1
|
Erikson CM, Douglas KT, Thuet TO, Richardson BD, Mohr C, Shiina H, Kaplan JS, Rossi DJ. Independent of differences in taste, B6N mice consume less alcohol than genetically similar B6J mice, and exhibit opposite polarity modulation of tonic GABA AR currents by alcohol. Neuropharmacology 2022; 206:108934. [PMID: 34933049 PMCID: PMC9208337 DOI: 10.1016/j.neuropharm.2021.108934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Abstract
Genetic differences in cerebellar sensitivity to alcohol (EtOH) influence EtOH consumption phenotype in animal models and contribute to risk for developing an alcohol use disorder in humans. We previously determined that EtOH enhances cerebellar granule cell (GC) tonic GABAAR currents in low EtOH consuming rodent genotypes, but suppresses it in high EtOH consuming rodent genotypes. Moreover, pharmacologically counteracting EtOH suppression of GC tonic GABAAR currents reduces EtOH consumption in high alcohol consuming C57BL/6J (B6J) mice, suggesting a causative role. In the low EtOH consuming rodent models tested to date, EtOH enhancement of GC tonic GABAAR currents is mediated by inhibition of neuronal nitric oxide synthase (nNOS) which drives increased vesicular GABA release onto GCs and a consequent enhancement of tonic GABAAR currents. Consequently, genetic variation in nNOS expression across rodent genotypes is a key determinant of whether EtOH enhances or suppresses tonic GABAAR currents, and thus EtOH consumption. We used behavioral, electrophysiological, and immunocytochemical techniques to further explore the relationship between EtOH consumption and GC GABAAR current responses in C57BL/6N (B6N) mice. B6N mice consume significantly less EtOH and achieve significantly lower blood EtOH concentrations than B6J mice, an outcome not mediated by differences in taste. In voltage-clamped GCs, EtOH enhanced the GC tonic current in B6N mice but suppressed it in B6J mice. Immunohistochemical and electrophysiological studies revealed significantly higher nNOS expression and function in the GC layer of B6N mice compared to B6Js. Collectively, our data demonstrate that despite being genetically similar, B6N mice consume significantly less EtOH than B6J mice, a behavioral difference paralleled by increased cerebellar nNOS expression and opposite EtOH action on GC tonic GABAAR currents in each genotype.
Collapse
Affiliation(s)
- Chloe M Erikson
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA
| | - Kevin T Douglas
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA
| | - Talia O Thuet
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA
| | - Ben D Richardson
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA; Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, USA
| | - Claudia Mohr
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA
| | - Hiroko Shiina
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA; Department of Physiology, University College London, London, UK
| | - Josh S Kaplan
- Department of Psychology, Western Washington University, Bellinham, WA, 9822, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - David J Rossi
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA.
| |
Collapse
|
2
|
Wolstenholme JT, Younis RM, Toma W, Damaj MI. Adolescent low-dose ethanol drinking in the dark increases ethanol intake later in life in C57BL/6J, but not DBA/2J mice. Alcohol 2020; 89:85-91. [PMID: 32860857 PMCID: PMC7721983 DOI: 10.1016/j.alcohol.2020.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023]
Abstract
Alcohol is the most widely used and abused drug among youth in the United States. Youths aged 12-20 years old drink almost 11% of all alcohol consumed in the United States, and typically these young people are consuming alcohol in the form of binge drinking. Particularly concerning is that the risk of developing an alcohol use disorder over their lifetime increases the younger one begins to drink. Here we investigated the impact of ethanol drinking in early adolescence on adult ethanol intake using C57BL/6J and DBA/2J mice. We modeled low-dose drinking in adolescent mice using a modified Drinking in the Dark (DID) model where the total ethanol intake during adolescence was similar between the strains to specifically ask whether low-dose ethanol exposure in the high-alcohol preferring C57BL/6J strain will also lead to increased ethanol intake in adulthood. Our results show that low-dose ethanol drinking in early adolescence dramatically increases adult intake, but only in the alcohol-preferring C57BL/6J strain. Early adolescent ethanol exposure had no effect on ethanol intake in the alcohol-nonpreferring DBA/2J mice. These data add to the growing evidence that low-dose ethanol exposures, below the pharmacologically relevant dose, can also contribute to increased drinking in adulthood, but the effect may be influenced by genetic background.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; Virginia Commonwealth University, Alcohol Research Center, Richmond, VA, United States.
| | - Rabha M Younis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Wisam Toma
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States; Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
3
|
Ethanol-induced changes in synaptic amino acid neurotransmitter levels in the nucleus accumbens of differentially sensitized mice. Psychopharmacology (Berl) 2019; 236:3541-3556. [PMID: 31302721 DOI: 10.1007/s00213-019-05324-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/02/2019] [Indexed: 01/21/2023]
Abstract
RATIONALE Ethanol-induced behavioural sensitization (EBS) does not occur uniformly in mice exposed to the sensitization paradigm. This suggests innate differential responses to ethanol (EtOH) in the reward circuitry of individual animals. OBJECTIVES To better characterize the adaptive differences between low-sensitized (LS) and high-sensitized (HS) mice, we examined excitatory amino acid (EAA) and inhibitory amino acid (IAA) neurotransmitter levels in the nucleus accumbens (NAc) during EBS expression. METHODS Male DBA/2J mice received five ethanol (EtOH) (2.2 g/kg) or saline injections, and locomotor activity (LMA) was assessed during EBS induction. EtOH mice were classified as LS or HS on the basis of final LMA scores. Following an EtOH challenge (1.8 g/kg) 2 weeks later, LMA was re-evaluated and in vivo microdialysis samples were collected from the NAc. RESULTS Most differences in amino acid levels were observed within the first 20 min after EtOH challenge. LS mice exhibited similar glutamate levels compared with acutely treated (previously EtOH naïve) mice, and generally increased levels of the IAAs GABA, glycine, and taurine. By contrast, HS mice exhibited increased glutamate and attenuated levels of GABA, glycine, and taurine. CONCLUSION These data suggest that the profile of amino acid neurotransmitters in the NAc of LS and HS mice significantly differs. Elucidating these adaptive differences contributes to our understanding of factors that confer susceptibility/resilience to alcohol use disorder.
Collapse
|
4
|
Wolstenholme JT, Bowers MS, Pais AB, Pais AC, Poland RS, Poklis JL, Davies AG, Bettinger JC. Dietary Omega-3 Fatty Acids Differentially Impact Acute Ethanol-Responsive Behaviors and Ethanol Consumption in DBA/2J Versus C57BL/6J Mice. Alcohol Clin Exp Res 2018; 42:1476-1485. [PMID: 29786878 DOI: 10.1111/acer.13780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Complex interactions between environmental and genetic factors influence the risk of developing alcohol use disorder (AUD) in humans. To date, studies of the impact of environment on AUD risk have primarily focused on psychological characteristics or on the effects of developmental exposure to ethanol (EtOH). We recently observed that modifying levels of the long-chain ω-3 (LC ω-3) fatty acid, eicosapentaenoic acid (EPA), alters acute physiological responses to EtOH in Caenorhabditis elegans. Because mammals derive ω-3 fatty acids from their diet, here we asked if manipulating dietary levels of LC ω-3 fatty acids can affect EtOH-responsive behaviors in mice. METHODS We used 2 well-characterized inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), which differ in their responses to EtOH. Age-matched young adult male mice were maintained on isocaloric diets that differed only by being enriched or depleted in LC ω-3 fatty acids. Animals were subsequently tested for acute EtOH sensitivity (locomotor activation and sedation), voluntary consumption, and metabolism. Fat deposition was also determined. RESULTS We found that dietary levels of LC ω-3s altered EtOH sensitivity and consumption in a genotype-specific manner. Both B6 and D2 animals fed high LC ω-3 diets demonstrated lower EtOH-induced locomotor stimulation than those fed low LC ω-3 diets. EtOH sedation and EtOH metabolism were greater in D2, but not B6 mice on the high LC ω-3 diet. Conversely, LC ω-3 dietary manipulation altered EtOH consumption in B6, but not in D2 mice. B6 mice on a high LC ω-3 diet consumed more EtOH in a 2-bottle choice intermittent access model than B6 mice on a low LC ω-3 diet. CONCLUSIONS Because EtOH sensitivity is predictive of risk of developing AUD in humans, our data indicate that dietary LC ω-3 levels should be evaluated for their impact on AUD risk in humans. Further, these studies indicate that genetic background can interact with fatty acids in the diet to significantly alter EtOH-responsive behaviors.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia.,VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| | - M Scott Bowers
- Department of Biomedical Engineering , Faulk Center for Molecular Therapeutics, Northwestern University, Chicago, Illinois
| | - Alexander B Pais
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| | - A Christian Pais
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| | - Ryan S Poland
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| | - Justin L Poklis
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia
| | - Andrew G Davies
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia.,VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology , Virginia Commonwealth University, Richmond, Virginia.,VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
5
|
The Cerebellar GABA AR System as a Potential Target for Treating Alcohol Use Disorder. Handb Exp Pharmacol 2018; 248:113-156. [PMID: 29736774 DOI: 10.1007/164_2018_109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the brain, fast inhibitory neurotransmission is mediated primarily by the ionotropic subtype of the gamma-aminobutyric acid (GABA) receptor subtype A (GABAAR). It is well established that the brain's GABAAR system mediates many aspects of neurobehavioral responses to alcohol (ethanol; EtOH). Accordingly, in both preclinical studies and some clinical scenarios, pharmacologically targeting the GABAAR system can alter neurobehavioral responses to acute and chronic EtOH consumption. However, many of the well-established interactions of EtOH and the GABAAR system have been identified at concentrations of EtOH ([EtOH]) that would only occur during abusive consumption of EtOH (≥40 mM), and there are still inadequate treatment options for prevention of or recovery from alcohol use disorder (AUD, including abuse and dependence). Accordingly, there is a general acknowledgement that more research is needed to identify and characterize: (1) neurobehavioral targets of lower [EtOH] and (2) associated brain structures that would involve such targets in a manner that may influence the development and maintenance of AUDs.Nearly 15 years ago it was discovered that the GABAAR system of the cerebellum is highly sensitive to EtOH, responding to concentrations as low as 10 mM (as would occur in the blood of a typical adult human after consuming 1-2 standard units of EtOH). This high sensitivity to EtOH, which likely mediates the well-known motor impairing effects of EtOH, combined with recent advances in our understanding of the role of the cerebellum in non-motor, cognitive/emotive/reward processes has renewed interest in this system in the specific context of AUD. In this chapter we will describe recent advances in our understanding of cerebellar processing, actions of EtOH on the cerebellar GABAAR system, and the potential relationship of such actions to the development of AUD. We will finish with speculation about how cerebellar specific GABAAR ligands might be effective pharmacological agents for treating aspects of AUD.
Collapse
|
6
|
Hwa L, Besheer J, Kash T. Glutamate plasticity woven through the progression to alcohol use disorder: a multi-circuit perspective. F1000Res 2017; 6:298. [PMID: 28413623 PMCID: PMC5365217 DOI: 10.12688/f1000research.9609.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Glutamate signaling in the brain is one of the most studied targets in the alcohol research field. Here, we report the current understanding of how the excitatory neurotransmitter glutamate, its receptors, and its transporters are involved in low, episodic, and heavy alcohol use. Specific animal behavior protocols can be used to assess these different drinking levels, including two-bottle choice, operant self-administration, drinking in the dark, the alcohol deprivation effect, intermittent access to alcohol, and chronic intermittent ethanol vapor inhalation. Importantly, these methods are not limited to a specific category, since they can be interchanged to assess different states in the development from low to heavy drinking. We encourage a circuit-based perspective beyond the classic mesolimbic-centric view, as multiple structures are dynamically engaged during the transition from positive- to negative-related reinforcement to drive alcohol drinking. During this shift from lower-level alcohol drinking to heavy alcohol use, there appears to be a shift from metabotropic glutamate receptor-dependent behaviors to N-methyl-D-aspartate receptor-related processes. Despite high efficacy of the glutamate-related pharmaceutical acamprosate in animal models of drinking, it is ineffective as treatment in the clinic. Therefore, research needs to focus on other promising glutamatergic compounds to reduce heavy drinking or mediate withdrawal symptoms or both.
Collapse
Affiliation(s)
- Lara Hwa
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Joyce Besheer
- Department of Psychiatry, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| | - Thomas Kash
- Department of Pharmacology, University of North Carolina School of Medicine, Bowles Center for Alcohol Studies, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Mulligan MK, Mozhui K, Pandey AK, Smith ML, Gong S, Ingels J, Miles MF, Lopez MF, Lu L, Williams RW. Genetic divergence in the transcriptional engram of chronic alcohol abuse: A laser-capture RNA-seq study of the mouse mesocorticolimbic system. Alcohol 2017; 58:61-72. [PMID: 27894806 DOI: 10.1016/j.alcohol.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Genetic factors that influence the transition from initial drinking to dependence remain enigmatic. Recent studies have leveraged chronic intermittent ethanol (CIE) paradigms to measure changes in brain gene expression in a single strain at 0, 8, 72 h, and even 7 days following CIE. We extend these findings using LCM RNA-seq to profile expression in 11 brain regions in two inbred strains - C57BL/6J (B6) and DBA/2J (D2) - 72 h following multiple cycles of ethanol self-administration and CIE. Linear models identified differential expression based on treatment, region, strain, or interactions with treatment. Nearly 40% of genes showed a robust effect (FDR < 0.01) of region, and hippocampus CA1, cortex, bed nucleus stria terminalis, and nucleus accumbens core had the highest number of differentially expressed genes after treatment. Another 8% of differentially expressed genes demonstrated a robust effect of strain. As expected, based on similar studies in B6, treatment had a much smaller impact on expression; only 72 genes (p < 0.01) are modulated by treatment (independent of region or strain). Strikingly, many more genes (415) show a strain-specific and largely opposite response to treatment and are enriched in processes related to RNA metabolism, transcription factor activity, and mitochondrial function. Over 3 times as many changes in gene expression were detected in D2 compared to B6, and weighted gene co-expression network analysis (WGCNA) module comparison identified more modules enriched for treatment effects in D2. Substantial strain differences exist in the temporal pattern of transcriptional neuroadaptation to CIE, and these may drive individual differences in risk of addiction following excessive alcohol consumption.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States.
| | - Khyobeni Mozhui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Ashutosh K Pandey
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Maren L Smith
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Suzhen Gong
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Michael F Miles
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| |
Collapse
|
8
|
Mouse strain differences in punished ethanol self-administration. Alcohol 2017; 58:83-92. [PMID: 27814928 DOI: 10.1016/j.alcohol.2016.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/05/2016] [Accepted: 05/23/2016] [Indexed: 01/01/2023]
Abstract
Determining the neural factors contributing to compulsive behaviors such as alcohol-use disorders (AUDs) has become a significant focus of current preclinical research. Comparison of phenotypic differences across genetically distinct mouse strains provides one approach to identify molecular and genetic factors contributing to compulsive-like behaviors. Here we examine a rodent assay for punished ethanol self-administration in four widely used inbred strains known to differ on ethanol-related behaviors: C57BL/6J (B6), DBA/2J (D2), 129S1/SvImJ (S1), and BALB/cJ (BALB). Mice were trained in an operant task (FR1) to reliably lever-press for 10% ethanol using a sucrose-fading procedure. Once trained, mice received a punishment session in which lever pressing resulted in alternating ethanol reward and footshock, followed by tests to probe the effects of punishment on ethanol self-administration. Results indicated significant strain differences in training performance and punished attenuation of ethanol self-administration. S1 and BALB showed robust attenuation of ethanol self-administration after punishment, whereas behavior in B6 was attenuated only when the punishment and probe tests were conducted in the same contexts. By contrast, D2 were insensitive to punishment regardless of context, despite receiving more shocks during punishment and exhibiting normal footshock reactivity. Additionally, B6, but not D2, reduced operant self-administration when ethanol was devalued with a bitter tastant. B6 and D2 showed devaluation of sucrose self-administration, and punished suppression of sucrose seeking was context dependent in both the strains. While previous studies have demonstrated avoidance of ethanol in D2, particularly when ethanol is orally available from a bottle, current findings suggest this strain may exhibit heightened compulsive-like self-administration of ethanol, although there are credible alternative explanations for the phenotype of this strain. In sum, these findings offer a foundation for future studies examining the neural and genetic factors underlying AUDs.
Collapse
|
9
|
Lopez MF, Miles MF, Williams RW, Becker HC. Variable effects of chronic intermittent ethanol exposure on ethanol drinking in a genetically diverse mouse cohort. Alcohol 2017; 58:73-82. [PMID: 27793543 PMCID: PMC5253308 DOI: 10.1016/j.alcohol.2016.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/05/2016] [Accepted: 09/21/2016] [Indexed: 01/13/2023]
Abstract
The BXD family of mice were generated by crossing and inbreeding ethanol-preferring C57BL/6J and ethanol-avoiding DBA/2J strains that differ greatly in genome sequence and other behaviors. This study evaluated variations in the level of voluntary ethanol intake in a cohort of 42 BXD strains and both progenitor strains using a model of alcohol dependence and relapse drinking. A total of 119 BXDs (85 males, 34 females) (n ∼ 4 per genotype; 1/genotype/sex/group) were evaluated along with males from both progenitor strains (n = 14-15/genotype). Mice were evaluated for intake using limited access (2 h/day) 2-bottle (15% v/v ethanol vs. water) model for 6 weeks (baseline intake). Each animal received 4 weekly cycles of chronic intermittent ethanol (CIE) vapor exposure (CIE group) or air control exposure (CTL group) (16 h/day × 4 days) interleaved by 5-day drinking test cycles. Blood ethanol concentrations (BEC) ranged from 150 to 300 mg/dl across genotypes. Baseline intake varied greatly among cases-from ∼0.8 to ∼2.9 g/kg. As expected, CIE exposure induced a significant increase in ethanol drinking in C57BL/6J relative to baseline as well as air controls that remained relatively stable over the four test cycles. In contrast, DBA/2J cases did not show a significant increase in consumption. Heritability of variation in baseline consumption, calculated from C57BL/6J and DBA/2J strains is about 54% but this increases following treatment to 60-80%. As expected from the marked difference between progenitors, ethanol intake and level of escalation varied greatly among BXDs after exposure (∼-1.3 to 2.6 g/kg). Interestingly, the magnitude and direction of changes in ethanol intake did not relate to BEC values of the preceding CIE exposure cycle. Overall, these data indicate significant variation in consumption and even escalation, much of it under genetic control, following repeated CIE treatment.
Collapse
Affiliation(s)
- Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Michael F Miles
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA; RHJ Department of Veterans Affairs Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
10
|
McCool BA, Chappell AM. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice. Alcohol 2015; 49:111-20. [PMID: 25659650 DOI: 10.1016/j.alcohol.2015.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/30/2014] [Accepted: 01/06/2015] [Indexed: 02/01/2023]
Abstract
Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption.
Collapse
|