique and long-lasting vulnerability to subsequent substance use, likely via actions at cholinergic, dopaminergic, and serotonergic systems. In this review, we discuss recent clinical and preclinical data examining the genetic factors and mechanisms underlying co-use of nicotine and alcohol or cocaine and amphetamines. We evaluate the critical role of nicotinic acetylcholine receptors throughout, and emphasize the dearth of preclinical studies assessing concurrent drug exposure. We stress important age and sex differences in drug responses, and highlight a brief, low-dose nicotine exposure paradigm that may better model early use of tobacco products. The escalating use of e-cigarettes among youth necessitates a closer look at the consequences of early adolescent nicotine exposure on subsequent alcohol and drug abuse.
Collapse
Affiliation(s)
- Sarah J Cross
- a Department of Anatomy & Neurobiology , School of Medicine, University of California , Irvine , CA , USA
| | - Shahrdad Lotfipour
- b Department of Emergency Medicine , School of Medicine, University of California , Irvine , CA , USA.,c Department of Pharmacology , School of Medicine, University of California , Irvine , CA , USA
| | - Frances M Leslie
- a Department of Anatomy & Neurobiology , School of Medicine, University of California , Irvine , CA , USA.,c Department of Pharmacology , School of Medicine, University of California , Irvine , CA , USA
| |
Collapse
|
13
|
Boutros N, Semenova S, Markou A. Adolescent alcohol exposure decreased sensitivity to nicotine in adult Wistar rats. Addict Biol 2016; 21:826-34. [PMID: 25950618 DOI: 10.1111/adb.12263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many adolescents engage in heavy alcohol use. Limited research in humans indicates that adolescent alcohol use predicts adult tobacco use. The present study investigated whether adolescent intermittent ethanol (AIE) exposure alters nicotine sensitivity in adulthood. Adolescent male Wistar rats (postnatal day 28-53) were exposed to AIE exposure that consisted of 5 g/kg of 25 percent ethanol three times per day in a 2 days on/2 days off regimen. Control rats received water with the same exposure regimen. In adulthood, separate groups of rats were tested for nicotine intravenous self-administration (IVSA), drug discrimination and conditioned taste aversion (CTA). The dose-response function for nicotine IVSA under a fixed-ratio schedule of reinforcement was similar in AIE-exposed and control rats. However, AIE-exposed rats self-administered less nicotine at the lowest dose, suggesting that low-dose nicotine was less reinforcing in AIE-exposed, compared with control rats. AIE-exposed rats self-administered less nicotine under a progressive-ratio schedule, suggesting decreased motivation for nicotine after AIE exposure. The discriminative stimulus effects of nicotine were diminished in AIE-exposed rats compared with control rats. No group differences in nicotine CTA were observed, suggesting that AIE exposure had no effect on the aversive properties of nicotine. Altogether, these results demonstrate that AIE exposure decreases sensitivity to the reinforcing, motivational and discriminative properties of nicotine while leaving the aversive properties of nicotine unaltered in adult rats. These findings suggest that drinking during adolescence may result in decreased sensitivity to nicotine in adult humans, which may in turn contribute to the higher rates of tobacco smoking.
Collapse
Affiliation(s)
| | | | - Athina Markou
- University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Mayfield J, Arends MA, Harris RA, Blednov YA. Genes and Alcohol Consumption: Studies with Mutant Mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:293-355. [PMID: 27055617 PMCID: PMC5302130 DOI: 10.1016/bs.irn.2016.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test.
Collapse
Affiliation(s)
- J Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - M A Arends
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
15
|
Abstract
Alcohol dependence is a complex disorder affecting all social and ethnic groups. Although the scientific understanding of the mechanism governing this multifactorial disease is still in its infancy, understanding its biological bases, including the potential contribution of genetic factors, is key to characterizing individual's risk and developing efficacious therapeutic target to combat the disease. This review provides an overview of different approaches that are being increasingly integrated to extend our knowledge of the genetic underpinnings of alcohol dependence.
Collapse
Affiliation(s)
- Awoyemi A Awofala
- a Department of Biological Sciences , Tai Solarin University of Education , Ijagun , Ogun State , Nigeria
| |
Collapse
|
16
|
Doyon WM, Thomas AM, Ostroumov A, Dong Y, Dani JA. Potential substrates for nicotine and alcohol interactions: a focus on the mesocorticolimbic dopamine system. Biochem Pharmacol 2013; 86:1181-93. [PMID: 23876345 DOI: 10.1016/j.bcp.2013.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/13/2023]
Abstract
Epidemiological studies consistently find correlations between nicotine and alcohol use, yet the neural mechanisms underlying their interaction remain largely unknown. Nicotine and alcohol (i.e., ethanol) share many common molecular and cellular targets that provide potential substrates for nicotine-alcohol interactions. These targets for interaction often converge upon the mesocorticolimbic dopamine system, where the link to drug self-administration and reinforcement is well documented. Both nicotine and alcohol activate the mesocorticolimbic dopamine system, producing downstream dopamine signals that promote the drug reinforcement process. While nicotine primarily acts via nicotinic acetylcholine receptors, alcohol acts upon a wider range of receptors and molecular substrates. The complex pharmacological profile of these two drugs generates overlapping responses that ultimately intersect within the mesocorticolimbic dopamine system to promote drug use. Here we will examine overlapping targets between nicotine and alcohol and provide evidence for their interaction. Based on the existing literature, we will also propose some potential targets that have yet to be directly tested. Mechanistic studies that examine nicotine-alcohol interactions would ultimately improve our understanding of the factors that contribute to the associations between nicotine and alcohol use.
Collapse
Affiliation(s)
- William M Doyon
- Center on Addiction, Learning, Memory, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
17
|
|