1
|
Shaw AA, Steketee JD, Bukiya AN, Dopico AM. Toluene is a cerebral artery constrictor acting via BK channels. Neuropharmacology 2025; 266:110272. [PMID: 39706291 PMCID: PMC11745904 DOI: 10.1016/j.neuropharm.2024.110272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Acute intoxication by toluene usually follows intentional inhalation to achieve a "high", which may lead to repeated use due to toluene's reinforcing properties. In both acute and chronic intoxication brain function is primarily affected. Neuronal and glial elements participate in toluene's reinforcing properties and chronic toxicity, yet the targets underlying acute toxicity remain unknown. Many signs of toluene's acute toxicity overlap with those of brain ischemia. Moreover, two studies in humans who abused toluene reveal brain hypoperfusion in middle cerebral artery (MCA) territories. Hypoperfusion, however, may result from either excessive vasoconstriction/increased vasodilation. Using rat and mouse models, we demonstrate that toluene at concentrations reached during recreational inhalation (8000 ppm) significantly decreases (-8%) MCA diameter in vivo in male and female animals. Using GC-MS, we determined toluene blood levels from inhalation (0.09-127 mM) and then show that <1 mM toluene constricts ex vivo-pressurized MCA independently of endothelium. Toluene action is blunted by deletion of KCNMA1, which codes for BK channels, key regulators of MCA diameter, and upon selective channel blockade by 1 μM paxilline. Lastly, when applied onto an isolated membrane patch several minutes after patch-excision from the SM cell, submM toluene reduces mildly yet statistically significantly (P < 0.05) both steady-state activity (-15%) and unitary current amplitude (-20%) of MCA myocyte BK channels. Thus, BK channels themselves and their immediate proteolipid microenvironment suffice for these drug actions. Collectively, data unveil a direct inhibition of MCA myocyte BK currents by intoxicating levels of toluene, which determines, or at least contributes to, MCA constriction by toluene levels reached during inhalation by humans who suffer acute brain intoxication.
Collapse
Affiliation(s)
- Andrew A Shaw
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Jeffery D Steketee
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
2
|
Puthumana EA, Muhamad L, Young LA, Chu XP. TRPA1, TRPV1, and Caffeine: Pain and Analgesia. Int J Mol Sci 2024; 25:7903. [PMID: 39063144 PMCID: PMC11276833 DOI: 10.3390/ijms25147903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeine (1,3,7-trimethylxanthine) is a naturally occurring methylxanthine that acts as a potent central nervous system stimulant found in more than 60 different plants and fruits. Although caffeinated beverages are widely and casually consumed, the application of caffeine beyond dietary levels as pharmacologic therapy has been recognized since the beginning of its recorded use. The analgesic and vasoactive properties of caffeine are well known, but the extent of their molecular basis remains an area of active research. There is existing evidence in the literature as to caffeine's effect on TRP channels, the role of caffeine in pain management and analgesia, as well as the role of TRP in pain and analgesia; however, there has yet to be a review focused on the interaction between caffeine and TRP channels. Although the influence of caffeine on TRP has been demonstrated in the lab and in animal models, there is a scarcity of data collected on a large scale as to the clinical utility of caffeine as a regulator of TRP. This review aims to prompt further molecular research to elucidate the specific ligand-host interaction between caffeine and TRP by validating caffeine as a regulator of transient receptor potential (TRP) channels-focusing on the transient receptor potential vanilloid 1 (TRPV1) receptor and transient receptor potential ankyrin 1 (TRPA1) receptor subtypes-and its application in areas of pain.
Collapse
Affiliation(s)
| | | | | | - Xiang-Ping Chu
- Departments of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; (E.A.P.); (L.M.); (L.A.Y.)
| |
Collapse
|
3
|
Slayden A, Mysiewicz S, North K, Dopico A, Bukiya A. Cerebrovascular Effects of Alcohol Combined with Tetrahydrocannabinol. Cannabis Cannabinoid Res 2024; 9:252-266. [PMID: 36108317 PMCID: PMC10874832 DOI: 10.1089/can.2021.0234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Alcohol (ethanol) and cannabis are among the most widely used recreational drugs in the world. With increased efforts toward legalization of cannabis, there is an alarming trend toward the concomitant (including simultaneous) use of cannabis products with alcohol for recreational purpose. While each drug possesses a distinct effect on cerebral circulation, the consequences of their simultaneous use on cerebral artery diameter have never been studied. Thus, we set to address the effect of simultaneous application of alcohol and (-)-trans-Δ-9-tetrahydrocannabinol (THC) on cerebral artery diameter. Materials and Methods: We used Sprague-Dawley rats because rat cerebral circulation closely mimics morphology, ultrastructure, and function of cerebral circulation of humans. We focused on the middle cerebral artery (MCA) because it supplies blood to the largest brain territory when compared to any other cerebral artery stemming from the circle of Willis. Experiments were performed on pressurized MCA ex vivo, and in cranial windows in vivo. Ethanol and THC were probed at physiologically relevant concentrations. Researchers were "blind" to experimental group identity during data analysis to avoid bias. Results: In males, ethanol mixed with THC resulted in greater constriction of ex vivo pressurized MCA when compared to the effects exerted by separate application of each drug. In females, THC, ethanol, or their mixture failed to elicit measurable effect. Vasoconstriction by ethanol/THC mixture was ablated by either endothelium removal or pharmacological block of calcium- and voltage-gated potassium channels of large conductance (BK type) and cannabinoid receptors. Block of prostaglandin production and of endothelin receptors also blunted constriction by ethanol/THC. In males, the in vivo constriction of MCA by ethanol/THC did not differ from ethanol alone. In females, the in vivo constriction of this artery by ethanol was significantly smaller than in males. However, artery constriction by ethanol/THC did not differ from the constriction in males. Conclusions: Our data point at the complex nature of the cerebrovascular effects elicited by simultaneous use of ethanol and THC. These effects include both local and systemic components.
Collapse
Affiliation(s)
- Alexandria Slayden
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Steven Mysiewicz
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kelsey North
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Alex Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Anna Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Mysiewicz S, Hibl B, Dopico A, Bukiya A. Commonly used anesthetics modify alcohol and (-)-trans-delta9-tetrahydrocannabinol in vivo effects on rat cerebral arterioles. BMC Anesthesiol 2023; 23:411. [PMID: 38087263 PMCID: PMC10714523 DOI: 10.1186/s12871-023-02320-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Ethyl alcohol and cannabis are widely used recreational substances with distinct effects on the brain. These drugs increase accidental injuries requiring treatment under anesthesia. Moreover, alcohol and cannabis are often used in anesthetized rodents for biomedical research. Here, we compared the influence of commonly used forms of anesthesia, injectable ketamine/xylazine (KX) versus inhalant isoflurane, on alcohol- and (-)-trans-delta9-tetrahydrocannabinol (THC) effects on cerebral arteriole diameter evaluated in vivo. METHODS Studies were performed on male and female Sprague-Dawley rats subjected to intracarotid catheter placement for drug infusion, and cranial window surgery for monitoring pial arteriole diameter. Depth of anesthesia was monitored every 10-15 min by toe-pinch. Under KX, the number of toe-pinch responders was maximal after the first dose of anesthesia and diminished over time in both males and females. In contrast, the number of toe-pinch responders under isoflurane slowly raised over time, leading to increase in isoflurane percentage until deep anesthesia was re-established. Rectal temperature under KX remained stable in males while dropping in females. As expected for gaseous anesthesia, both males and females exhibited rectal temperature drops under isoflurane. RESULTS Infusion of 50 mM alcohol (ethanol, EtOH) into the cerebral circulation rendered robust constriction in males under KX anesthesia, this alcohol action being significantly smaller, but still present under isoflurane anesthesia. In females, EtOH did not cause measurable changes in pial arteriole diameter regardless of the anesthetic. These findings indicate a strong sex bias with regards to EtOH induced vasoconstriction. Infusion of 42 nM THC in males and females under isoflurane tended to constrict cerebral arterioles in both males and females when compared to isovolumic infusion of THC vehicle (dimethyl sulfoxide in saline). Moreover, THC-driven changes in arteriole diameter significantly differed in magnitude depending on the anesthetic used. Simultaneous administration of 50 mM alcohol and 42 nM THC to males constricted cerebral arterioles regardless of the anesthetic used. In females, constriction by the combined drugs was also observed, with limited influence by anesthetic presence. CONCLUSIONS We demonstrate that two commonly used anesthetic formulations differentially influence the level of vasoconstriction caused by alcohol and THC actions in cerebral arterioles.
Collapse
Affiliation(s)
- Steven Mysiewicz
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA
| | - Brianne Hibl
- Laboratory Animal Care Unit, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Alex Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA
| | - Anna Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, 71 S. Manassas, Memphis, TN, 38103, USA.
| |
Collapse
|
5
|
North KC, Mysiewicz SC, Bukiya AN, Dopico AM. Dual-color miniscope imaging of microvessels and neuronal activity in the hippocampus CA1 region of freely moving mice following alcohol administration. Am J Physiol Regul Integr Comp Physiol 2023; 325:R769-R781. [PMID: 37867475 PMCID: PMC11178301 DOI: 10.1152/ajpregu.00044.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Moderate-to-heavy episodic ("binge") drinking is the most common form of alcohol consumption in the United States. Alcohol at binge drinking concentrations reduces brain artery diameter in vivo and in vitro in many species including rats, mice, and humans. Despite the critical role played by brain vessels in maintaining neuronal function, there is a shortage of methodologies to simultaneously assess neuron and blood vessel function in deep brain regions. Here, we investigate cerebrovascular responses to ethanol by choosing a deep brain region that is implicated in alcohol disruption of brain function, the hippocampal CA1, and describe the process for obtaining simultaneous imaging of pyramidal neuron activity and diameter of nearby microvessels in freely moving mice via a dual-color miniscope. Recordings of neurovascular events were performed upon intraperitoneal injection of saline versus 3 g/kg ethanol in the same mouse. In male mice, ethanol mildly increased the amplitude of calcium signals while robustly decreasing their frequency. Simultaneously, ethanol decreased microvessel diameter. In females, ethanol did not change the amplitude or frequency of calcium signals from CA1 neurons but decreased microvessel diameter. A linear regression of ethanol-induced reduction in number of active neurons and microvessel constriction revealed a positive correlation (R = 0.981) in females. Together, these data demonstrate the feasibility of simultaneously evaluating neuronal and vascular components of alcohol actions in a deep brain area in freely moving mice, as well as the sexual dimorphism of hippocampal neurovascular responses to alcohol.
Collapse
Affiliation(s)
- Kelsey C North
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Steven C Mysiewicz
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
6
|
Mysiewicz S, North KC, Moreira L, Odum SJ, Bukiya AN, Dopico AM. Interspecies and regional variability of alcohol action on large cerebral arteries: regulation by KCNMB1 proteins. Am J Physiol Regul Integr Comp Physiol 2023; 324:R480-R496. [PMID: 36717168 PMCID: PMC10027090 DOI: 10.1152/ajpregu.00103.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Alcohol intake leading to blood ethanol concentrations (BEC) ≥ legal intoxication modifies brain blood flow with increases in some regions and decreases in others. Brain regions receive blood from the Willis' circle branches: anterior, middle (MCA) and posterior cerebral (PCA), and basilar (BA) arteries. Rats and mice have been used to identify the targets mediating ethanol-induced effects on cerebral arteries, with conclusions being freely interchanged, albeit data were obtained in different species/arterial branches. We tested whether ethanol action on cerebral arteries differed between male rat and mouse and/or across different brain regions and identified the targets of alcohol action. In both species and all Willis' circle branches, ethanol evoked reversible and concentration-dependent constriction (EC50s ≈ 37-86 mM; below lethal BEC in alcohol-naïve humans). Although showing similar constriction to depolarization, both species displayed differential responses to ethanol: in mice, MCA constriction was highly sensitive to the presence/absence of the endothelium, whereas in rat PCA was significantly more sensitive to ethanol than its mouse counterpart. In the rat, but not the mouse, BA was more ethanol sensitive than other branches. Both interspecies and regional variability were ameliorated by endothelium. Selective large conductance (BK) channel block in de-endothelialized vessels demonstrated that these channels were the effectors of alcohol-induced cerebral artery constriction across regions and species. Variabilities in alcohol actions did not fully matched KCNMB1 expression across vessels. However, immunofluorescence data from KCNMB1-/- mouse arteries electroporated with KCNMB1-coding cDNA demonstrate that KCNMB1 proteins, which regulate smooth muscle (SM) BK channel function and vasodilation, regulate interspecies and regional variability of brain artery responses to alcohol.
Collapse
Affiliation(s)
- Steven Mysiewicz
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Kelsey C North
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Luiz Moreira
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Schyler J Odum
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
7
|
Caffeine Consumption Influences Lidocaine Action via Pain-Related Voltage-Gated Sodium Channels: An In Vivo Animal Study. Pain Res Manag 2022; 2022:6107292. [PMID: 35027984 PMCID: PMC8752303 DOI: 10.1155/2022/6107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
Several factors might influence the duration and efficiency of local anesthesia. This study investigates the effect of habitual caffeine intake on lidocaine action and explores the potential involvement of voltage-gated sodium channels in the interaction effect. Wistar rats were divided into four groups: (i) control (Ctrl), (ii) lidocaine intraplantar injection (LIDO), (iii) habitual caffeine intake (CAF), and (iv) lidocaine intraplantar injection and habitual caffeine intake (LIDO + CAF). Behavioral assessments, consisting of a paw pressure test for mechanical pressure sensation and a paw withdrawal latency test for thermal pain sensation, were performed at 0, 30, 60, and 90 minutes following lidocaine injection and after 10, 11, and 12 weeks of CAF intake. Pressure sensation was significantly reduced in the LIDO + CAF group compared with the control group. Moreover, the LIDO + CAF group exhibited reduced sensation compared to LIDO alone group. The LIDO + CAF combination exerted a synergistic effect at 30 and 60 minutes compared with the control. This synergistic effect was noted at 60 minutes (11 weeks of CAF intake) and at 30 minutes (12 weeks of CAF intake) compared with LIDO alone. Augmented thermal pain-relieving effects were observed in the LIDO + CAF group at all weeks compared to the control group and at 10 weeks compared to LIDO alone group. The molecular analysis of dorsal root ganglia suggested that CAF upregulated the mRNA expression of the Nav1.3, Nav1.7, and Nav1.8 sodium channel subtypes. Chronic caffeine consumption potentiates the local anesthetic action of lidocaine in an experimental animal model through mechanisms that involve the upregulation of voltage-gated sodium channels in the dorsal root ganglia.
Collapse
|
8
|
Alleyne J, Dopico AM. Alcohol Use Disorders and Their Harmful Effects on the Contractility of Skeletal, Cardiac and Smooth Muscles. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10011. [PMID: 35169771 PMCID: PMC8843239 DOI: 10.3389/adar.2021.10011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Alcohol misuse has deleterious effects on personal health, family, societal units, and global economies. Moreover, alcohol misuse usually leads to several diseases and conditions, including alcoholism, which is a chronic condition and a form of addiction. Alcohol misuse, whether as acute intoxication or alcoholism, adversely affects skeletal, cardiac and/or smooth muscle contraction. Ethanol (ethyl alcohol) is the main effector of alcohol-induced dysregulation of muscle contractility, regardless of alcoholic beverage type or the ethanol metabolite (with acetaldehyde being a notable exception). Ethanol, however, is a simple and "promiscuous" ligand that affects many targets to mediate a single biological effect. In this review, we firstly summarize the processes of excitation-contraction coupling and calcium homeostasis which are critical for the regulation of contractility in all muscle types. Secondly, we present the effects of acute and chronic alcohol exposure on the contractility of skeletal, cardiac, and vascular/ nonvascular smooth muscles. Distinctions are made between in vivo and in vitro experiments, intoxicating vs. sub-intoxicating ethanol levels, and human subjects vs. animal models. The differential effects of alcohol on biological sexes are also examined. Lastly, we show that alcohol-mediated disruption of muscle contractility, involves a wide variety of molecular players, including contractile proteins, their regulatory factors, membrane ion channels and pumps, and several signaling molecules. Clear identification of these molecular players constitutes a first step for a rationale design of pharmacotherapeutics to prevent, ameliorate and/or reverse the negative effects of alcohol on muscle contractility.
Collapse
Affiliation(s)
| | - Alex M. Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
9
|
North KC, Bukiya AN, Dopico AM. BK channel-forming slo1 proteins mediate the brain artery constriction evoked by the neurosteroid pregnenolone. Neuropharmacology 2021; 192:108603. [PMID: 34023335 PMCID: PMC8274572 DOI: 10.1016/j.neuropharm.2021.108603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 01/24/2023]
Abstract
Pregnenolone is a neurosteroid that modulates glial growth and differentiation, neuronal firing, and several brain functions, these effects being attributed to pregnenolone actions on the neurons and glial cells themselves. Despite the vital role of the cerebral circulation for brain function and the fact that pregnenolone is a vasoactive agent, pregnenolone action on brain arteries remain unknown. Here, we obtained in vivo concentration response curves to pregnenolone on middle cerebral artery (MCA) diameter in anesthetized male and female C57BL/6J mice. In both male and female animals, pregnenolone (1 nM-100 μM) constricted MCA in a concentration-dependent manner, its maximal effect reaching ~22-35% decrease in diameter. Pregnenolone action was replicated in intact and de-endothelialized, in vitro pressurized MCA segments with pregnenolone evoking similar constriction in intact and de-endothelialized MCA. Neurosteroid action was abolished by 1 μM paxilline, a selective blocker of Ca2+ - and voltage-gated K+ channels of large conductance (BK). Cell-attached, patch-clamp recordings on freshly isolated smooth muscle cells from mouse MCAs demonstrated that pregnenolone at concentrations that constricted MCAs in vitro and in vivo (10 μM), reduced BK activity (NPo), with an average decrease in NPo reaching 24.2%. The concentration-dependence of pregnenolone constriction of brain arteries and inhibition of BK activity in intact cells were paralleled by data obtained in cell-free, inside-out patches, with maximal inhibition reached at 10 μM pregnenolone. MCA smooth muscle BKs include channel-forming α (slo1 proteins) and regulatory β1 subunits, encoded by KCNMA1 and KCNMB1, respectively. However, pregnenolone-driven decrease in NPo was still evident in MCA myocytes from KCNMB1-/- mice. Following reconstitution of slo1 channels into artificial, binary phospholipid bilayers, 10 μM pregnenolone evoked slo1 NPo inhibition which was similar to that seen in native membranes. Lastly, pregnenolone failed to constrict MCA from KCNMA1-/- mice. In conclusion, pregnenolone constricts MCA independently of neuronal, glial, endothelial and circulating factors, as well as of cell integrity, organelles, complex membrane cytoarchitecture, and the continuous presence of cytosolic signals. Rather, this action involves direct inhibition of SM BK channels, which does not require β1 subunits but is mediated through direct sensing of the neurosteroid by the channel-forming α subunit.
Collapse
Affiliation(s)
- Kelsey C North
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
10
|
Siudem P, Paradowska K. Structure, function, and mechanism of action of the
vanilloid TRPV1 receptor. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.5104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The TRPV1 receptor (transient receptor potential cation channel subfamily V member 1)
is a non-selective cationic channel activated by vanilloids like capsaicin. Therefore, TRPV1 is
also called a capsaicin’s receptor, which is a spicy substance found in chili peppers. The receptor
is located in sensory nerve fibers and non-neuronal cells, for example in vascular endothelial
and smooth muscle cells. It is thought to act as an integrator of various physical and
chemical stimuli that provide heat and pain. The activation of the TRPV1 may affect at various
physiological functions like release inflammatory mediators, gastrointestinal motility and
temperature regulation. Numerous studies in recent years show TRPV1 plays an important
role in physiology and development of pathological conditions of gastrointestinal, cardiovascular
and respiratory system. These receptors are widely studied as a gripping point for
new painkillers, but there are also data indicating their potential involvement in the pathomechanism
of various diseases, e.g. epilepsy. TRPV1 targeting may be useful not only in paintreatment
but also urinary incontinence, chronic cough or irritable bowel syndrome. The need
for further investigation of the therapeutic potential of TRPV1 antagonists indicates the lack
of effective drugs to treat many of these conditions. The purpose of this article is to collect
and summarize knowledge about the TRPV1 receptor, its structure and mechanism of action.
Collapse
Affiliation(s)
- Paweł Siudem
- Zakład Chemii Fizycznej, Katedra Farmacji Fizycznej i Bioanalizy, Wydział Farmaceutyczny, Warszawski Uniwersytet Medyczny, Warszawa
| | - Katarzyna Paradowska
- Zakład Chemii Fizycznej, Katedra Farmacji Fizycznej i Bioanalizy, Wydział Farmaceutyczny, Warszawski Uniwersytet Medyczny, Warszawa
| |
Collapse
|
11
|
North K, Slayden A, Mysiewicz S, Bukiya A, Dopico A. Celastrol Dilates and Counteracts Ethanol-Induced Constriction of Cerebral Arteries. J Pharmacol Exp Ther 2020; 375:247-257. [PMID: 32862144 DOI: 10.1124/jpet.120.000152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022] Open
Abstract
The increasing recognition of the role played by cerebral artery dysfunction in brain disorders has fueled the search for new cerebrovascular dilators. Celastrol, a natural triterpene undergoing clinical trials for treating obesity, exerts neuroprotection, which was linked to its antioxidant/anti-inflammatory activities. We previously showed that celastrol fit pharmacophore criteria for activating calcium- and voltage-gated potassium channels of large conductance (BK channels) made of subunits cloned from cerebrovascular smooth muscle (SM). These recombinant BK channels expressed in a heterologous system were activated by celastrol. Activation of native SM BK channels is well known to evoke cerebral artery dilation. Current data demonstrate that celastrol (1-100 µM) dilates de-endothelialized, ex vivo pressurized middle cerebral arteries (MCAs) from rats, with EC50 = 45 µM and maximal effective concentration (Emax)= 100 µM and with MCA diameter reaching a 10% increase over vehicle-containing, time-matched values (P < 0.05). A similar vasodilatory efficacy is achieved when celastrol is probed on MCA segments with intact endothelium. Selective BK blocking with 1 μM paxilline blunts celastrol vasodilation. Similar blunting is achieved with 0.8 mM 4-aminopirydine, which blocks voltage-gated K+ channels other than BK. Using an in vivo rat cranial window, we further demonstrate that intracarotid injections of 45 μM celastrol into pial arteries branching from MCA mimics celastrol ex vivo action. MCA constriction by ethanol concentrations reached in blood during moderate-heavy alcohol drinking (50 mM), which involves SM BK inhibition, is both prevented and reverted by celastrol. We conclude that celastrol could be an effective cerebrovascular dilator and antagonist of alcohol-induced cerebrovascular constriction, with its efficacy being uncompromised by conditions that disrupt endothelial and/or BK function. SIGNIFICANCE STATEMENT: Our study demonstrates for the first time that celastrol significantly dilates rat cerebral arteries both ex vivo and in vivo and both prevents and reverses ethanol-induced cerebral artery constriction. Celastrol actions are endothelium-independent but mediated through voltage-gated (KV) and calcium- and voltage-gated potassium channel of large conductance (BK) K+ channels. This makes celastrol an appealing new agent to evoke cerebrovascular dilation under conditions in which endothelial and/or BK channel function are impaired.
Collapse
Affiliation(s)
- Kelsey North
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alexandria Slayden
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Steven Mysiewicz
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anna Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alex Dopico
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
12
|
Silva H. Current Knowledge on the Vascular Effects of Menthol. Front Physiol 2020; 11:298. [PMID: 32317987 PMCID: PMC7154148 DOI: 10.3389/fphys.2020.00298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Menthol is a monoterpene alcohol, widely used in several food and healthcare products for its particular odor and flavor. For some decades, menthol has been known to act on the vasculature directly in the endothelium and vascular smooth muscle, with recent studies showing that it also evokes an indirect vascular response via sensory fibers. The mechanisms underlying menthol's vascular action are complex due to the diversity of cellular targets, to the interplay between signaling pathways and to the variability in terms of response. Menthol can evoke either a perfusion increase or decrease in vivo in different vascular territories, an observation that warrants a critical discussion. Menthol vascular actions in vivo seem to depend on whether the vascular territory under analysis has been directly provoked with menthol or is located deep/distant to the application site. Menthol increases perfusion of directly provoked skin regions due to a complex interplay of increased nitric oxide (NO), endothelium-derived hyperpolarization factors (EDHFs) and sensory nerve responses. In non-provoked vascular beds menthol decreases perfusion which might be attributed to heat-conservation sympathetically-mediated vasoconstriction, although an increase in tissue evaporative heat loss due the formulation ethanol may also play a role. There is increasing evidence that several of menthol's cellular targets are involved in cardiovascular diseases, such as hypertension. Thus menthol and pharmacologically-similar drugs can play important preventive and therapeutic roles, which merits further investigation.
Collapse
Affiliation(s)
- Henrique Silva
- CBIOS - Universidade Lusófona’s Research Center for Biosciences and Health Technologies, Lisboa, Portugal
- Pharmacol. Sc Depart - Universidade de Lisboa, Faculty of Pharmacy, Lisboa, Portugal
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Seleverstov O, North K, Simakova M, Bisen S, Bickenbach A, Bursac Z, Dopico AM, Bukiya AN. Temporal Requirement for the Protective Effect of Dietary Cholesterol against Alcohol-Induced Vasoconstriction. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2020; 9:236103. [PMID: 33537157 PMCID: PMC7853201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Moderate-to-heavy episodic alcohol drinking resulting in 30-80 mM of ethanol in blood constricts cerebral arteries and constitutes a risk factor for cerebrovascular disease. Alcohol-induced constriction of cerebral arteries in vivo and ex vivo has been shown to be blunted by dietary cholesterol (CLR) in a rat model of a high-CLR diet. Such protection has been proposed to arise from the high-CLR diet-driven increase in blood CLR levels and accompanying buildup of CLR within the cerebral artery smooth muscle. Here we used a rat model of high-CLR feeding in vivo and pressurized cerebral arteries ex vivo to examine whether the degree and time-course of alcohol-induced constriction are related to blood CLR levels. We demonstrate that subjecting young (3 weeks-old, 50 g) male Sprague-Dawley rats to a high- CLR feeding up to 41 weeks, resulted in an age-dependent increase in total blood CLR levels, when compared to those of age-matched rats on isocaloric (control) chow. This increase was paralleled by a high-CLR diet-driven elevation of blood low-density lipoproteins whereas high-density lipoprotein levels matched those of age-matched, chow-fed controls. Alcohol-induced constriction was only blunted by high-CLR dietary intake when high-CLR chow was taken for up to 8-12 and 18-23 weeks. However, alcohol-constriciton was not blunted when high-CLR chow intake lasted for longer times, such as 28-32 and 38-41 weeks. Thus, alcohol-induced constriction of rat middle cerebral arteries did not critically depend on the total blood CLR levels. Alcohol-induced constriction seemed unrelated to the natural, progressive elevation of the total blood CLR level in control- or high-CLR-fed animals over time. Thus, neither the exogenously nor endogenously driven increases in blood CLR could predict cerebral artery susceptibility to alcohol-induced constriction. However, we identified a temporal requirement for the protective effect of dietary CLR against alcohol, that could be governed by the young age of the high- CLR chow recipients (3 weeks of age) and/or the short duration of high-CLR chow feeding lasting for up to 23 weeks.
Collapse
Affiliation(s)
- Olga Seleverstov
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Kelsey North
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Maria Simakova
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Shivantika Bisen
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Alexandra Bickenbach
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Zoran Bursac
- Department of Biostatistics, Stempel College, Florida International University, Miami, Florida, United States of America
| | - Alex M. Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Anna N. Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States of America,Address Correspondence to Anna N. Bukiya,
| |
Collapse
|
14
|
Hu Q, Wang Q, Wang C, Tai Y, Liu B, Shao X, Fang J, Liu B. TRPV1 Channel Contributes to the Behavioral Hypersensitivity in a Rat Model of Complex Regional Pain Syndrome Type 1. Front Pharmacol 2019; 10:453. [PMID: 31105572 PMCID: PMC6498414 DOI: 10.3389/fphar.2019.00453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Complex regional pain syndrome type 1 (CRPS-I) is a debilitating pain condition that significantly affects life quality of patients. It remains a clinically challenging condition and the mechanisms of CRPS-I have not been fully elucidated. Here, we investigated the involvement of TRPV1, a non-selective cation channel important for integrating various painful stimuli, in an animal model of CRPS-I. A rat model of chronic post-ischemia pain (CPIP) was established to mimic CRPS-I. TRPV1 expression was significantly increased in hind paw tissue and small to medium-sized dorsal root ganglion (DRG) neurons of CPIP rats. CPIP rats showed increased TRPV1 current density and capsaicin responding rate in small-sized nociceptive DRG neurons. Local pharmacological blockage of TRPV1 with the specific antagonist AMG9810, at a dosage that does not produce hyperthermia or affect thermal perception or locomotor activity, effectively attenuated thermal and mechanical hypersensitivity in bilateral hind paws of CPIP rats and reduced the hyperexcitability of DRG neurons induced by CPIP. CPIP rats showed bilateral spinal astrocyte and microglia activations, which were significantly attenuated by AMG9810 treatment. These findings identified an important role of TRPV1 in mediating thermal and mechanical hypersensitivity in a CRPS-I animal model and further suggest local pharmacological blocking TRPV1 may represent an effective approach to ameliorate CRPS-I.
Collapse
Affiliation(s)
- Qimiao Hu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qiong Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Yan Tai
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Boyu Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| |
Collapse
|