1
|
Li Z, Wang J, Liu J, Chen X, Lei Z, Yuan T, Shimizu K, Zhang Z, Lee DJ, Lin Y, Adachi Y, van Loosdrecht MCM. Highly efficient carbon assimilation and nitrogen/phosphorus removal facilitated by photosynthetic O 2 from algal-bacterial aerobic granular sludge under controlled DO/pH operation. WATER RESEARCH 2023; 238:120025. [PMID: 37156104 DOI: 10.1016/j.watres.2023.120025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Reducing CO2 emission and energy consumption is crucial for the sustainable management of wastewater treatment plants (WWTPs). In this study, an algal-bacterial aerobic granular sludge (AGS) system was developed for efficient carbon (C) assimilation and nitrogen (N)/phosphorus (P) removal without the need for mechanical aeration. The photosynthetic O2 production by phototrophic organisms maintained the dissolved oxygen (DO) level at 3-4 mg/L in the bulk liquid, and an LED light control system reduced 10-30% of light energy consumption. Results showed that the biomass assimilated 52% of input dissolved total carbon (DTC), and the produced O2 simultaneously facilitated aerobic nitrification and P uptake with the coexisting phototrophs serving as a C fixer and O2 supplier. This resulted in a stably high total N removal of 81 ± 7% and an N assimilation rate of 7.55 mg/(g-MLVSS∙d) with enhanced microbial assimilation and simultaneous nitrification/denitrification. Good P removal of 92-98% was maintained during the test period at a molar ∆P/∆C ratio of 0.36 ± 0.03 and high P release and uptake rates of 10.84 ± 0.41 and 7.18 ± 0.24 mg/(g- MLVSS∙h), respectively. Photosynthetic O2 was more advantageous for N and P removal than mechanical aeration. This proposed system can contribute to a better design and sustainable operation of WWTPs using algal-bacterial AGS.
Collapse
Affiliation(s)
- Zejiao Li
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jixiang Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jialin Liu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xingyu Chen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Oura-gun Itakura, Gunma 374-0193, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li 32003Taiwan
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, HZ, Delft 2629, the Netherlands
| | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, HZ, Delft 2629, the Netherlands
| |
Collapse
|
2
|
Dang BT, Bui XT, Nguyen TT, Ngo HH, Nghiem LD, Huynh KPH, Vo TKQ, Vo TDH, Lin C, Chen SS. Effect of biomass retention time on performance and fouling of a stirred membrane photobioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161047. [PMID: 36565885 DOI: 10.1016/j.scitotenv.2022.161047] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Co-culture of microalgae-activated sludge has the potential to purify wastewater while reduce energy demand from aeration. In this work, a mechanically stirred membrane photobioreactor (stirred-MPBR) was used to evaluate the impact of the biomass retention time (BRT) on the treatment performance and membrane fouling. Results showed that stirred-MPBR was affected by BRT during treating domestic wastewater at a flux of 16.5 L m-2 h-1. The highest productivity was attained at BRT 7d (102 mg L-1 d-1), followed by BRT 10d (86 mg L-1 d-1), BRT 5d (85 mg L-1 d-1), and BRT 3d (83 mg L-1 d-1). Statistical analysis results showed that BRT 7d had a higher COD removal rate than BRT 10d, however, there is no difference in total nitrogen removal rate. The highest TP removal occurred when the biomass operated at BRT as short as 3d. Reduced BRTs caused a change in the microalgae-activated sludge biomass fraction that encouraged nitrification activity while simultaneously contributing to a higher fouling rate. The bound protein concentrations dropped from 31.35 mg L-1 (BRT 10d) to 10.67 mg L-1 (BRT 3d), while soluble polysaccharides increased from 0.99 to 1.82 mg L-1, respectively. The concentrations of extracellular polymeric substance fractions were significantly altered, which decreased the mean floc size and contributed to the escalating fouling propensity. At the optimum BRT of 7d, the stirred-MPBR showed sufficient access to light and nutrients exchange for mutualistic interactions between the microalgae and activated sludge.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Xuan-Thanh Bui
- Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam.
| | - Thanh-Tin Nguyen
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam; Department of Materials Science and Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Long D Nghiem
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Ky-Phuong-Ha Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam
| | - Thi-Kim-Quyen Vo
- Faculty of Biology and Environment - Natural Resources and Climate Change, Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan street, Tan Phu district, Ho Chi Minh city 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City, Viet Nam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei, Taiwan
| |
Collapse
|
3
|
Light and carbon limited photosynthesis of Chlorella sorokiniana. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Oxygen stress mitigation for microalgal biomass productivity improvement in outdoor raceway ponds. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
5
|
Mehta AK, Chakraborty S. Multiscale modelling of mixotrophic algal growth in pilot-scale photobioreactors and its application to microalgal cultivation using wastewater. ENVIRONMENTAL RESEARCH 2022; 214:113952. [PMID: 35934141 DOI: 10.1016/j.envres.2022.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
This multiscale model quantifies transport and reaction processes in mixotrophic microalgal growth at three characteristic length scales, namely, macro (photobioreactor), meso (algal cell), micro (organelles). The macro and the meso scale equations capture the temporal dynamics of the transport of CO2, O2, H+, organic carbon and nitrogen sources in the photobioreactor and the cell, respectively, while the micro scale quantifies the reaction rates of CO2 fixation and photorespiration in the chloroplast, and mitochondrial respiration. Our model is validated using our experiments (R2 = 0.96-0.99) on urea, CO2 (0.04-5%), and acetic acid-mediated mixotrophic cultivation of Chlorella sorokiniana for 138 h using municipal wastewater (with and without media) at 11,000 lx light in 25-liter pilot-scale bubble-column photobioreactors, which produces 0.47-2.74 g/L biomass with 22.8-29.6% lipids, while reducing the COD, ammonium, phosphate, nickel, and H+ concentrations by 65-89%. The alga assimilates the ammonium and the phosphates present in wastewater into amino acids and ATP, respectively. Our simulations quantify the autotrophic and heterotrophic components of mixotrophic biomass yield to find the optimal inlet CO2 concentration (of 3%) that synergizes autotrophic CO2 sequestration with heterotrophic assimilation of organic carbon, thereby maximizing both autotrophic and heterotrophic growths. Super-optimal levels of inlet CO2 acidify the stroma of the chloroplast, inhibit RuBisCo's enzymatic activity for CO2 fixation in the Calvin Cycle, decelerate carrier-mediated uptake of acetate, and reduce biomass yields. Our harvesting process drastically reduces the algal harvesting time to less than 29 min. This multiscale reaction-transport model provides a useful tool for further scaling up this pilot-scale technology that synergistically integrates CO2 sequestration and wastewater treatment with rapid microalgal cultivation (using municipal wastewater without autoclaving) and cost-effective harvesting.
Collapse
Affiliation(s)
- Arun Kumar Mehta
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | - Saikat Chakraborty
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, 721302, India; Biological Systems Engineering, Plaksha University, Mohali, 140306, India.
| |
Collapse
|
6
|
Dang BT, Nguyen TT, Ngo HH, Pham MDT, Le LT, Nguyen NKQ, Vo TDH, Varjani S, You SJ, Lin KA, Huynh KPH, Bui XT. Influence of C/N ratios on treatment performance and biomass production during co-culture of microalgae and activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155832. [PMID: 35561924 DOI: 10.1016/j.scitotenv.2022.155832] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Novel phycosphere associated bacteria processes are being regarded as a potential and cost-effective strategy for controlling anthropogenic contaminants in wastewater treatment. However, the underlying concern with the process is its vulnerability to improper organic or nutrient intake. This study established a synergistic interaction between microalgae and activated sludge in a three-photobioreactor system (without external aeration) to understand how pollutants could be mitigated whilst simultaneously yielding biomass under different C/N ratios of 1:1, 5:1 and 10:1. The result showed that the superior biomass productivity was facilitated at a C/N ratio of 5:1 (106 mg L-1 d-1), and the high degradation rate constants (kCOD = 0.25 d-1, kTN = 0.29 d-1, kTP = 0.35 d-1) was approximated using a first-order kinetic model. The removal of pollutants was remarkably high, exceeding 90% (COD), 93% (TN), and 96% (TP). Nevertheless, the C/N ratio of 1:1 resulted in a threefold drop in biomass-specific growth rate (μ = 0.07 d-1). Microalgal assimilation, followed by bacterial denitrification, is the major pathway of removing total nitrogen when the C/N ratio exceeds 5:1. Activated sludge plays an important role in improving microalgae tolerance to high concentration of ammonia nitrogen and boosting nitrification (light phase) and denitrification (dark phase). The use of phycosphere associated bacteria could be a promising strategy for controlling nutrients pollution and other environmental considerations in wastewater.
Collapse
Affiliation(s)
- Bao-Trong Dang
- HUTECH University, 475A Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Thanh-Tin Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Mai-Duy-Thong Pham
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam..
| | - Linh Thy Le
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), ward 11, district 5, Ho Chi Minh City, Viet Nam
| | - Ngoc-Kim-Qui Nguyen
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sheng-Jie You
- Department of Environmental Engineering, Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Kunyi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, No. 250 Kuo-Kuang Road, Taichung 402, Taiwan
| | - Ky-Phuong-Ha Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc city, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, district 10, Ho Chi Minh City 700000, Viet Nam..
| |
Collapse
|
7
|
Li Z, Wang J, Chen X, Lei Z, Yuan T, Shimizu K, Zhang Z, Lee DJ. Insight into aerobic phosphorus removal from wastewater in algal-bacterial aerobic granular sludge system. BIORESOURCE TECHNOLOGY 2022; 352:127104. [PMID: 35378284 DOI: 10.1016/j.biortech.2022.127104] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to figure out the main contributors to aerobic phosphorus (P) removal in the algal-bacterial aerobic granular sludge (AGS)-based wastewater treatment system. Kinetics study showed that aerobic P removal was controlled by macropore (contributing to 64-75% P removal) and micropore diffusion, and the different light intensity (0, 4.0, 12.3, and 24.4 klux) didn't exert significant (p > 0.05) influence on P removal. On the other hand, the increasing light intensity did promote microalgae metabolism, leading to the elevated wastewater pH (8.0-9.8). The resultant pH increase had a strongly negative relationship (R2 = 0.9723) with P uptake by polyphosphate-accumulating organisms, while promoted chemical Ca-P precipitation at a molar Ca/P ratio of 1.05. Results from this work could provide an in-depth understanding of microalgae-bacteria symbiotic interaction, which is helpful to better design and operate the algal-bacterial AGS systems.
Collapse
Affiliation(s)
- Zejiao Li
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jixiang Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xingyu Chen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| |
Collapse
|
8
|
Mohamadnia S, Tavakoli O, Faramarzi MA. Production of fucoxanthin from the microalga Tisochrysis lutea in the bubble column photobioreactor applying mass transfer coefficient. J Biotechnol 2022; 348:47-54. [PMID: 35331727 DOI: 10.1016/j.jbiotec.2022.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
Abstract
Fucoxanthin is one of the most vital pigments during photosynthesis and is extracted from golden-brown micro-algae such as Tisochrysis lutea. The present study investigates the constant volumetric mass transfer coefficient (kLa), for the first time as the scale-up strategy to change the scale from 500 mL to 2-L cultivation flasks, and 5-L bubble column photobioreactor for fucoxanthin production in T. lutea. The cell density and fucoxanthin content were improved because of through fine aeration, nutrients, and light availability by successful laboratory scale up. Fucoxanthin productivity obtained 21.20, 22.99, and 24.96 mg L-1day-1 for 500 mL, 2-L bottle, and 5-L bubble column photobioreactor, respectively. In addition, the biomass productivity enhanced from 267.5 to 275 and 284 mg L-1day-1 in three mentioned scales, respectively. Eventually, the scale up process for the production of fucoxanthin was succeeded from 500 mL bottle to 5-L photobioreactor using constant (kLa) under laboratory conditions.
Collapse
Affiliation(s)
- Sonia Mohamadnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14176, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 14176-14411, Iran
| | - Omid Tavakoli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14176, Iran.
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 14176-14411, Iran.
| |
Collapse
|
9
|
The Oxygen Paradigm—Quantitative Impact of High Concentrations of Dissolved Oxygen on Kinetics and Large-Scale Production of Arthrospira platensis. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cultivation of Arthrospira platensis in tubular photobioreactors (tPBRs) presents a promising approach for the commercial production of nutraceuticals and food products as it can achieve high productivity and effective process control. In closed photobioreactors, however, high amounts of photosynthetically produced oxygen can accumulate. So far, there has been a wide range of discussion on how dissolved oxygen concentrations (DOCs) affect bioprocess kinetics, and the subject has mainly been assessed empirically. In this study, we used photorespirometry to quantify the impact of DOCs on the growth kinetics and phycocyanin content of the widely cultivated cyanobacterium A. platensis. The photorespirometric routine revealed that the illumination intensity and cell dry weight concentration are important interconnected process parameters behind the impact that DOCs have on the bioprocess kinetics. Unfavorable process conditions such as low biomass concentrations or high illumination intensities yielded significant growth inhibition and reduced the phycocyanin content of A. platensis by up to 35%. In order to predict the biomass productivity of the large-scale cultivation of A. platensis in tPBRs, a simple process model was extended to include photoautotrophic oxygen production and accumulation in the tPBR to evaluate the performance of two configurations of a 5000 L tPBR.
Collapse
|
10
|
Senatore V, Buonerba A, Zarra T, Oliva G, Belgiorno V, Boguniewicz-Zablocka J, Naddeo V. Innovative membrane photobioreactor for sustainable CO 2 capture and utilization. CHEMOSPHERE 2021; 273:129682. [PMID: 33515958 DOI: 10.1016/j.chemosphere.2021.129682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The rising of greenhouse-gas emissions (GHG), during the last 200 years, is associated to the well known global warming phenomena. One of the main sources of CO2-equivalent GHGs emissions are the environmental protection plants accounting for 1.57% of the global emissions and thus sustainable and effective technologies for their mitigation are strongly needed. The current paper presents and discusses the assessment of an innovative membrane photo-bioreactor (MPBR) whose aim was the promotion of CO2 capture from conveyed flows, such as those from wastewater treatment plants (WWTPs), landfill and composting plants, for production and energy valorisation of algal biomass. Chlorella vulgaris microalgae strain was selected as photosynthetic platform for the abovementioned purposes. The influence of various operating parameters has been explored, including the photosynthetic photon flux densities (PPFD) (60 and 120 μmol m-2 s-1), liquid/gas ratio (L/G = 5, 10 or 15) and CO2 concentration (5, 10 and 15%) in order to investigated their effects on carbon capture effectiveness and biomass production. The results demonstrated that the increasing of PPFD significantly enhanced the biomass production in terms of biomass productivity (P) and total dry weight (DW). The highest biomass concentration of 1.01 g L-1 was achieved at PPFD of 120 μmol m-2 s-1 with a L/G of 15. Under the aforementioned conditions, carbon dioxide removal efficiency (RE) reached values up to 80%. In addition, the novel MPBR equipped with an innovative self-forming dynamic membrane (SFDM) showed a simultaneous biomass harvesting rate of 41 g m-2 h-1.
Collapse
Affiliation(s)
- Vincenzo Senatore
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Antonio Buonerba
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy; Inter-University Centre for Prediction and Prevention of Relevant Hazards (Centro Universitario per La Previsione e Prevenzione Grandi Rischi, C.U.G.RI.), Via Giovanni Paolo II, Fisciano, SA, Italy.
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy; Inter-University Centre for Prediction and Prevention of Relevant Hazards (Centro Universitario per La Previsione e Prevenzione Grandi Rischi, C.U.G.RI.), Via Giovanni Paolo II, Fisciano, SA, Italy.
| | - Giuseppina Oliva
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Joanna Boguniewicz-Zablocka
- Department of Thermal Engineering and Industrial Facilities, Faculty of Mechanical Engineering, Opole University of Technology, Poland.
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
11
|
Rearte TA, Celis-Plá PS, Neori A, Masojídek J, Torzillo G, Gómez-Serrano C, Silva Benavides AM, Álvarez-Gómez F, Abdala-Díaz R, Ranglová K, Caporgno M, Massocato TF, da Silva JC, Al Mahrouqui H, Atzmüller R, Figueroa FL. Photosynthetic performance of Chlorella vulgaris R117 mass culture is moderated by diurnal oxygen gradients in an outdoor thin layer cascade. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Modeling the oxygen inhibition in microalgae: An experimental approach based on photorespirometry. N Biotechnol 2020; 59:26-32. [PMID: 32683047 DOI: 10.1016/j.nbt.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 11/23/2022]
Abstract
Microalgae cultivation has been the object of relevant interest for many industrial applications. Where high purity of the biomass/product is required, closed photobioreactors (PBRs) appear to be the best technological solution. However, as well as cost, the major drawback of closed systems is oxygen accumulation, which is well known to be responsible for growth inhibition. Only a few quantitative approaches have attempted to describe and model oxygen inhibition, which is the result of different biological mechanisms. Here, we have applied a photorespirometric protocol to assess and quantify the effect of high oxygen concentration on photosynthetic production rate. In particular, the effects of light intensity and biomass concentration were assessed, resulting in different maximum inhibitory oxygen concentrations. Literature models available were found not to fully represent experimental data as a function of concentration and light. Accordingly, a new formulation was proposed and validated to describe the photosynthetic rate as a function of external oxygen concentration.
Collapse
|
13
|
Removal of Manganese(II) from Acid Mine Wastewater: A Review of the Challenges and Opportunities with Special Emphasis on Mn-Oxidizing Bacteria and Microalgae. WATER 2019. [DOI: 10.3390/w11122493] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many global mining activities release large amounts of acidic mine drainage with high levels of manganese (Mn) having potentially detrimental effects on the environment. This review provides a comprehensive assessment of the main implications and challenges of Mn(II) removal from mine drainage. We first present the sources of contamination from mineral processing, as well as the adverse effects of Mn on mining ecosystems. Then the comparison of several techniques to remove Mn(II) from wastewater, as well as an assessment of the challenges associated with precipitation, adsorption, and oxidation/filtration are provided. We also critically analyze remediation options with special emphasis on Mn-oxidizing bacteria (MnOB) and microalgae. Recent literature demonstrates that MnOB can efficiently oxidize dissolved Mn(II) to Mn(III, IV) through enzymatic catalysis. Microalgae can also accelerate Mn(II) oxidation through indirect oxidation by increasing solution pH and dissolved oxygen production during its growth. Microbial oxidation and the removal of Mn(II) have been effective in treating artificial wastewater and groundwater under neutral conditions with adequate oxygen. Compared to physicochemical techniques, the bioremediation of manganese mine drainage without the addition of chemical reagents is relatively inexpensive. However, wastewater from manganese mines is acidic and has low-levels of dissolved oxygen, which inhibit the oxidizing ability of MnOB. We propose an alternative treatment for manganese mine drainage that focuses on the synergistic interactions of Mn in wastewater with co-immobilized MnOB/microalgae.
Collapse
|
14
|
Kazbar A, Cogne G, Urbain B, Marec H, Le-Gouic B, Tallec J, Takache H, Ismail A, Pruvost J. Effect of dissolved oxygen concentration on microalgal culture in photobioreactors. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101432] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Sforza E, Pastore M, Barbera E, Bertucco A. Respirometry as a tool to quantify kinetic parameters of microalgal mixotrophic growth. Bioprocess Biosyst Eng 2019; 42:839-851. [DOI: 10.1007/s00449-019-02087-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|
16
|
Abu Hajar HA, Riefler RG, Stuart BJ. Cultivation of the microalga Neochloris oleoabundans for biofuels production and other industrial applications (a review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Bhola V, Swalaha FM, Nasr M, Bux F. Fuzzy intelligence for investigating the correlation between growth performance and metabolic yields of a Chlorella sp. exposed to various flue gas schemes. BIORESOURCE TECHNOLOGY 2017; 243:1078-1086. [PMID: 28764114 DOI: 10.1016/j.biortech.2017.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
A Chlorella sp. was cultivated in a photobioreactor under different experimental conditions to investigate its acclimation to high-CO2 exposures. When the microalgae was grown under controlled flue gas sparging and optimised nutrients, the biomass concentration increased to 3.415±0.145gL-1 and the maximum protein yield was obtained (57.500±0.351% ww-1). However, when the culture was exposed to continuous flue gas, the lowest biomass growth (1.665±0.129gL-1) was noted. Under these conditions, high carbohydrate and lipid values were recorded (38.600±1.320% ww-1 and 30.200±0.150% ww-1), respectively. A Sugeno-type fuzzy model was employed to understand the correlation between peak biomass concentration (Bmax), CO2 uptake rate (qCO2), and maximum relative electron transport rate (rETRmax) as inputs and carbohydrate, protein, and lipid yields as outputs. Results of the model were in agreement with the experimental data (r2-value >0.985).
Collapse
Affiliation(s)
- Virthie Bhola
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban 4001, South Africa
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, 21544 Alexandria, Egypt
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4001, South Africa.
| |
Collapse
|
18
|
Morales-Sánchez D, Kyndt J, Ogden K, Martinez A. Toward an understanding of lipid and starch accumulation in microalgae: A proteomic study of Neochloris oleoabundans cultivated under N-limited heterotrophic conditions. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Zhu X, Wang J, Chen Q, Chen G, Huang Y, Yang Z. Costs and trade-offs of grazer-induced defenses in Scenedesmus under deficient resource. Sci Rep 2016; 6:22594. [PMID: 26932369 PMCID: PMC4773859 DOI: 10.1038/srep22594] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/17/2016] [Indexed: 11/09/2022] Open
Abstract
The green alga Scenedesmus obliquus can form inducible defensive morphs under grazing threat. Costs and trade-offs of inducible defense are expected to accompany the benefits of defensive morphs, but are hard to detect under nutrient-sufficient experimental conditions. To test the existence of costs associated with inducible defense, we cultured S. obliquus along resource availability gradients in the presence or absence of infochemical cues from Daphnia, and measured the strength of defensive colony formation and fitness characters. Under the lowest phosphorous concentration, the expression of inducible defensive colony resulted in decreased growth rate, which provides direct evidence for physiological costs. Along the gradient reduction of phosphorous concentration or light intensity, inducible defense in S. obliquus showed a decreasing trend. However, the photosynthetic efficiency of S. obliquus was barely affected by its defense responses, suggesting that the negative correlations between resource availability and colony formation of this alga may be due to resource-based trade-offs in the allocation of limited resources. Thus, our results indicated that expression of inducible defense of S. obliquus was impaired under insufficient phosphorus or light. Furthermore, under severe phosphate deficiency, obvious physiological costs of inducible defense could be detected even though defensive colony formation also decreased significantly.
Collapse
Affiliation(s)
- Xuexia Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jun Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qinwen Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Ge Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
20
|
Huesemann M, Crowe B, Waller P, Chavis A, Hobbs S, Edmundson S, Wigmosta M. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures. ALGAL RES 2016. [DOI: 10.1016/j.algal.2015.11.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Kwak HS, Kim JYH, Sim SJ. A microscale approach for simple and rapid monitoring of cell growth and lipid accumulation in Neochloris oleoabundans. Bioprocess Biosyst Eng 2015. [PMID: 26209175 DOI: 10.1007/s00449-015-1444-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Due to the increasing environmental problems caused by the use of fossil fuels, microalgae have been spotlighted as renewable resources to produce biomass and biofuels. Therefore, the investigation of the optimum culture conditions of microalgae in a short time is one of the important factors for improving growth and lipid productivity. Herein, we developed a PDMS-based high-throughput screening system to rapidly and easily determine the optimum conditions for high-density culture and lipid accumulation of Neochloris oleoabundans. Using the microreactor, we were able to find the optimal culture conditions of N. oleoabundans within 5 days by rapid and parallel monitoring growth and lipid induction under diverse conditions of light intensity, pH, CO2 and nitrate concentration. We found that the maximum growth rate (µ max = 2.13 day(-1)) achieved in the microreactor was 1.58-fold higher than that in a flask (µ max = 1.34 day(-1)) at the light intensity of 40 µmol photons m(-2) s(-1), 5 % CO2 (v/v), pH 7.5 and 7 mM nitrate. In addition, we observed that the accumulation of lipid in the microreactor was 1.5-fold faster than in a flask under optimum culture condition. These results show that the microscale approach has the great potential for improving growth and lipid productivity by high-throughput screening of diverse optimum conditions.
Collapse
Affiliation(s)
- Ho Seok Kwak
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Jaoon Young Hwan Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea. .,Green School, Korea University, Seoul, 136-713, South Korea.
| |
Collapse
|
22
|
Solovchenko A, Pogosyan S, Chivkunova O, Selyakh I, Semenova L, Voronova E, Scherbakov P, Konyukhov I, Chekanov K, Kirpichnikov M, Lobakova E. Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. ALGAL RES 2014. [DOI: 10.1016/j.algal.2014.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Bona F, Capuzzo A, Franchino M, Maffei ME. Semicontinuous nitrogen limitation as convenient operation strategy to maximize fatty acid production in Neochloris oleoabundans. ALGAL RES 2014. [DOI: 10.1016/j.algal.2014.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Morales-Sánchez D, Tinoco-Valencia R, Caro-Bermúdez MA, Martinez A. Culturing Neochloris oleoabundans microalga in a nitrogen-limited, heterotrophic fed-batch system to enhance lipid and carbohydrate accumulation. ALGAL RES 2014. [DOI: 10.1016/j.algal.2014.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|