1
|
Kirti A, Rajaram H. Phosphoproteome modulation by nucleoside diphosphate kinase affects photosynthesis & stress tolerance of Nostoc PCC 7120. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141054. [PMID: 39389524 DOI: 10.1016/j.bbapap.2024.141054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Nucleoside diphosphate kinase (Ndk/NDK/NDPK) is known to possess pleiotropic functions, one of which is that as a protein kinase, and has been shown to be involved in stress tolerance in plants. To assess its role in the cyanobacterium Nostoc PCC 7120, which is hitherto unreported, recombinant strain overexpressing Ndk, Anndk+ was generated. Phosphoproteomic analysis of Anndk+ and its comparison with that of the vector control, AnpAM, revealed differential phosphorylation at S/T/Y sites of proteins belonging to varied functional groups, with over 17 % phosphoproteins involved in photosynthesis. A total of 177 phosphopeptides and 117 phosphoproteins were identified, including newly identified phosphopeptides in any cyanobacteria. Compared to AnpAM, the Anndk+ cells exhibited (i) lower photosynthetic efficiency and electron transport rate at low PAR (photosynthetically active radiation), (ii) no change in photochemical quenching across PAR, (iii) but distinct non-photochemical quenching [zero Y(NPQ) and high Y(NO) in Anndk+ and high Y(NPQ) and low (NO) in AnpAM], and (iv) increased tolerance to γ-radiation, oxidative, salt and DCMU stresses. The observed modulation of phosphoproteome linked to physiological changes upon overexpression of Ndk in Nostoc could be a combination of direct protein kinase activity of Ndk and/or indirectly through other protein kinases and phosphatases whose phosphorylation status is mediated by Ndk. This is the first report on a direct correlation between Ndk levels, phosphorylation status of proteins and stress tolerance in any cyanobacteria.
Collapse
Affiliation(s)
- Anurag Kirti
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Rai KK, Raj A, Rai R, Singh S, Rai LC. All1750 of Anabaena PCC 7120 encodes a novel NAD +-dependent amine dehydrogenase having broad substrate range. Int J Biol Macromol 2024; 287:138507. [PMID: 39647724 DOI: 10.1016/j.ijbiomac.2024.138507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Native amine dehydrogenases (AmDHs) are rare and typically have narrow substrate specificity and low processivity. Therefore, they are often modified using protein engineering for industrial and pharmaceutical applications. This study presents identification and characterization of a novel native amine dehydrogenase (AmDH) encoding WD40 protein (All1750) from Anabaena PCC 7120. Heterologous expression of all1750 in E. coli enhanced its tolerance to abiotic stressors such as drought, cadmium, and NaCl, as evidenced by increase in gene expression (2-10-fold), spot assay results (3-4-fold) and decreased ROS generation (0.2-1.8-fold). Molecular docking analysis showed that All1750 has broad substrate binding activity, indicating its catalytic potential in amine oxidation. All1750 exhibited the appreciable enzymatic activity with acetophenone (0.8-1.0-fold increase), followed by 4-fluorophenyl acetone and 4-fluoropropiophenone. The Km values for acetophenone and 4-fluorophenyl acetone were 4.2-12.1-fold higher, suggesting a greater affinity of All1750 for these low-cost substrates compared to the expensive 4-fluoropropiophenone. Recombinant All1750 showed optimal enzyme activity at pH 8.0 and maintained thermo-stability at 70 °C with a half-life of approximately 3 h. Our findings provide valuable insights into the industrial application of the All1750 protein. This native AmDH from Anabaena can effectively utilize diverse cost-effective substrates, making it a promising biocatalyst for chiral amine biosynthesis.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Department of Biotechnology, Amity School of Biological Sciences, Amity University, Mohali 140306, Punjab, India; Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Alka Raj
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ruchi Rai
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Hurali DT, Banerjee M, Ballal A. Unravelling the involvement of protein disorder in cyanobacterial stress responses. Int J Biol Macromol 2024; 277:133934. [PMID: 39025183 DOI: 10.1016/j.ijbiomac.2024.133934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
This study has explored the involvement of Intrinsically Disordered Proteins (IDPs) in cyanobacterial stress response. IDPs possess distinct physicochemical properties, which allow them to execute diverse functions. Anabaena PCC 7120, the model photosynthetic, nitrogen-fixing cyanobacterium encodes 688 proteins (11 % of the total proteome) with at least one intrinsically disordered region (IDR). Of these, 130 proteins that showed >30 % overall disorder were designated as IDPs. Physico-chemical analysis, showed these IDPs to adopt shapes ranging from 'globular' to 'tadpole-like'. Upon exposure to NaCl, 41 IDP-encoding genes were found to be differentially expressed. Surprisingly, most of these were induced, indicating the importance of IDP-accumulation in overcoming salt stress. Subsequently, six IDPs were identified to be induced by multiple stresses (salt, ammonium and selenite). Interestingly, the presence of these 6-multiple stress-induced IDPs was conserved in filamentous cyanobacteria. Utilizing the experimental proteomic data of Anabaena, these 6 IDPs were found to interact with many proteins involved in diverse pathways, underscoring their physiological importance as protein hubs. This study lays the framework for IDP-related research in Anabaena by (a) identifying, as well as physiochemically characterizing, all the disordered proteins and (b) uncovering a subset of IDPs that are likely to be critical in adaptation to environmental stresses.
Collapse
Affiliation(s)
- Deepak T Hurali
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
4
|
Srivastava R, Singh N, Kanda T, Yadav S, Yadav S, Atri N. Cyanobacterial Proteomics: Diversity and Dynamics. J Proteome Res 2024; 23:2680-2699. [PMID: 38470568 DOI: 10.1021/acs.jproteome.3c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Cyanobacteria (oxygenic photoautrophs) comprise a diverse group holding significance both environmentally and for biotechnological applications. The utilization of proteomic techniques has significantly influenced investigations concerning cyanobacteria. Application of proteomics allows for large-scale analysis of protein expression and function within cyanobacterial systems. The cyanobacterial proteome exhibits tremendous functional, spatial, and temporal diversity regulated by multiple factors that continuously modify protein abundance, post-translational modifications, interactions, localization, and activity to meet the dynamic needs of these tiny blue greens. Modern mass spectrometry-based proteomics techniques enable system-wide examination of proteome complexity through global identification and high-throughput quantification of proteins. These powerful approaches have revolutionized our understanding of proteome dynamics and promise to provide novel insights into integrated cellular behavior at an unprecedented scale. In this Review, we present modern methods and cutting-edge technologies employed for unraveling the spatiotemporal diversity and dynamics of cyanobacterial proteomics with a specific focus on the methods used to analyze post-translational modifications (PTMs) and examples of dynamic changes in the cyanobacterial proteome investigated by proteomic approaches.
Collapse
Affiliation(s)
| | - Nidhi Singh
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Tripti Kanda
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Sadhana Yadav
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| | - Shivam Yadav
- Department of Botany, University of Allahabad, Allahabad 211002, India
| | - Neelam Atri
- Department of Botany, M.M.V., Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Bhakat S, Mondal A, Mandal S, Rath J. Role of exopolysaccharides of Anabaena sp. in desiccation tolerance and biodeterioration of ancient terracotta monuments of Bishnupur. Arch Microbiol 2024; 206:105. [PMID: 38363385 DOI: 10.1007/s00203-024-03841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
Colonization of the cyanobacteria in the Bishnupur terracotta temples, one of the heritage sites of West Bengal, India is in an alarming state of deterioration now. Among the cyanobacteria Anabaena sp. (VBCCA 052002) has been isolated from most of the crust samples of terracotta monuments of Bishnupur. The identification was done using micromorphological characters and confirmed by 16S rRNA gene sequencing. The isolated strain produces enormous exopolysaccharides, which are extracted, hydrolyzed, and analyzed by HPLC. We have studied desiccation tolerance in this cyanobacterium and found biosynthesis of trehalose with an increase in durations of desiccation. The in vitro experiment shows that Chlorophyll-a and carotenoid content increase with fourteen days of desiccation, and cellular carbohydrates increase continuously. However, cellular protein decreases with desiccation. To gain insights into the survival strategies and biodeterioration mechanisms of Anabaena sp. in the desiccated conditions of the Bishnupur monuments, the present study focuses on the physiological aspects of the cyanobacteria under controlled in vitro conditions. Our study indicates that in desiccation conditions, trehalose biosynthesis takes place in Anabaena sp. As a result of the excessive sugar and polysaccharide produced, it adheres to the surface of the terracotta structure. The continuous contraction and expansion of these polysaccharides contribute to the biodeterioration of these monuments.
Collapse
Affiliation(s)
- Shailen Bhakat
- Department of Botany, Sambhu Nath College, Labpur, Birbhum, West Bengal, 731303, India
| | - Arka Mondal
- Department of Botany, Visva-Bharati (Central University), Santiniketan, West Bengal, 731235, India
| | - Sikha Mandal
- Department of Botany, Sree Chaitanya College, Habra, West Bengal, 743268, India.
| | - Jnanendra Rath
- Department of Botany, Visva-Bharati (Central University), Santiniketan, West Bengal, 731235, India
| |
Collapse
|
6
|
Moore RA, Azua-Bustos A, González-Silva C, Carr CE. Unveiling metabolic pathways involved in the extreme desiccation tolerance of an Atacama cyanobacterium. Sci Rep 2023; 13:15767. [PMID: 37737281 PMCID: PMC10516996 DOI: 10.1038/s41598-023-41879-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Gloeocapsopsis dulcis strain AAB1 is an extremely xerotolerant cyanobacterium isolated from the Atacama Desert (i.e., the driest and oldest desert on Earth) that holds astrobiological significance due to its ability to biosynthesize compatible solutes at ultra-low water activities. We sequenced and assembled the G. dulcis genome de novo using a combination of long- and short-read sequencing, which resulted in high-quality consensus sequences of the chromosome and two plasmids. We leveraged the G. dulcis genome to generate a genome-scale metabolic model (iGd895) to simulate growth in silico. iGd895 represents, to our knowledge, the first genome-scale metabolic reconstruction developed for an extremely xerotolerant cyanobacterium. The model's predictive capability was assessed by comparing the in silico growth rate with in vitro growth rates of G. dulcis, in addition to the synthesis of trehalose. iGd895 allowed us to explore simulations of key metabolic processes such as essential pathways for water-stress tolerance, and significant alterations to reaction flux distribution and metabolic network reorganization resulting from water limitation. Our study provides insights into the potential metabolic strategies employed by G. dulcis, emphasizing the crucial roles of compatible solutes, metabolic water, energy conservation, and the precise regulation of reaction rates in their adaptation to water stress.
Collapse
Affiliation(s)
- Rachel A Moore
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 275 Ferst Dr. NW, Atlanta, GA, 30332, USA.
| | - Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 275 Ferst Dr. NW, Atlanta, GA, 30332, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
7
|
Srivastava A, Kumar A, Biswas S, Kumar R, Srivastava V, Rajaram H, Mishra Y. Gamma (γ)-radiation stress response of the cyanobacterium Anabaena sp. PCC7120: Regulatory role of LexA and photophysiological changes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111529. [PMID: 36332765 DOI: 10.1016/j.plantsci.2022.111529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
High radioresistance of the cyanobacterium, Anabaena sp. PCC7120 has been attributed to efficient DNA repair, protein recycling, and oxidative stress management. However, the regulatory network involved in these batteries of responses remains unexplored. In the present study, the role of a global regulator, LexA in modulating gamma (γ)-radiation stress response of Anabaena was investigated. Comparison of the cytosolic proteome profiles upon γ-radiation in recombinant Anabaena strains, AnpAM (vector-control) and AnlexA+ (LexA-overexpressing), revealed 41 differentially accumulated proteins, corresponding to 29 distinct proteins. LexA was found to be involved in the regulation of 27 of the corresponding genes based on the presence of AnLexA-Box, EMSA, and/or qRT-PCR studies. The majority of the regulated genes were found to be involved in C-assimilation either through photosynthesis or C-catabolism and oxidative stress alleviation. Photosynthesis, measured in terms of PSII photophysiological parameters and thylakoid membrane proteome was found to be affected by γ-radiation in both AnpAM and AnlexA+ cells, with LexA affecting them even under control growth conditions. Thus, LexA functioned as one of the transcriptional regulators involved in modulating γ-radiation stress response in Anabaena. This study could pave the way for a deeper understanding of the regulation of γ-radiation-responsive genes in cyanobacteria at large.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arvind Kumar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Hema Rajaram
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
8
|
Rai KK, Singh S, Rai R, Rai LC. Functional characterization of two WD40 family proteins, Alr0671 and All2352, from Anabaena PCC 7120 and deciphering their role in abiotic stress management. PLANT MOLECULAR BIOLOGY 2022; 110:545-563. [PMID: 35997919 DOI: 10.1007/s11103-022-01306-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
WD40 domain-containing proteins are one of the eukaryotes' most ancient and ubiquitous protein families. Little is known about the presence and function of these proteins in cyanobacteria in general and Anabaena in particular. In silico analysis confirmed the presence of WD40 repeats. Gene expression analysis indicated that the transcript levels of both the target proteins were up-regulated up to 4 fold in Cd and drought and 2-3 fold in heat, salt, and UV-B stress. Using a fluorescent oxidative stress indicator, we showed that the recombinant proteins were scavenging reactive oxygen species (ROS) (4-5 fold) more efficiently than empty vectors. Chromatin immunoprecipitation analysis (ChIP) and electrophoretic mobility shift assay (EMSA) revealed that the target proteins function as transcription factors after binding to the promoter sequences. The presence of kinase activity (2-4 fold) in the selected proteins indicated that these proteins could modulate the functions of other cellular proteins under stress conditions by inducing phosphorylation of specific amino acids. The chosen proteins also demonstrated interaction with Zn, Cd, and Cu (1.4-2.5 fold), which might stabilize the proteins' structure and biophysical functions under multiple abiotic stresses. The functionally characterized Alr0671 and All2352 proteins act as transcription factors and offer tolerance to agriculturally relevant abiotic stresses.
Collapse
Affiliation(s)
- Krishna Kumar Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - L C Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
9
|
Wang M, Zhu Q, Li X, Hu J, Song F, Liang W, Ma X, Wang L, Liang W. Effect of Drought Stress on Degradation and Remodeling of Membrane Lipids in Nostoc flagelliforme. Foods 2022; 11:foods11121798. [PMID: 35741996 PMCID: PMC9222375 DOI: 10.3390/foods11121798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Nostoc flagelliforme is a kind of terrestrial edible cyanobacteria with important ecological and economic value which has developed special mechanisms to adapt to drought conditions. However, the specific mechanism of lipidome changes in drought tolerance of N. flagelliforme has not been well understood. In this study, the ultra-high-performance liquid chromatography and mass spectrometry were employed to analyze the lipidome changes of N. flagelliforme under dehydration. A total of 853 lipid molecules were identified, of which 171 were significantly different from that of the control group. The digalactosyldiacylglycerol/monogalactosyldiacylglycerol (DGDG/MGDG) ratio was increased. The amount of wax ester (WE) was sharply decreased during drought stress, while Co (Q10) was accumulated. The levels of odd chain fatty acids (OCFAs) were increased under dehydration, positively responding to drought stress according to the energy metabolism state. In conclusion, the lipidomic data corroborated that oxidation, degradation, and biosynthesis of membrane lipids took place during lipid metabolism, which can respond to drought stress through the transformation of energy and substances. Besides, we constructed a lipid metabolic model demonstrating the regulatory mechanism of drought stress in N. flagelliforme. The present study provides insight into the defense strategies of cyanobacteria in lipid metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wenyu Liang
- Correspondence: ; Tel./Fax: +86-0951-206-2810
| |
Collapse
|
10
|
Leaf transcriptome profiling of contrasting sugarcane genotypes for drought tolerance under field conditions. Sci Rep 2022; 12:9153. [PMID: 35650424 PMCID: PMC9160059 DOI: 10.1038/s41598-022-13158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022] Open
Abstract
Drought is the most detrimental abiotic stress to sugarcane production. Nevertheless, transcriptomic analyses remain scarce for field-grown plants. Here we performed comparative transcriptional profiling of two contrasting sugarcane genotypes, ‘IACSP97-7065’ (drought-sensitive) and ‘IACSP94-2094’ (drought-tolerant) grown in a drought-prone environment. Physiological parameters and expression profiles were analyzed at 42 (May) and 117 (August) days after the last rainfall. The first sampling was done under mild drought (soil water potential of −60 kPa), while the second one was under severe drought (soil water potential of −75 kPa). Microarray analysis revealed a total of 622 differentially expressed genes in both sugarcane genotypes under mild and severe drought stress, uncovering about 250 exclusive transcripts to ‘IACSP94-2094’ involved in oxidoreductase activity, transcriptional regulation, metabolism of amino acids, and translation. Interestingly, the enhanced antioxidant system of ‘IACSP94-2094’ may protect photosystem II from oxidative damage, which partially ensures stable photochemical activity even after 117 days of water shortage. Moreover, the tolerant genotype shows a more extensive set of responsive transcription factors, promoting the fine-tuning of drought-related molecular pathways. These results help elucidate the intrinsic molecular mechanisms of a drought-tolerant sugarcane genotype to cope with ever-changing environments, including prolonged water deficit, and may be useful for plant breeding programs.
Collapse
|
11
|
Xu HF, Raanan H, Dai GZ, Oren N, Berkowicz S, Murik O, Kaplan A, Qiu BS. Reading and surviving the harsh conditions in desert biological soil crust: The cyanobacterial viewpoint. FEMS Microbiol Rev 2021; 45:6308820. [PMID: 34165541 DOI: 10.1093/femsre/fuab036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
Biological soil crusts (BSCs) are found in drylands, cover ∼12% of the Earth's surface in arid and semi-arid lands and their destruction is considered an important promoter of desertification. These crusts are formed by the adhesion of soil particles to polysaccharides excreted mostly by filamentous cyanobacteria, which are the pioneers and main primary producers in BSCs. Desert BSCs survive in one of the harshest environments on Earth, and are exposed to daily fluctuations of extreme conditions. The cyanobacteria inhabiting these habitats must precisely read the changing conditions and predict, for example, the forthcoming desiccation. Moreover, they evolved a comprehensive regulation of multiple adaptation strategies to enhance their stress tolerance. Here we focus on what distinguishes cyanobacteria able to revive after dehydration from those that cannot. While important progress has been made in our understanding of physiological, biochemical and omics aspects, clarification of the sensing, signal transduction and responses enabling desiccation tolerance are just emerging. We plot the trajectory of current research and open questions ranging from general strategies and regulatory adaptations in the hydration/desiccation cycle, to recent advances in our understanding of photosynthetic adaptation. The acquired knowledge provides new insights to mitigate desertification and improve plant productivity under drought conditions.
Collapse
Affiliation(s)
- Hai-Feng Xu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| | - Hagai Raanan
- Department of Plant Pathology and Weed Research, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 2, 8531100 Israel
| | - Guo-Zheng Dai
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| | - Nadav Oren
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Simon Berkowicz
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel.,Interuniversity Institute for Marine Sciences in Eilat, P.O.B 469, Eilat, 8810302 Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401 Israel
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079 China
| |
Collapse
|
12
|
Srivastava A, Biswas S, Yadav S, Kumar S, Srivastava V, Mishra Y. Acute cadmium toxicity and post-stress recovery: Insights into coordinated and integrated response/recovery strategies of Anabaena sp. PCC 7120. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124822. [PMID: 33858073 DOI: 10.1016/j.jhazmat.2020.124822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Cyanobacteria, the first photoautotrophs have remarkable adaptive capabilities against most abiotic stresses, including Cd. A model cyanobacterium, Anabaena sp. PCC 7120 has been commonly used to understand cyanobacterial plasticity under different environmental stresses. However, very few studies have focused on the acute Cd toxicity. In this context, Anabaena was subjected to 100 μM Cd for 48 h (acute Cd stress, ACdS) and then transferred into the fresh medium for post-stress recovery (PSR). We further investigated the dynamics of morpho-ultrastructure, physiology, cytosolic proteome, thylakoidal complexes, chelators, and transporters after ACdS, as well as during early (ER), mid (MR), and late (LR) phases of PSR. The findings revealed that ACdS induced intracellular Cd accumulation and ROS production, altered morpho-ultrastructure, reduced photosynthetic pigments, and affected the structural organization of PSII, which subsequently hindered photosynthetic efficiency. Anabaena responded to ACdS and recovered during PSR by reprogramming the expression pattern of proteins/genes involved in cellular defense and repair; CO2 access, Calvin-Benson cycle, glycolysis, and pentose phosphate pathway; protein biosynthesis, folding, and degradation; regulatory functions; PSI-based cyclic electron flow; Cd chelation; and efflux. These modulations occurred in an integrated and coordinated manner that facilitated Anabaena to detoxify Cd and repair ACdS-induced cellular damage.
Collapse
Affiliation(s)
- Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sandhya Yadav
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sanjiv Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm 10691, Sweden
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
13
|
Physiological and Proteomic Studies of the Cyanobacterium Anabaena sp. Acclimated to Desiccation Stress. Curr Microbiol 2021; 78:2429-2439. [PMID: 33983480 DOI: 10.1007/s00284-021-02504-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Agricultural productivity is threatened by increasing incidence of drought and the drought tolerant cyanobacteria offer a better solution in the restoration of soil fertility and productivity. The present study describes the comparative physiological response of the cyanobacterium Anabaena sp. acclimated and un-acclimated to desiccation stress induced by polyethylene glycol (10% PEG). While, the acclimated cyanobacterial cells grew luxuriantly with optimal chlorophyll content, photosynthetic activities and nitrogen fixation, the un-acclimated cells exhibited reduced growth rate, chlorophyll content, photosynthetic activities and nitrogen fixation. Distinct differences in the accumulation of lipid peroxidation products, proline and activity of superoxide dismutase were observed under identical growth conditions in the acclimated and un-acclimated cells. Desiccation-acclimated and un-acclimated cyanobacteria showed significant alterations in the abundance of important proteins in the proteome. Two-dimensional gel electrophoresis followed by MALDI-TOF-MS/MS analysis identified twelve proteins. The acclimated cells showed the up regulation of proteins such as Rubisco, fructose-bis-phosphate aldolase, fructose 1-6 bisphosphatase, phosphoglycerate dehydrogenase and elongation factors Tu and Ts as compared to un-acclimated cells. Therefore, the ability to maintain photosynthesis, antioxidants and increased accumulation of proteins related to energy metabolism helped the acclimated cyanobacterium Anabaena sp. to grow optimally under desiccation stress conditions.
Collapse
|
14
|
All4894 encoding a novel fasciclin (FAS-1 domain) protein of Anabaena sp. PCC7120 revealed the presence of a thermostable β-glucosidase. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Chatterjee A, Singh S, Rai R, Rai S, Rai L. Functional Characterization of Alr0765, A Hypothetical Protein from Anabaena PCC 7120 Involved in Cellular Energy Status Sensing, Iron Acquisition and Abiotic Stress Management in E. coli Using Molecular, Biochemical and Computational Approaches. Curr Genomics 2020; 21:295-310. [PMID: 33071622 PMCID: PMC7521041 DOI: 10.2174/1389202921999200424181239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cyanobacteria are excellent model to understand the basic metabolic processes taking place in response to abiotic stress. The present study involves the characterization of a hypothetical protein Alr0765 of Anabaena PCC7120 comprising the CBS-CP12 domain and deciphering its role in abiotic stress tolerance. METHODS Molecular cloning, heterologous expression and protein purification using affinity chromatography were performed to obtain native purified protein Alr0765. The energy sensing property of Alr0765 was inferred from its binding affinity with different ligand molecules as analyzed by FTIR and TNP-ATP binding assay. AAS and real time-PCR were applied to evaluate the iron acquisition property and cyclic voltammetry was employed to check the redox sensitivity of the target protein. Transcript levels under different abiotic stresses, as well as spot assay, CFU count, ROS level and cellular H2O2 level, were used to show the potential role of Alr0765 in abiotic stress tolerance. In-silico analysis of Alr0765 included molecular function probability analysis, multiple sequence analysis, protein domain and motif finding, secondary structure analysis, protein-ligand interaction, homologous modeling, model refinement and verification and molecular docking was performed with COFACTOR, PROMALS-3D, InterProScan, MEME, TheaDomEx, COACH, Swiss modeller, Modrefiner, PROCHECK, ERRAT, MolProbity, ProSA, TM-align, and Discovery studio, respectively. RESULTS Transcript levels of alr0765 significantly increased by 20, 13, 15, 14.8, 12, 7, 6 and 2.5 fold when Anabaena PCC7120 treated with LC50 dose of heat, arsenic, cadmium, butachlor, salt, mannitol (drought), UV-B, and methyl viologen respectively, with respect to control (untreated). Heterologous expression resulted in 23KDa protein observed on the SDS-PAGE. Immunoblotting and MALDI-TOF-MS/MS, followed by MASCOT search analysis, confirmed the identity of the protein and ESI/MS revealed that the purified protein was a dimer. Binding possibility of Alr0765 with ATP was observed with an almost 6-fold increment in relative fluorescence during TNP-ATP binding assay with a λ max of 538 nm. FTIR spectra revealed modification in protein confirmation upon binding of Alr0765 with ATP, ADP, AMP and NADH. A 10-fold higher accumulation of iron was observed in digests of E. coli with recombinant vector after induction as compared to control, which affirms the iron acquisition property of the protein. Moreover, the generation of the redox potential of 146 mV by Alr0765 suggested its probable role in maintaining the redox status of the cell under environmental constraints. As per CFU count recombinant, E. coli BL21 cells showed about 14.7, 7.3, 6.9, 1.9, 3 and 4.9 fold higher number of colonies under heat, cadmium (CdCl2), arsenic (Na3AsO4), salt (NaCl), UV-B and drought (mannitol) respectively compared to pET21a harboring E. coli BL21 cells. Deterioration in the cellular ROS level and total cellular H2O2 concentration validated the stress tolerance ability of Alr0765. In-silico analysis unraveled novel findings and attested experimental findings in determining the role of Alr0765. CONCLUSION Alr0765 is a novel CBS-CP12 domain protein that maintains cellular energy level and iron homeostasis which provides tolerance against multiple abiotic stresses.
Collapse
Affiliation(s)
- Antra Chatterjee
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Shilpi Singh
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Ruchi Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - Shweta Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| | - L.C. Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
16
|
Rai S, Rai R, Singh PK, Rai LC. Alr2321, a multiple stress inducible glyoxalase I of Anabaena sp. PCC7120 detoxifies methylglyoxal and reactive species oxygen. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105238. [PMID: 31301544 DOI: 10.1016/j.aquatox.2019.105238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Abiotic stresses enhance the cellular level of reactive oxygen species (ROS) which consequently leads to toxic methylglyoxal (MG) production. Glyoxalases (GlyI & GlyII) catalyze the conversion of toxic MG into non-toxic lactic acid but their properties and functions have been overlooked in cyanobacteria. This is the first attempt to conduct a genome-wide analysis of GlyI protein (PF00903) from Anabaena sp. PCC7120. Out of total nine GlyI domain possessing proteins, only three (Alr2321, Alr4469, All1022) harbour conserve His/Glu/His/Glu metal binding site at their homologous position and are deficient in conserved region specific for Zn2+ dependent members. Their biochemical, structural and functional characterization revealed that only Alr2321 is a homodimeric Ni2+ dependent active GlyI with catalytic efficiency 11.7 × 106 M-1 s-1. It has also been found that Alr2321 is activated by various divalent metal ions and has maximum GlyI activity with Ni2+ followed by Co2+ > Mn2+ > Cu2+ and no activity with Zn2+. Moreover, the expression of alr2321 was found to be maximally up-regulated under heat (19 fold) followed by cadmium, desiccation, arsenic, salinity and UV-B stresses. BL21/pGEX-5X2-alr2321 showed improved growth under various abiotic stresses as compared to BL21/pGEX-5X2 by increased scavenging of intracellular MG and ROS levels. Taken together, these results suggest noteworthy links between intracellular MG and ROS, its detoxification by Alr2321, a member of GlyI family of Anabaena sp. PCC7120, in relation to abiotic stress.
Collapse
Affiliation(s)
- Shweta Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ruchi Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prashant Kumar Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
17
|
Molecular and biochemical characterization of All0580 as a methylglyoxal detoxifying glyoxalase II of Anabaena sp. PCC7120 that confers abiotic stress tolerance in E. coli. Int J Biol Macromol 2019; 124:981-993. [DOI: 10.1016/j.ijbiomac.2018.11.172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/17/2018] [Accepted: 11/17/2018] [Indexed: 12/13/2022]
|