1
|
Narasimha VL, Mukherjee D, Arya S, Parmar A. Alcohol use disorder research in India: An update. Indian J Psychiatry 2024; 66:495-515. [PMID: 39100372 PMCID: PMC11293778 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_758_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 08/06/2024] Open
Abstract
Background Despite alcohol use being a risk factor for numerous health-related conditions and alcohol use disorder (AUD) recognized as a disease, there was limited research in India until 2010. This narrative review aims to evaluate AUD-related research in India from 2010 to July 2023. Methods A PubMed search used key terms for AUD in India after 2010. Indian and international journals with regional significance that publish alcohol-related research were searched by each author individually. These were then collated, and duplicates were removed. In addition, we also conducted a gray literature search on focused areas related to AUD. Results The alcohol-related research in India after 2010 focused on diverse areas associated with alcohol use. Some areas of research have received more attention than others. Two major epidemiological surveys conducted in the past decade reveal that around 5% have a problematic alcohol use pattern. Factors associated with alcohol use, like genetic, neurobiological, psychological, and sociocultural, were studied. The studies focused on the clinical profile of AUD, including their correlates, such as craving, withdrawal, alcohol-related harm, and comorbid psychiatric and medical illnesses. During this period, minimal research was conducted to understand AUD's laboratory biomarkers, course, and prognosis. While there was a focus on generating evidence for different psychological interventions for alcohol dependence in management-related research, pharmacological studies centered on anticraving agents like baclofen. Research on noninvasive brain stimulation, such as rTMS, has shown preliminary usefulness in treating alcohol dependence. Very little research has been conducted regarding alcohol policy. Conclusion In the past decade, Indian research on alcohol has focused on diverse areas. Epidemiological and psychological management-related research received maximum attention. Considering the magnitude of the alcohol-related burden, it is essential to prioritize research to other less studied areas like pharmacological management of alcohol dependence and alcohol policy.
Collapse
Affiliation(s)
- Venkata Lakshmi Narasimha
- Centre for Addiction Medicine, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | | | - Sidharth Arya
- Institute of Mental Health, Pt BDS University of Health Sciences, Rohtak, Haryana, India
| | - Arpit Parmar
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Fan W, Wang X, Zhang X, Liu M, Meng Q, Chen Z. Investigating Optimal Echo Times for Quantitative Susceptibility Mapping of Basal Ganglia Nuclei in the Healthy Brain. Curr Med Imaging 2021; 16:991-996. [PMID: 33081660 DOI: 10.2174/1573405615666191219102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quantitative susceptibility mapping (QSM) technique had been used to measure the magnetic susceptibility of brain tissue in clinical practice. However, QSM presented echo-time (TE) dependence, and an appropriate number of echo-times (nTEs) for QSM became more important to obtain the reliable susceptibility value. OBJECTIVE The aim of the study was to explore the optimal nTEs for quantitative susceptibility mapping (QSM) measurements of basal ganglia nuclei in the healthy brain. METHODS 3D multi-echo enhanced gradient recalled echo T2 star weighted angiography (ESWAN) sequence was acquired on a 3.0T MR scanner for QSM analysis. Regions of interests (ROIs) were drawn along the margin of the head of the caudate nucleus (HCN), putamen (Pu) and globus pallidus (GP). The mean susceptibility value and standard deviation of the ROIs were derived from the pixels within each region. RESULTS CV analysis demonstrated that TE6, TE8 and TE14 ESWAN sequences presented consistent lower CV value (< 1) for QSM measure of HCN, Pu and GP. ANOVA identified that susceptibility value showed no significant difference between TE6 and TE8 in HCN, Pu and GP (P > 0.05). ICC analysis demonstrated that the susceptibility value of TE6-TE8 had the highest ICC value as compared with TE6-TE14 and TE8-TE14 in HCN, Pu and GP. Combined with the timeefficiency of MRI scanning, TE6 sequence could not only provide the reliable QSM measurement but also short imaging time. CONCLUSION The current study identified that the optimal nTEs of ESWAN were 6 TEs (2.9ms ~ 80.9ms) for QSM measurement of basal ganglia nuclei in the healthy brain.
Collapse
Affiliation(s)
- Wenping Fan
- Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
| | - Xue Wang
- Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
| | - Xingwen Zhang
- Department of Neurology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Mengqi Liu
- Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China,Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Qinglin Meng
- Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China
| | - Zhiye Chen
- Department of Radiology, Hainan Hospital of Chinese PLA General Hospital, Sanya 572013, China,Department of Radiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
3
|
Dorsal hippocampal changes in T2 relaxation times are associated with early spatial cognitive deficits in 5XFAD mice. Brain Res Bull 2019; 153:150-161. [PMID: 31422072 DOI: 10.1016/j.brainresbull.2019.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/01/2023]
Abstract
T2 relaxation time (T2) alterations may serve as markers for early detection and disease progression monitoring by reflecting brain microstructural integrity in Alzheimer's disease (AD). However, the characteristics of T2 alterations during the early stage of AD remain elusive. We explored T2 alterations and their possible correlations with cognitive function in 5XFAD mice at early ages (1, 2, 3, and 5 months of age). Voxel-based analysis (VBA) and region of interest (ROI) analysis showed a decreased T2 in the hippocampus of 2-, 3-, and 5-month-old 5XFAD mice compared to those of controls. The dorsal hippocampal T2 decreased earlier than the ventral hippocampus T2. A significant correlation was observed between Morris water maze (MWM) test cognitive behavior and the dorsal hippocampus T2 in 5XFAD mice. These results indicated that the microstructural integrity of brain tissues, particularly the hippocampus, was impaired early and the impairment became more extensive and severe during disease progression. Furthermore, the dorsal hippocampus is a crucial component involved in spatial cognition impairment in young 5XFAD mice.
Collapse
|
4
|
Tang X, Cai F, Ding DX, Zhang LL, Cai XY, Fang Q. Magnetic resonance imaging relaxation time in Alzheimer's disease. Brain Res Bull 2018; 140:176-189. [PMID: 29738781 DOI: 10.1016/j.brainresbull.2018.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 12/26/2022]
Abstract
The magnetic resonance imaging (MRI) relaxation time constants, T1 and T2, are sensitive to changes in brain tissue microstructure integrity. Quantitative T1 and T2 relaxation times have been proposed to serve as non-invasive biomarkers of Alzheimer's disease (AD), in which alterations are believed to not only reflect AD-related neuropathology but also cognitive impairment. In this review, we summarize the applications and key findings of MRI techniques in the context of both AD subjects and AD transgenic mouse models. Furthermore, the possible mechanisms of relaxation time alterations in AD will be discussed. Future studies could focus on relaxation time alterations in the early stage of AD, and longitudinal studies are needed to further explore relaxation time alterations during disease progression.
Collapse
Affiliation(s)
- Xiang Tang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China
| | - Feng Cai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China
| | - Dong-Xue Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China
| | - Lu-Lu Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China
| | - Xiu-Ying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China.
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
5
|
Chen Z, Chen X, Chen Z, Liu M, He H, Ma L, Yu S. Alteration of gray matter texture features over the whole brain in medication-overuse headache using a 3-dimentional texture analysis. J Headache Pain 2017; 18:112. [PMID: 29285575 PMCID: PMC5745370 DOI: 10.1186/s10194-017-0820-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Background Imaging studies have provided valuable information in understanding the headache neuromechanism for medication-overuse headache (MOH), and the aim of this study is to investigate altered texture features of MR structural images over the whole brain in MOH using a 3-dimentional texture analysis. Methods Brain three-dimensional T1-weighted structural images were obtained from 44 MOH patients and 32 normal controls (NC). The imaging processing included two steps: gray matter (gray images) segment and a 3-dimensional texture features mapping. Voxel-based gray-level co-occurrence matrix (VGLCM) was performed to measure the texture parameters mapping including Contrast, Correlation, Energy, Entropy and inverse difference moment (IDM). Results The texture parameters of increased Contrast and Entropy, decreased Energy and IDM were identified in cerebellar vermis of MOH patients compared to NCs. Increased Contrast and decreased Energy were found in left cerebellum. Increased Correlation located in left dorsolateral periaqueductal gray (L-dlPAG), right parahippocampal gyrus (R-PHG), and left middle frontal gyrus (L-MFG) and decreased Correlation located in right superior parietal lobule(R-SPL). Disease duration was positively correlated with Contrast of vermis and negatively correlated with Correlation of R-SPL.HAMD score was negatively correlated with Correlation of R-PHG. MoCA score was positively correlated with Correlation of R-SPL. Conclusion The altered textures in gray matter related to pain discrimination and modulation, affective and cognitive processing were helpful in understanding the pathogenesis of MOH. Texture analysis using VGLCM is a sensitive and efficient method to detect subtle gray matter changes in MOH. Electronic supplementary material The online version of this article (10.1186/s10194-017-0820-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Radiology, Hainan Branch of Chinese PLA General Hospital, Beijing, 100853, China.,Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhiqiang Chen
- Research Center for Brain Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Mengqi Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Radiology, Hainan Branch of Chinese PLA General Hospital, Beijing, 100853, China
| | - Huiguang He
- Research Center for Brain Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100190, China. .,Center for Excellence in Brain Science and Intelligence Technology, Beijing, 100190, China.
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Chen Z, Chen X, Liu M, Dong Z, Ma L, Yu S. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI. J Headache Pain 2017; 18:25. [PMID: 28220377 PMCID: PMC5318354 DOI: 10.1186/s10194-017-0735-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 02/01/2017] [Indexed: 12/24/2022] Open
Abstract
Background Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. Methods 3D structure images and resting-state functional MRI data were obtained from 37 MOH patients, 18 episodic migraine (EM) patients and 32 normal controls (NCs). FCD was calculated to detect the brain regions with abnormal functional activity over the whole brain, and the seed-based RSFC was performed to explore the functional network changes in MOH and EM. Results The decreased FCD located in right parahippocampal gyrus, and the increased FCD located in left inferior parietal gyrus and right supramarginal gyrus in MOH compared with NC, and in right caudate and left insula in MOH compared with EM. RSFC revealed that decreased functional connectivity of the brain regions with decreased FCD anchored in the right dorsal-lateral prefrontal cortex, right frontopolar cortex in MOH, and in left temporopolar cortex and bilateral visual cortices in EM compared with NC, and in frontal-temporal-parietal pattern in MOH compared with EM. Conclusions These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.
Collapse
Affiliation(s)
- Zhiye Chen
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Radiology, Hainan Branch of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoyan Chen
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mengqi Liu
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Radiology, Hainan Branch of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhao Dong
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lin Ma
- Department of Radiology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Shengyuan Yu
- Department of Neurology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
7
|
Pedoia V, Gallo MC, Souza RB, Majumdar S. Longitudinal study using voxel-based relaxometry: Association between cartilage T 1ρ and T 2 and patient reported outcome changes in hip osteoarthritis. J Magn Reson Imaging 2016; 45:1523-1533. [PMID: 27626787 DOI: 10.1002/jmri.25458] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/18/2016] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To study the local distribution of hip cartilage T1ρ and T2 relaxation times and their association with changes in patient reported outcome measures (PROMs) using a fully automatic, local, and unbiased method in subjects with and without hip osteoarthritis (OA). MATERIALS AND METHODS The 3 Tesla MRI studies of the hip were obtained for 37 healthy controls and 16 subjects with radiographic hip OA. The imaging protocol included a three-dimensional (3D) SPGR sequence and a combined 3D T1ρ and T2 sequence. Quantitative cartilage analysis was compared between a traditional region of interest (ROI)-based method and a fully automatic voxel-based relaxometry (VBR) method. Additionally, VBR was used to assess local T1ρ and T2 differences between subjects with and without OA, and to evaluate the association between T1ρ and T2 and 18-month changes PROMs. RESULTS Results for the two methods were consistent in the acetabular (R = 0.79; coefficients of variation [CV] = 2.9%) and femoral cartilage (R = 0.90; CV = 2.6%). VBR revealed local patterns of T1ρ and T2 elevation in OA subjects, particularly in the posterosuperior acetabular cartilage (T1ρ : P = 0.02; T2 : P = 0.038). Overall, higher T1ρ and T2 values at baseline, particularly in the anterosuperior acetabular cartilage (T1ρ : Rho = -0.42; P = 0.002; T2 : Rho = -0.44; P = 0.002), were associated with worsening PROMS at 18-month follow-up. CONCLUSION VBR is an accurate and robust method for quantitative MRI analysis in hip cartilage. VBR showed the capability to detect local variations in T1ρ and T2 values in subjects with and without osteoarthritis, and voxel based correlations demonstrated a regional dependence between baseline T1ρ and T2 values and changes in PROMs. LEVEL OF EVIDENCE 1 J. MAGN. RESON. IMAGING 2017;45:1523-1533.
Collapse
Affiliation(s)
- Valentina Pedoia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Matthew C Gallo
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Richard B Souza
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA.,Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, California, USA
| | - Sharmila Majumdar
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|