1
|
Windhagauer M, Doblin MA, Signal B, Kuzhiumparambil U, Fabris M, Abbriano RM. Metabolic response to a heterologous poly-3-hydroxybutyrate (PHB) pathway in Phaeodactylum tricornutum. Appl Microbiol Biotechnol 2024; 108:104. [PMID: 38212969 DOI: 10.1007/s00253-023-12823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/13/2024]
Abstract
The marine diatom Phaeodactylum tricornutum is an emerging host for metabolic engineering, but little is known about how introduced pathways are integrated into the existing metabolic framework of the host or influence transgene expression. In this study, we expressed the heterologous poly-3-hydroxybutyrate (PHB) pathway using episomal expression, which draws on the precursor acetyl coenzyme-A (AcCoA). By experimentally perturbing cultivation conditions, we gained insight into the regulation of the endogenous metabolism in transgenic lines under various environmental scenarios, as well as on alterations in AcCoA flux within the host cell. Biosynthesis of PHB led to distinct shifts in the metabolome of the host, and further analysis revealed a condition-dependent relationship between endogenous and transgenic metabolic pathways. Under N limitation, which induced a significant increase in neutral lipid content, both metabolic and transcriptomic data suggest that AcCoA was preferably shunted into the endogenous pathway for lipid biosynthesis over the transgenic PHB pathway. In contrast, supply of organic carbon in the form of glycerol supported both fatty acid and PHB biosynthesis, suggesting cross-talk between cytosolic and plastidial AcCoA precursors. This is the first study to investigate the transcriptomic and metabolomic response of diatom cell lines expressing a heterologous multi-gene pathway under different environmental conditions, providing useful insights for future engineering attempts for pathways based on the precursor AcCoA. KEY POINTS: • PHB expression had minimal effects on transcription of adjacent pathways. • N limitation favoured native lipid rather than transgenic PHB synthesis. • Glycerol addition allowed simultaneous lipid and PHB accumulation.
Collapse
Affiliation(s)
- Matthias Windhagauer
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Brandon Signal
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | | | - Michele Fabris
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, 5230, Odense M, Denmark
| | - Raffaela M Abbriano
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
2
|
Toustou C, Boulogne I, Gonzalez AA, Bardor M. Comparative RNA-Seq of Ten Phaeodactylum tricornutum Accessions: Unravelling Criteria for Robust Strain Selection from a Bioproduction Point of View. Mar Drugs 2024; 22:353. [PMID: 39195469 DOI: 10.3390/md22080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
The production of biologics in mammalian cells is hindered by some limitations including high production costs, prompting the exploration of other alternative expression systems that are cheaper and sustainable like microalgae. Successful productions of biologics such as monoclonal antibodies have already been demonstrated in the diatom Phaeodactylum tricornutum; however, limited production yields still remain compared to mammalian cells. Therefore, efforts are needed to make this microalga more competitive as a cell biofactory. Among the seventeen reported accessions of P. tricornutum, ten have been mainly studied so far. Among them, some have already been used to produce high-value-added molecules such as biologics. The use of "omics" is increasingly being described as useful for the improvement of both upstream and downstream steps in bioprocesses using mammalian cells. Therefore, in this context, we performed an RNA-Seq analysis of the ten most used P. tricornutum accessions (Pt1 to Pt10) and deciphered the differential gene expression in pathways that could affect bioproduction of biologics in P. tricornutum. Our results highlighted the benefits of certain accessions such as Pt9 or Pt4 for the production of biologics. Indeed, these accessions seem to be more advantageous. Moreover, these results contribute to a better understanding of the molecular and cellular biology of P. tricornutum.
Collapse
Affiliation(s)
- Charlotte Toustou
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
| | - Isabelle Boulogne
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Muriel Bardor
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
- ALGA BIOLOGICS, CURIB, 25 rue Tesnières, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
3
|
Chen CC, Huang YR, Chan YT, Lin HY, Lin HJ, Hsiao CD, Ko TP, Lin TW, Lan YH, Lin HY, Chang HY. A distinct dimer configuration of a diatom Get3 forming a tetrameric complex with its tail-anchored membrane cargo. BMC Biol 2024; 22:136. [PMID: 38867239 PMCID: PMC11170914 DOI: 10.1186/s12915-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Most tail-anchored (TA) membrane proteins are delivered to the endoplasmic reticulum through a conserved posttranslational pathway. Although core mechanisms underlying the targeting and insertion of TA proteins are well established in eukaryotes, their role in mediating TA protein biogenesis in plants remains unclear. We reported the crystal structures of algal arsenite transporter 1 (ArsA1), which possesses an approximately 80-kDa monomeric architecture and carries chloroplast-localized TA proteins. However, the mechanistic basis of ArsA2, a Get3 (guided entry of TA proteins 3) homolog in plants, for TA recognition remains unknown. RESULTS Here, for the first time, we present the crystal structures of the diatom Pt-Get3a that forms a distinct ellipsoid-shaped tetramer in the open (nucleotide-bound) state through crystal packing. Pulldown assay results revealed that only tetrameric Pt-Get3a can bind to TA proteins. The lack of the conserved zinc-coordination CXXC motif in Pt-Get3a potentially leads to the spontaneous formation of a distinct parallelogram-shaped dimeric conformation in solution, suggesting a new dimer state for subsequent tetramerization upon TA targeting. Pt-Get3a nonspecifically binds to different subsets of TA substrates due to the lower hydrophobicity of its α-helical subdomain, which is implicated in TA recognition. CONCLUSIONS Our study provides new insights into the mechanisms underlying TA protein shielding by tetrameric Get3 during targeting to the diatom's cell membrane.
Collapse
Affiliation(s)
- Chi-Chih Chen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Beitou Dist, No. 155, Sec. 2, Linong St, Taipei City, 112304, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Ru Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Beitou Dist, No. 155, Sec. 2, Linong St, Taipei City, 112304, Taiwan
| | - Yuen Ting Chan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Beitou Dist, No. 155, Sec. 2, Linong St, Taipei City, 112304, Taiwan
| | - Hung-Yun Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung City, Taiwan
| | | | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tai-Wen Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ya-Hsuan Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Beitou Dist, No. 155, Sec. 2, Linong St, Taipei City, 112304, Taiwan
| | - Hsuan-Ya Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Beitou Dist, No. 155, Sec. 2, Linong St, Taipei City, 112304, Taiwan
| | - Hsin-Yang Chang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Beitou Dist, No. 155, Sec. 2, Linong St, Taipei City, 112304, Taiwan.
| |
Collapse
|
4
|
Slattery SS, Giguere DJ, Stuckless EE, Shrestha A, Briere LAK, Galbraith A, Reaume S, Boyko X, Say HH, Browne TS, Frederick MI, Lant JT, Heinemann IU, O'Donoghue P, Dsouza L, Martin S, Howard P, Jedeszko C, Ali K, Styba G, Flatley M, Karas BJ, Gloor GB, Edgell DR. Phosphate-regulated expression of the SARS-CoV-2 receptor-binding domain in the diatom Phaeodactylum tricornutum for pandemic diagnostics. Sci Rep 2022; 12:7010. [PMID: 35487958 PMCID: PMC9051505 DOI: 10.1038/s41598-022-11053-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/18/2022] [Indexed: 12/22/2022] Open
Abstract
The worldwide COVID-19 pandemic caused by the SARS-CoV-2 betacoronavirus has highlighted the need for a synthetic biology approach to create reliable and scalable sources of viral antigen for uses in diagnostics, therapeutics and basic biomedical research. Here, we adapt plasmid-based systems in the eukaryotic microalgae Phaeodactylum tricornutum to develop an inducible overexpression system for SARS-CoV-2 proteins. Limiting phosphate and iron in growth media induced expression of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein from the P. tricornutum HASP1 promoter in the wild-type strain and in a histidine auxotrophic strain that alleviates the requirement for antibiotic selection of expression plasmids. The RBD was purified from whole cell extracts (algae-RBD) with yield compromised by the finding that 90-95% of expressed RBD lacked the genetically encoded C-terminal 6X-histidine tag. Constructs that lacked the TEV protease site between the RBD and C-terminal 6X-histidine tag retained the tag, increasing yield. Purified algae-RBD was found to be N-linked glycosylated by treatment with endoglycosidases, was cross-reactive with anti-RBD polyclonal antibodies, and inhibited binding of recombinant RBD purified from mammalian cell lines to the human ACE2 receptor. We also show that the algae-RBD can be used in a lateral flow assay device to detect SARS-CoV-2 specific IgG antibodies from donor serum at sensitivity equivalent to assays performed with RBD made in mammalian cell lines. Our study shows that P. tricornutum is a scalable system with minimal biocontainment requirements for the inducible production of SARS-CoV-2 or other coronavirus antigens for pandemic diagnostics.
Collapse
Affiliation(s)
- Samuel S Slattery
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Daniel J Giguere
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Emily E Stuckless
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Arina Shrestha
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Lee-Ann K Briere
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Alexa Galbraith
- Lambton College, 1457 London Rd, Sarnia, ON, N7S 6K4, Canada
| | - Stephen Reaume
- Lambton College, 1457 London Rd, Sarnia, ON, N7S 6K4, Canada
| | - Xenia Boyko
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Henry H Say
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Tyler S Browne
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Mallory I Frederick
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Jeremy T Lant
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
- Department of Chemistry, Western University, London, ON, N6A 3K7, Canada
| | - Liann Dsouza
- Pond Technologies Inc., Markham, ON, L3R 9W7, Canada
| | - Steven Martin
- Pond Technologies Inc., Markham, ON, L3R 9W7, Canada
| | - Peter Howard
- Pond Technologies Inc., Markham, ON, L3R 9W7, Canada
| | - Christopher Jedeszko
- International Point of Care Inc., 135 The West Mall Unit 9, Toronto, ON, M9C 1C2, Canada
| | - Kinza Ali
- International Point of Care Inc., 135 The West Mall Unit 9, Toronto, ON, M9C 1C2, Canada
| | - Garth Styba
- International Point of Care Inc., 135 The West Mall Unit 9, Toronto, ON, M9C 1C2, Canada
| | - Martin Flatley
- Suncor Energy Inc., Sarnia Refinery, 1900 River Road, Sarnia, ON, N7T 7J3, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Gregory B Gloor
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
| | - David R Edgell
- Department of Biochemistry, Schlich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada.
| |
Collapse
|
5
|
Kassaw TK, Paton AJ, Peers G. Episome-Based Gene Expression Modulation Platform in the Model Diatom Phaeodactylum tricornutum. ACS Synth Biol 2022; 11:191-204. [PMID: 35015507 DOI: 10.1021/acssynbio.1c00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemically inducible gene expression systems have been an integral part of the advanced synthetic genetic circuit design and are employed for precise dynamic control over genetically engineered traits. However, the current systems for controlling transgene expression in most algae are limited to endogenous promoters that respond to different environmental factors. We developed a highly efficient, tunable, and reversible episome-based transcriptional control system in the model diatom alga, Phaeodactylum tricornutum. We assessed the time- and dose-response dynamics of each expression system using a reporter protein (eYFP) as a readout. Using our circuit configuration, we found two inducible expression systems with a high dynamic range and confirmed the suitability of an episome expression platform for synthetic biological applications in diatoms. These systems are controlled by the presence of β-estradiol and digoxin. Addition of either chemical to transgenic strains activates transcription with a dynamic range of up to ∼180-fold and ∼90-fold, respectively. We demonstrated that our episome-based transcriptional control systems are tunable and reversible in a dose- and time-dependent manner. Using droplet digital polymerase chain reaction (PCR), we also confirmed that inducer-dependent transcriptional activation starts within minutes of inducer application without any detectable transcript in the uninduced controls. The system described here expands the molecular and synthetic biology toolkits in algae and will facilitate future gene discovery and metabolic engineering efforts.
Collapse
Affiliation(s)
- Tessema K. Kassaw
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew J. Paton
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
6
|
Characterisation of novel regulatory sequences compatible with modular assembly in the diatom Phaeodactylum tricornutum. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Helliwell KE, Harrison EL, Christie-Oleza JA, Rees AP, Kleiner FH, Gaikwad T, Downe J, Aguilo-Ferretjans MM, Al-Moosawi L, Brownlee C, Wheeler GL. A Novel Ca 2+ Signaling Pathway Coordinates Environmental Phosphorus Sensing and Nitrogen Metabolism in Marine Diatoms. Curr Biol 2020; 31:978-989.e4. [PMID: 33373640 DOI: 10.1016/j.cub.2020.11.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/26/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Diatoms are a diverse and globally important phytoplankton group, responsible for an estimated 20% of carbon fixation on Earth. They frequently form spatially extensive phytoplankton blooms, responding rapidly to increased availability of nutrients, including phosphorus (P) and nitrogen (N). Although it is well established that diatoms are common first responders to nutrient influxes in aquatic ecosystems, little is known of the sensory mechanisms that they employ for nutrient perception. Here, we show that P-limited diatoms use a Ca2+-dependent signaling pathway, not previously described in eukaryotes, to sense and respond to the critical macronutrient P. We demonstrate that P-Ca2+ signaling is conserved between a representative pennate (Phaeodactylum tricornutum) and centric (Thalassiosira pseudonana) diatom. Moreover, this pathway is ecologically relevant, being sensitive to sub-micromolar concentrations of inorganic phosphate and a range of environmentally abundant P forms. Notably, we show that diatom recovery from P limitation requires rapid and substantial increases in N assimilation and demonstrate that this process is dependent on P-Ca2+ signaling. P-Ca2+ signaling thus governs the capacity of diatoms to rapidly sense and respond to P resupply, mediating fundamental cross-talk between the vital nutrients P and N and maximizing diatom resource competition in regions of pulsed nutrient supply.
Collapse
Affiliation(s)
- Katherine E Helliwell
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
| | - Ellen L Harrison
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | | | - Andrew P Rees
- Plymouth Marine Laboratory, Plymouth, Devon PL1 3DH, UK
| | - Friedrich H Kleiner
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Trupti Gaikwad
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Joshua Downe
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | | | | | - Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Science, University of Southampton, Southampton SO14 3ZH, UK
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
8
|
Kumar G, Shekh A, Jakhu S, Sharma Y, Kapoor R, Sharma TR. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front Bioeng Biotechnol 2020; 8:914. [PMID: 33014997 PMCID: PMC7494788 DOI: 10.3389/fbioe.2020.00914] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Microalgae, due to their complex metabolic capacity, are being continuously explored for nutraceuticals, pharmaceuticals, and other industrially important bioactives. However, suboptimal yield and productivity of the bioactive of interest in local and robust wild-type strains are of perennial concerns for their industrial applications. To overcome such limitations, strain improvement through genetic engineering could play a decisive role. Though the advanced tools for genetic engineering have emerged at a greater pace, they still remain underused for microalgae as compared to other microorganisms. Pertaining to this, we reviewed the progress made so far in the development of molecular tools and techniques, and their deployment for microalgae strain improvement through genetic engineering. The recent availability of genome sequences and other omics datasets form diverse microalgae species have remarkable potential to guide strategic momentum in microalgae strain improvement program. This review focuses on the recent and significant improvements in the omics resources, mutant libraries, and high throughput screening methodologies helpful to augment research in the model and non-model microalgae. Authors have also summarized the case studies on genetically engineered microalgae and highlight the opportunities and challenges that are emerging from the current progress in the application of genome-editing to facilitate microalgal strain improvement. Toward the end, the regulatory and biosafety issues in the use of genetically engineered microalgae in commercial applications are described.
Collapse
Affiliation(s)
- Gulshan Kumar
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ajam Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, India
| | - Sunaina Jakhu
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Yogesh Sharma
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Ritu Kapoor
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), Sahibzada Ajit Singh Nagar, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
9
|
Kadono T, Tomaru Y, Suzuki K, Yamada K, Adachi M. The possibility of using marine diatom-infecting viral promoters for the engineering of marine diatoms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110475. [PMID: 32540005 DOI: 10.1016/j.plantsci.2020.110475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Marine diatoms constitute a major group of unicellular photosynthetic eukaryotes. Diatoms are widely applicable for both basic studies and applied studies. Molecular tools and techniques have been developed for diatom research. Among these tools, several endogenous gene promoters (e.g., the fucoxanthin chlorophyll a/c-binding protein gene promoter) have become available for expressing transgenes in diatoms. Gene promoters that drive transgene expression at a high level are very important for the metabolic engineering of diatoms. Various marine diatom-infecting viruses (DIVs), including both DNA viruses and RNA viruses, have recently been isolated, and their genome sequences have been characterized. Promoters from viruses that infect plants and mammals are widely used as constitutive promoters to achieve high expression of transgenes. Thus, we recently investigated the activity of promoters derived from marine DIVs in the marine diatom, Phaeodactylum tricornutum. We discuss novel viral promoters that will be useful for the future metabolic engineering of diatoms.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Yuji Tomaru
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Koji Yamada
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
10
|
George J, Kahlke T, Abbriano RM, Kuzhiumparambil U, Ralph PJ, Fabris M. Metabolic Engineering Strategies in Diatoms Reveal Unique Phenotypes and Genetic Configurations With Implications for Algal Genetics and Synthetic Biology. Front Bioeng Biotechnol 2020; 8:513. [PMID: 32582656 PMCID: PMC7290003 DOI: 10.3389/fbioe.2020.00513] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/30/2020] [Indexed: 12/23/2022] Open
Abstract
Diatoms are photosynthetic microeukaryotes that dominate phytoplankton populations and have increasing applicability in biotechnology. Uncovering their complex biology and elevating strains to commercial standards depends heavily on robust genetic engineering tools. However, engineering microalgal genomes predominantly relies on random integration of transgenes into nuclear DNA, often resulting in detrimental “position-effects” such as transgene silencing, integration into transcriptionally-inactive regions, and endogenous sequence disruption. With the recent development of extrachromosomal transgene expression via independent episomes, it is timely to investigate both strategies at the phenotypic and genomic level. Here, we engineered the model diatom Phaeodactylum tricornutum to produce the high-value heterologous monoterpenoid geraniol, which, besides applications as fragrance and insect repellent, is a key intermediate of high-value pharmaceuticals. Using high-throughput phenotyping we confirmed the suitability of episomes for synthetic biology applications and identified superior geraniol-yielding strains following random integration. We used third generation long-read sequencing technology to generate a complete analysis of all transgene integration events including their genomic locations and arrangements associated with high-performing strains at a genome-wide scale with subchromosomal detail, never before reported in any microalga. This revealed very large, highly concatenated insertion islands, offering profound implications on diatom functional genetics and next generation genome editing technologies, and is key for developing more precise genome engineering approaches in diatoms, including possible genomic safe harbour locations to support high transgene expression for targeted integration approaches. Furthermore, we have demonstrated that exogenous DNA is not integrated inadvertently into the nuclear genome of extrachromosomal-expression clones, an important characterisation of this novel engineering approach that paves the road to synthetic biology applications.
Collapse
Affiliation(s)
- Jestin George
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Tim Kahlke
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Raffaela M Abbriano
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | | | - Peter J Ralph
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Michele Fabris
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia.,CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Dell’Aquila G, Zauner S, Heimerl T, Kahnt J, Samel-Gondesen V, Runge S, Hempel F, Maier UG. Mobilization and Cellular Distribution of Phosphate in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2020; 11:579. [PMID: 32582227 PMCID: PMC7283521 DOI: 10.3389/fpls.2020.00579] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Unicellular organisms that live in marine environments must cope with considerable fluctuations in the availability of inorganic phosphate (Pi). Here, we investigated the extracellular Pi concentration-dependent expression, as well as the intracellular or extracellular localization, of phosphatases and phosphate transporters of the diatom Phaeodactylum tricornutum. We identified Pi-regulated plasma membrane-localized, ER-localized, and secreted phosphatases, in addition to plasma membrane-localized, vacuolar membrane-localized, and plastid-surrounding membrane-localized phosphate transporters that were also regulated in a Pi concentration-dependent manner. These studies not only add further knowledge to already existing transcriptomic data, but also highlight the capacity of the diatom to distribute Pi intracellularly and to mobilize Pi from extracellular and intracellular resources.
Collapse
Affiliation(s)
| | - Stefan Zauner
- Laboratory for Cell Biology, Philipps University of Marburg, Marburg, Germany
| | | | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vera Samel-Gondesen
- Laboratory for Cell Biology, Philipps University of Marburg, Marburg, Germany
| | - Simon Runge
- Laboratory for Cell Biology, Philipps University of Marburg, Marburg, Germany
| | | | - Uwe G. Maier
- Laboratory for Cell Biology, Philipps University of Marburg, Marburg, Germany
- SYNMIKRO Research Center, Marburg, Germany
| |
Collapse
|
12
|
Fabris M, George J, Kuzhiumparambil U, Lawson CA, Jaramillo-Madrid AC, Abbriano RM, Vickers CE, Ralph P. Extrachromosomal Genetic Engineering of the Marine Diatom Phaeodactylum tricornutum Enables the Heterologous Production of Monoterpenoids. ACS Synth Biol 2020; 9:598-612. [PMID: 32032487 DOI: 10.1021/acssynbio.9b00455] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Geraniol is a commercially relevant plant-derived monoterpenoid that is a main component of rose essential oil and used as insect repellent. Geraniol is also a key intermediate compound in the biosynthesis of the monoterpenoid indole alkaloids (MIAs), a group of over 2000 compounds that include high-value pharmaceuticals. As plants naturally produce extremely small amounts of these molecules and their chemical synthesis is complex, industrially sourcing these compounds is costly and inefficient. Hence, microbial hosts suitable to produce MIA precursors through synthetic biology and metabolic engineering are currently being sought. Here, we evaluated the suitability of a eukaryotic microalga, the marine diatom Phaeodactylum tricornutum, for the heterologous production of monoterpenoids. Profiling of endogenous metabolism revealed that P. tricornutum, unlike other microbes employed for industrial production of terpenoids, accumulates free pools of the precursor geranyl diphosphate. To evaluate the potential for larger synthetic biology applications, we engineered P. tricornutum through extrachromosomal, episome-based expression, for the heterologous biosynthesis of the MIA intermediate geraniol. By profiling the production of geraniol resulting from various genetic and cultivation arrangements, P. tricornutum reached the maximum geraniol titer of 0.309 mg/L in phototrophic conditions. This work provides (i) a detailed analysis of P. tricornutum endogenous terpenoid metabolism, (ii) a successful demonstration of extrachromosomal expression for metabolic pathway engineering with potential gene-stacking applications, and (iii) a convincing proof-of-concept of the suitability of P. tricornutum as a novel production platform for heterologous monoterpenoids, with potential for complex pathway engineering aimed at the heterologous production of MIAs.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
| | - Jestin George
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Caitlin A. Lawson
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Claudia E. Vickers
- CSIRO Synthetic Biology Future Science Platform, GPO Box 2583, Brisbane, QLD 4001, Australia
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
13
|
Butler T, Kapoore RV, Vaidyanathan S. Phaeodactylum tricornutum: A Diatom Cell Factory. Trends Biotechnol 2020; 38:606-622. [PMID: 31980300 DOI: 10.1016/j.tibtech.2019.12.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
Abstract
A switch from a petroleum-based to a biobased economy requires the capacity to produce both high-value low-volume and low-value high-volume products. Recent evidence supports the development of microalgae-based microbial cell factories with the objective of establishing environmentally sustainable manufacturing solutions. Diatoms display rich diversity and potential in this regard. We focus on Phaeodactylum tricornutum, a pennate diatom that is commonly found in marine ecosystems, and discuss recent trends in developing the diatom chassis for the production of a suite of natural and genetically engineered products. Both upstream and downstream developments are reviewed for the commercial development of P. tricornutum as a cell factory for a spectrum of marketable products.
Collapse
Affiliation(s)
- Thomas Butler
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK
| | - Rahul Vijay Kapoore
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK; Present address: Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK
| | - Seetharaman Vaidyanathan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
14
|
Novel endogenous promoters for genetic engineering of the marine microalga Nannochloropsis gaditana CCMP526. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Erdene-Ochir E, Shin BK, Kwon B, Jung C, Pan CH. Identification and characterisation of the novel endogenous promoter HASP1 and its signal peptide from Phaeodactylum tricornutum. Sci Rep 2019; 9:9941. [PMID: 31289300 PMCID: PMC6617621 DOI: 10.1038/s41598-019-45786-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Although diatoms have been extensively studied as bioreactors, only a limited number of efficient gene promoters are available. Therefore, the development of new endogenous promoters is important for the heterologous production of a variety of recombinant proteins. Herein, we identified the most abundant secreted protein in Phaeodactylum tricornutum, designated ‘highly abundant secreted protein 1’ (HASP1), and characterised the activities of its promoter and signal peptide using green fluorescent protein (GFP) as a reporter. The HASP1 promoter strongly drove GFP expression during all growth phases of P. tricornutum in culture, in contrast to the commonly used fcpA promoter, which is less active during the stationary phase. The HASP1 signal peptide was also sufficient for facilitating efficient secretion of GFP by P. tricornutum. Our findings suggest that both the promoter and the signal peptide of HASP1 can be utilized as novel tools for the overexpression and secretion of recombinant proteins in P. tricornutum.
Collapse
Affiliation(s)
- Erdenedolgor Erdene-Ochir
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Bok-Kyu Shin
- Algaeprona Inc, Gangneung, 25451, Republic of Korea
| | - Byeori Kwon
- Algaeprona Inc, Gangneung, 25451, Republic of Korea
| | - Choonkyun Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea. .,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
16
|
Pollier J, Vancaester E, Kuzhiumparambil U, Vickers CE, Vandepoele K, Goossens A, Fabris M. A widespread alternative squalene epoxidase participates in eukaryote steroid biosynthesis. Nat Microbiol 2018; 4:226-233. [DOI: 10.1038/s41564-018-0305-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/24/2018] [Indexed: 11/09/2022]
|
17
|
Uthappa U, Brahmkhatri V, Sriram G, Jung HY, Yu J, Kurkuri N, Aminabhavi TM, Altalhi T, Neelgund GM, Kurkuri MD. Nature engineered diatom biosilica as drug delivery systems. J Control Release 2018; 281:70-83. [DOI: 10.1016/j.jconrel.2018.05.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 02/08/2023]
|
18
|
Watanabe Y, Kadono T, Kira N, Suzuki K, Iwata O, Ohnishi K, Yamaguchi H, Adachi M. Development of endogenous promoters that drive high-level expression of introduced genes in the model diatom Phaeodactylum tricornutum. Mar Genomics 2018; 42:41-48. [PMID: 30509379 DOI: 10.1016/j.margen.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
The marine diatom Phaeodactylum tricornutum is attractive for basic and applied diatom research. We isolated putative endogenous gene promoters derived from genes that are highly expressed in P. tricornutum: the fucoxanthin chlorophyll a/c-binding protein (FCP) C gene, the vacuolar ATP synthase 16-kDa proteolipid subunit (V-ATPase C) gene, the clumping factor A gene and the solute carrier family 34 member 2 gene. Five putative promoter regions were isolated, linked to an antibiotic resistance gene (Sh ble) and transformed into P. tricornutum. Using quantitative RT-PCR, the promoter activities in the transformants were analyzed and compared to that of the diatom endogenous gene promoter, the FCP A gene promoter which has been used for the transformation of P. tricornutum. Among the five isolated potential promoters, the activity of the V-ATPase C gene promoter was approximately 2.73 times higher than that of the FCP A gene promoter. The V-ATPase C gene promoter drove the expression of Sh ble mRNA transcripts under both light and dark conditions at the stationary phase. These results suggest that the V-ATPase C gene promoter is a novel tool for the genetic engineering of P. tricornutum.
Collapse
Affiliation(s)
- Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Nozomu Kira
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Osamu Iwata
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Otsu-200, Nankoku, Kochi 783-8502, Japan
| | - Haruo Yamaguchi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
19
|
Wang X, Dong HP, Wei W, Balamurugan S, Yang WD, Liu JS, Li HY. Dual expression of plastidial GPAT1 and LPAT1 regulates triacylglycerol production and the fatty acid profile in Phaeodactylum tricornutum. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:318. [PMID: 30479663 PMCID: PMC6249879 DOI: 10.1186/s13068-018-1317-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/13/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Metabolic engineering has emerged as a potential strategy for improving microalgal lipid content through targeted changes to lipid metabolic networks. However, the intricate nature of lipogenesis has impeded metabolic engineering. Therefore, it is very important to identify the crucial metabolic nodes and develop strategies to exploit multiple genes for transgenesis. In an attempt to unravel the microalgal triacylglycerol (TAG) pathway, we overexpressed two key lipogenic genes, glycerol-3-phosphate acyltransferase (GPAT1) and lysophosphatidic acid acyltransferase (LPAT1), in oleaginous Phaeodactylum tricornutum and determined their roles in microalgal lipogenesis. RESULTS Engineered P. tricornutum strains showed enhanced growth and photosynthetic efficiency compared with that of the wild-type during the growth phase of the cultivation period. However, both the cell types reached stationary phase on day 7. Overexpression of GPAT1 and LPAT1 increased the TAG content by 2.3-fold under nitrogen-replete conditions without compromising cell growth, and they also orchestrated the expression of other key genes involved in TAG synthesis. The transgenic expression of GPAT1 and LPAT1 influenced the expression of malic enzyme and glucose 6-phosphate dehydrogenase, which enhanced the levels of lipogenic NADPH in the transgenic lines. In addition, GPAT1 and LPAT1 preferred C16 over C18 at the sn-2 position of the glycerol backbone. CONCLUSION Overexpression of GPAT1 together with LPAT1 significantly enhanced lipid content without affecting growth and photosynthetic efficiency, and they orchestrated the expression of other key photosynthetic and lipogenic genes. The lipid profile for elevated fatty acid content (C16-CoA) demonstrated the involvement of the prokaryotic TAG pathway in marine diatoms. The results suggested that engineering dual metabolic nodes should be possible in microalgal lipid metabolism. This study also provides the first demonstration of the role of the prokaryotic TAG biosynthetic pathway in lipid overproduction and indicates that the fatty acid profile can be tailored to improve lipid production.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Hong-Po Dong
- School of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088 China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062 China
| | - Wei Wei
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science, Jinan University, Guangzhou, 510632 China
| |
Collapse
|