1
|
Mondal S, Pandey D, Singh SP. Chromatic acclimation in cyanobacteria renders robust photosynthesis and fitness in dynamic light environment: Recent advances and future perspectives. PHYSIOLOGIA PLANTARUM 2024; 176:e14536. [PMID: 39323055 DOI: 10.1111/ppl.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Cyanobacteria are photoautotrophic organisms that use light and water as a source of energy and electrons, respectively, to fix atmospheric carbon dioxide and release oxygen as a by-product during photosynthesis. However, photosynthesis and fitness of organisms are challenged by seasonal and diurnal fluctuations in light environments. Also, the distribution of cyanobacteria in a water column is subject to changes in the light regime. The quality and quantity of light change significantly in low and bright light environments that either limit photochemistry or result in photoinhibition due to an excess amount of light reaching reaction centers. Therefore, cyanobacteria have to adjust their light-harvesting machinery and cell morphology for the optimal harvesting of light. This adjustment of light-harvesting involves remodeling of the light-harvesting complex called phycobilisome or incorporation of chlorophyll molecules such as chlorophyll d and f into their light-harvesting machinery. Thus, photoacclimation responses of cyanobacteria at the level of pigment composition and cell morphology maximize their photosynthetic ability and fitness under a dynamic light environment. Cyanobacteria exhibit different types of photoacclimation responses that are commonly known as chromatic acclimation (CA). In this work, we discuss different types of CA reported in cyanobacteria and present a molecular mechanism of well-known type 3 CA where phycoerythrin and phycocyanin of phycobilisome changes according to light signals. We also include other aspects of type 3 CA that have been recently studied at a molecular level and highlight the importance of morphogenes, cytoskeleton, and carboxysome proteins. In summary, CA gives a unique competitive benefit to cyanobacteria by increasing their resource utilization ability and fitness.
Collapse
Affiliation(s)
- Soumila Mondal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Deepa Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shailendra P Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Satta A, Esquirol L, Ebert BE. Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria. Microorganisms 2023; 11:455. [PMID: 36838420 PMCID: PMC9964548 DOI: 10.3390/microorganisms11020455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanobacteria are photosynthetic microorganisms capable of using solar energy to convert CO2 and H2O into O2 and energy-rich organic compounds, thus enabling sustainable production of a wide range of bio-products. More and more strains of cyanobacteria are identified that show great promise as cell platforms for the generation of bioproducts. However, strain development is still required to optimize their biosynthesis and increase titers for industrial applications. This review describes the most well-known, newest and most promising strains available to the community and gives an overview of current cyanobacterial biotechnology and the latest innovative strategies used for engineering cyanobacteria. We summarize advanced synthetic biology tools for modulating gene expression and their use in metabolic pathway engineering to increase the production of value-added compounds, such as terpenoids, fatty acids and sugars, to provide a go-to source for scientists starting research in cyanobacterial metabolic engineering.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Natha, QLD 4111, Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Maurya PK, Kumar V, Mondal S, Singh SP. Photoautotrophic black-colored cyanobacterial soil crust biosynthesizes photoprotective compounds and is capable of using blue, green, and red wavelengths of light for its growth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16756-16769. [PMID: 36576619 DOI: 10.1007/s11356-022-24993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Several cyanobacteria can adjust their light-harvesting machinery in response to existing light signals in a process called chromatic acclimation (CA) which permits the utilization of available light resources for photosynthesis. CA involves alteration in the pigment composition of a major light-harvesting complex called phycobilisome (PBS) and allows some cyanobacteria to utilize green light (GL) to drive photosynthesis. However, cyanobacteria, in contrast with eukaryotic algae and higher plants, can not utilize blue light (BL) for photosynthesis due to their dependency on PBS. Here, we studied a black-colored soil crust that was composed of a single cyanobacterium identified and named Oscillatoria sp. Malviya-1 after phenotypic and phylogenetic analyses. The black-colored crust can absorb light from almost all parts of photosynthetically active radiation (400-700 nm) and ultraviolet radiation (280-400 nm) due to the presence of photosynthetic pigments and microbial sunscreens such as chlorophyll ɑ, carotenoids, phycoerythrin, phycocyanin, allophycocyanin, mycosporine-like amino acids, and scytonemin. Unlike other cyanobacteria, Oscillatoria sp. Malviya-1 can grow using GL, BL, and red light (RL) in addition to white light (WL) which was accompanied by the different colors of the mat under different light conditions. The presence of CA and sunscreens compounds can maximize the fitness of soil crust under a dynamic light environment, UVR, and desiccation. Detailed study of Oscillatoria sp. Malviya-1 will provide information on the mechanism of CA in cyanobacterial soil crust and its unique ability to use both GL and BL.
Collapse
Affiliation(s)
- Pankaj K Maurya
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod Kumar
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
- Institute of Forest Biodiversity (ICFRE), Ministry of Environment Forests and Climate Change, Hyderabad-500100, India
| | - Soumila Mondal
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shailendra P Singh
- Centre of Advanced Study in Botany, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Reflections on Cyanobacterial Chromatic Acclimation: Exploring the Molecular Bases of Organismal Acclimation and Motivation for Rethinking the Promotion of Equity in STEM. Microbiol Mol Biol Rev 2022; 86:e0010621. [PMID: 35727025 PMCID: PMC9491170 DOI: 10.1128/mmbr.00106-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms that exhibit characteristic acclimation and developmental responses to dynamic changes in the external light environment. Photomorphogenesis is the tuning of cellular physiology, development, morphology, and metabolism in response to external light cues. The tuning of photosynthetic pigmentation, carbon fixation capacity, and cellular and filament morphologies to changes in the prevalent wavelengths and abundance of light have been investigated to understand the regulation and fitness implications of different aspects of cyanobacterial photomorphogenesis. Chromatic acclimation (CA) is the most common form of photomorphogenesis that has been explored in cyanobacteria. Multiple types of CA in cyanobacteria have been reported, and insights gained into the regulatory pathways and networks controlling some of these CA types. I examine the recent expansion of CA types that occur in nature and provide an overview of known regulatory factors involved in distinct aspects of cyanobacterial photomorphogenesis. Additionally, I explore lessons for cultivating success in scientific communities that can be drawn from a reflection on existing knowledge of and approaches to studying CA.
Collapse
|
5
|
Selection-enriched genomic loci (SEGL) reveals genetic loci for environmental adaptation and photosynthetic productivity in Chlamydomonas reinhardtii. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Petrescu DI, Dilbeck PL, Montgomery BL. Environmental Tuning of Homologs of the Orange Carotenoid Protein-Encoding Gene in the Cyanobacterium Fremyella diplosiphon. Front Microbiol 2022; 12:819604. [PMID: 35003049 PMCID: PMC8739951 DOI: 10.3389/fmicb.2021.819604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
The orange carotenoid protein (OCP) family of proteins are light-activated proteins that function in dissipating excess energy absorbed by accessory light-harvesting complexes, i.e., phycobilisomes (PBSs), in cyanobacteria. Some cyanobacteria contain multiple homologs of the OCP-encoding gene (ocp). Fremyella diplosiphon, a cyanobacterium studied for light-dependent regulation of PBSs during complementary chromatic acclimation (CCA), contains several OCP homologs – two full-length OCPs, three Helical Carotenoid Proteins (HCPs) with homology to the N-terminus of OCP, and one C-terminal domain-like carotenoid protein (CCP) with homology to the C-terminus of OCP. We examined whether these homologs are distinctly regulated in response to different environmental factors, which could indicate distinct functions. We observed distinct patterns of expression for some OCP, HCP, and CCP encoding genes, and have evidence that light-dependent aspects of ocp homolog expression are regulated by photoreceptor RcaE which controls CCA. RcaE-dependent transcriptional regulator RcaC is also involved in the photoregulation of some hcp genes. Apart from light, additional environmental factors associated with cellular redox regulation impact the mRNA levels of ocp homologs, including salt, cold, and disruption of electron transport. Analyses of conserved sequences in the promoters of ocp homologs were conducted to gain additional insight into regulation of these genes. Several conserved regulatory elements were found across multiple ocp homolog promoters that potentially control differential transcriptional regulation in response to a range of environmental cues. The impact of distinct environmental cues on differential accumulation of ocp homolog transcripts indicates potential functional diversification of this gene family in cyanobacteria. These genes likely enable dynamic cellular protection in response to diverse environmental stress conditions in F. diplosiphon.
Collapse
Affiliation(s)
- D Isabel Petrescu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Preston L Dilbeck
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Beronda L Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
7
|
Effect of Micronutrient and Hormone on Microalgae Growth Assessment for Biofuel Feedstock. SUSTAINABILITY 2021. [DOI: 10.3390/su13095035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The individual and combined effects of micronutrients and hormones on freshwater-borne microalgae growth were investigated for biofuel feedstock in this experimental study. Five algal strains of Chlorella sp., Chlorococcum sp., Phormidium sp., Chlorella sp. and Cosmarium sp., AZH, AZS, ZAA1, ZAA2, and ZAA3, respectively, have been investigated. These strains were treated using different concentrations of micronutrients (iron chloride, manganese chloride, and sodium molybdenum oxide) and hormone (salicylic acid). The different treatments’ growth effects were as follows: iron chloride > sodium molybdenum oxide ˃ manganese chloride > salicylic acid. The order of the increases in the number of microalgal strain cells achieved by the application of the micronutrients and hormone was AZH > AZS > ZAA3 > ZAA2 > ZAA1. The combined treatments produced higher growth rates than the individual treatments, with the order of their effects being micronutrients + hormone > all three micronutrients > hormone alone. The increase in the number of microalgal strain cells under combined treatment was ZAA3 > AZH > AZS > ZAA2 and assessed using one-way ANOVA.
Collapse
|
8
|
Oh S, Montgomery BL. Roles of CpcF and CpcG1 in Peroxiredoxin-Mediated Oxidative Stress Responses and Cellular Fitness in the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2019; 10:1059. [PMID: 31143173 PMCID: PMC6521580 DOI: 10.3389/fmicb.2019.01059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
As a component of the photosynthetic apparatus in cyanobacteria, the phycobilisome (PBS) plays an important role in harvesting and transferring light energy to the core photosynthetic reaction centers. The size, composition (phycobiliprotein and chromophore), and assembly of PBSs can be dynamic to cope with tuning photosynthesis and associated cellular fitness in variable light environments. Here, we explore the role of PBS-related stress responses by analyzing deletion mutants of cpcF or cpcG1 genes in Synechocystis sp. PCC 6803. The cpcF gene encodes a lyase that links the phycocyanobilin (PCB) chromophore to the alpha subunit of phycocyanin (PC), a central phycobiliprotein (PBP) in PBSs. Deletion of cpcF (i.e., ΔcpcF strain) resulted in slow growth, reduced greening, elevated reactive oxygen species (ROS) levels, together with an elevated accumulation of a stress-related Peroxiredoxin protein (Sll1621). Additionally, ΔcpcF exhibited reduced sensitivity to a photosynthesis-related stress inducer, methyl viologen (MV), which disrupts electron transfer. The cpcG1 gene encodes a linker protein that serves to connect PC to the core PBP allophycocyanin. A deletion mutant of cpcG1 (i.e.,ΔcpcG1) exhibited delayed growth, a defect in pigmentation, reduced accumulation of ROS, and insensitivity to MV treatment. By comparison, ΔcpcF and ΔcpcG1 exhibited similarity in growth, pigmentation, and stress responses; yet, these strains showed distinct phenotypes for ROS accumulation, sensitivity to MV and Sll1621 accumulation. Our data emphasize an importance of the regulation of PBS structure in ROS-mediated stress responses that impact successful growth and development in cyanobacteria.
Collapse
Affiliation(s)
- Sookyung Oh
- MSU-DOE Plant Research Laboratory, College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Beronda L. Montgomery
- MSU-DOE Plant Research Laboratory, College of Natural Science, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Bao H, Melnicki MR, Pawlowski EG, Sutter M, Agostoni M, Lechno-Yossef S, Cai F, Montgomery BL, Kerfeld CA. Additional families of orange carotenoid proteins in the photoprotective system of cyanobacteria. NATURE PLANTS 2017; 3:17089. [PMID: 28692021 DOI: 10.1038/nplants.2017.89] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
The orange carotenoid protein (OCP) is a structurally and functionally modular photoactive protein involved in cyanobacterial photoprotection. Using phylogenomic analysis, we have revealed two new paralogous OCP families, each distributed among taxonomically diverse cyanobacterial genomes. Based on bioinformatic properties and phylogenetic relationships, we named the new families OCP2 and OCPx to distinguish them from the canonical OCP that has been well characterized in Synechocystis, denoted hereafter as OCP1. We report the first characterization of a carotenoprotein photoprotective system in the chromatically acclimating cyanobacterium Tolypothrix sp. PCC 7601, which encodes both OCP1 and OCP2 as well as the regulatory fluorescence recovery protein (FRP). OCP2 expression could only be detected in cultures grown under high irradiance, surpassing expression levels of OCP1, which appears to be constitutive; under low irradiance, OCP2 expression was only detectable in a Tolypothrix mutant lacking the RcaE photoreceptor required for complementary chromatic acclimation. In vitro studies show that Tolypothrix OCP1 is functionally equivalent to Synechocystis OCP1, including its regulation by Tolypothrix FRP, which we show is structurally similar to the dimeric form of Synechocystis FRP. In contrast, Tolypothrix OCP2 shows both faster photoconversion and faster back-conversion, lack of regulation by the FRP, a different oligomeric state (monomer compared to dimer for OCP1) and lower fluorescence quenching of the phycobilisome. Collectively, these findings support our hypothesis that the OCP2 is relatively primitive. The OCP2 is transcriptionally regulated and may have evolved to respond to distinct photoprotective needs under particular environmental conditions such as high irradiance of a particular light quality, whereas the OCP1 is constitutively expressed and is regulated at the post-translational level by FRP and/or oligomerization.
Collapse
Affiliation(s)
- Han Bao
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Matthew R Melnicki
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Emily G Pawlowski
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Marco Agostoni
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - Fei Cai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Beronda L Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Montgomery BL. Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria. CURRENT OPINION IN PLANT BIOLOGY 2017; 37:18-23. [PMID: 28391048 DOI: 10.1016/j.pbi.2017.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacteria exhibit a form of photomorphogenesis termed chromatic acclimation (CA), which involves tuning metabolism and physiology to external light cues, with the most readily recognized acclimation being the alteration of pigmentation. Historically, CA has been represented by three types that occur in organisms which synthesize green-light-absorbing phycoerythrin (PE) and red-light-absorbing phycocyanin (PC). The distinct CA types depend upon whether organisms adjust levels of PE (type II), both PE and PC (type III, also complementary chromatic acclimation), or neither (type I) in response to red or green wavelengths. Recently new forms of CA have been described which include responses to blue and green light (type IV) or far-red light (FaRLiP). Here, the molecular bases of distinct forms of CA are discussed.
Collapse
Affiliation(s)
- Beronda L Montgomery
- Michigan State University, Department of Energy-Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Department of Microbiology and Molecular Genetics, East Lansing, MI 48824, United States.
| |
Collapse
|
11
|
de Mooij T, Nejad ZR, van Buren L, Wijffels RH, Janssen M. Effect of photoacclimation on microalgae mass culture productivity. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Modeling the competition between antenna size mutant and wild type microalgae in outdoor mass culture. J Biotechnol 2016; 240:1-13. [DOI: 10.1016/j.jbiotec.2016.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023]
|
13
|
Montgomery BL. Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4079-4090. [PMID: 27217547 DOI: 10.1093/jxb/erw206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photosynthetic organisms absorb photons and convert light energy to chemical energy through the process of photosynthesis. Photosynthetic efficiency is tuned in response to the availability of light, carbon dioxide and nutrients to promote maximal levels of carbon fixation, while simultaneously limiting the potential for light-associated damage or phototoxicity. Given the central dependence on light for energy production, photosynthetic organisms possess abilities to tune their growth, development and metabolism to external light cues in the process of photomorphogenesis. Photosynthetic organisms perceive light intensity and distinct wavelengths or colors of light to promote organismal acclimation. Cyanobacteria are oxygenic photosynthetic prokaryotes that exhibit abilities to alter specific aspects of growth, including photosynthetic pigment composition and morphology, in responses to changes in available wavelengths and intensity of light. This form of photomorphogenesis is known as chromatic acclimation and has been widely studied. Recent insights into the photosensory photoreceptors found in cyanobacteria and developments in our understanding of the molecular mechanisms initiated by light sensing to affect the changes characteristic of chromatic acclimation are discussed. I consider cyanobacterial responses to light, the broad diversity of photoreceptors encoded by these organisms, specific mechanisms of photomorphogenesis, and associated fitness implications in chromatically acclimating cyanobacteria.
Collapse
Affiliation(s)
- Beronda L Montgomery
- MSU-DOE Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|