1
|
Crespo D, Leston S, Rato LD, Moutinho AB, Martinho F, Novais SC, Pardal MA, Lemos MFL. The effects of different densities of Asparagopsis armata (Harvey, 1855) seaweed on the clam Ruditapes philippinarum (A. Adams and Reeve, 1850): Insights from a laboratory assessment. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106812. [PMID: 39481138 DOI: 10.1016/j.marenvres.2024.106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Several invasive species can occupy the same geographic area. Interaction between species depends on several factors, and the results of such interactions can be highly diverse. Asparagopsis armata is a invasive red seaweed whose exudates contain a cocktail of toxic halogenated compounds. In this study, the impact of high and low levels of A. armata on the bivalve Ruditapes philippinarum was assessed in a laboratory experiment. Both are prominent invasive species in Europe and could share the same habitats. The effects of the algae were measured at different biological levels, framed by an integrated approach: bioturbation as a proxy for organismal activity and behaviour within the sediment, and several subcellular biomarkers related to oxidative stress and damage, energy metabolism, detoxification, and neurotransmission. While bioturbation revealed the effects of exudates on the bivalve, with a decrease in most parameters when exposed to the different amounts of algae, only marginal responses were found for biomarkers, suggesting a possible temporal decoupling between the behavioural response and the intrinsic biochemical environment. These results denote that despite the recognized potential of biomarkers to address a myriad of situations, a proxy for higher levels of biological organization, such as behaviour, for its integration of lower-level effects, is a robust tool to address complex and lesser-known mixtures of stressors.
Collapse
Affiliation(s)
- Daniel Crespo
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal; CFE - Centre for Functional Ecology - Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Sara Leston
- CFE - Centre for Functional Ecology - Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, Coimbra, 3000-548, Portugal
| | - Lénia D Rato
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Ariana B Moutinho
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Filipe Martinho
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology - Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal.
| |
Collapse
|
2
|
Nagy NS, Essawy AE, Al-Sherif SS, Ali MM, Alsawy ES, Helal M. Characterization and biological applications of gonadal extract of Paracentrotus lividus collected along the Mediterranean coast of Alexandria, Egypt. PLoS One 2024; 19:e0296312. [PMID: 38166099 PMCID: PMC10760885 DOI: 10.1371/journal.pone.0296312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/09/2023] [Indexed: 01/04/2024] Open
Abstract
Marine invertebrates represent a valuable reservoir of pharmaceutical bioactive compounds with potential relevance to various medical applications. These compounds exhibit notable advantages when compared to their terrestrial counterparts, in terms of their potency, activity, and mechanism of action. Within this context, the present work aimed to extract, chemically characterize, and investigate the bioactivity of the gonadal extract of the sea urchin Paracentrotus lividus (P. lividus) collected along the Mediterranean coast of Alexandria, Egypt. Fractions of the gonadal extract were characterized by Spectrophotometry and gas chromatography-mass spectrometry (GC-MS), and their bioactivities were investigated in vitro. The analysis supported the extract richness of carotenoids and bioactive compounds. The extract showed promising anticancer activity against three different breast cancer cell lines with different levels of aggressiveness and causative factors, namely MDA-MB-231, MDA-MB-453, and HCC-1954. Gene expression analysis using RT-qPCR showed that P. lividus extract inhibited the expression of crucial factors involved in cell cycle regulation and apoptosis. In addition, the extract significantly inhibited the lipo-polysaccharides (LPS) induced inflammation in the RAW264.7 macrophage cell line and exerted anti-bacterial activity against the Gram-negative bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa. Collectively, these results demonstrated the chemical richness and the wide-scale applicability of P. lividus gonadal extract as an anti-cancer, anti-bacterial, and anti-inflammatory natural extract.
Collapse
Affiliation(s)
- Nehal Shawky Nagy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amina Essawy Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Mohamad Moustafa Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Eman Sheta Alsawy
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
3
|
De La Fuente G, Pinteus S, Silva J, Alves C, Pedrosa R. Antioxidant and antimicrobial potential of six Fucoids from the Mediterranean Sea and the Atlantic Ocean. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5568-5575. [PMID: 35439330 DOI: 10.1002/jsfa.11944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUD In recent years, research on the bioactive properties of macroalgae has increased, due to the great interest in exploring new products that can contribute to improve human health and wellbeing. In the present study, the antioxidant and antimicrobial potential of six different brown algae of the Fucales order were evaluated, namely Ericaria selaginoides, Ericaria amentacea, Gongolaria baccata, Gongolaria usneoides, Cystoseira compressa and Sargassum vulgare (collected along the Mediterranean and Atlantic coasts). The antioxidant capacity was measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, the oxygen radical absorbent capacity (ORAC) and the ferric reducing antioxidant power (FRAP) and were related to the total phenolic content (TPC). The antimicrobial activity was evaluated measuring the growth inhibition of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. RESULTS The highest antioxidant capacity was obtained for Ericaria selaginoides revealing the highest capacity to scavenge DPPH radical [half maximal effective concentration (EC50 ) = 27.02 μg mL-1 ], highest FRAP (1761.19 μmol FeSO4 equivalents g-1 extract), high ORAC (138.92 μmol TE g-1 extract), alongside to its high TPC (121.5 GAE g-1 extract). This species also reported the highest antimicrobial capacity against Staphylococcus aureus [half maximal inhibitory concentration (IC50 ) = 268 μg mL-1 ]. CONCLUSIONS Among all studied seaweed, Ericaria selaginoides reveals the highest antioxidant and antimicrobial activities, and thus should be explored as a natural food additive and/or functional ingredient. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gina De La Fuente
- DiSTAV - Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genoa, Italy
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Center, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Center, Polytechnic of Leiria, Peniche, Portugal
| | - Celso Alves
- MARE - Marine and Environmental Sciences Center, Polytechnic of Leiria, Peniche, Portugal
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Center, ESTM, Polytechnic of Leiria, Peniche, Portugal
| |
Collapse
|
4
|
Gelidiales Are Not Just Agar—Revealing the Antimicrobial Potential of Gelidium corneum for Skin Disorders. Antibiotics (Basel) 2022; 11:antibiotics11040481. [PMID: 35453232 PMCID: PMC9030148 DOI: 10.3390/antibiotics11040481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
In recent decades, seaweeds have proven to be an excellent source of bioactive molecules. Presently, the seaweed Gelidium corneum is harvested in a small area of the Portuguese coast exclusively for agar extraction. The aim of this work was to fully disclosure Gelidium corneum as a sustainable source of antimicrobial ingredients for new dermatological formulations, highlighting its potential to be explored in a circular economy context. For this purpose, after a green sequential extraction, these seaweed fractions (F1–F5) were chemically characterized (1H NMR) and evaluated for their antimicrobial potential against Staphylococcus aureus, Staphylococcus epidermidis and Cutibacterium acnes. The most active fractions were also evaluated for their effects on membrane potential, membrane integrity and DNA damage. Fractions F2 and F3 displayed the best results, with IC50 values of 16.1 (7.27–23.02) μg/mL and 51.04 (43.36–59.74) μg/mL against C. acnes, respectively, and 53.29 (48.75–57.91) μg/mL and 102.80 (87.15–122.30) μg/mL against S. epidermidis, respectively. The antimicrobial effects of both fractions seem to be related to membrane hyperpolarization and DNA damage. This dual mechanism of action may provide therapeutic advantages for the treatment of skin dysbiosis-related diseases.
Collapse
|
5
|
Rodríguez-González I, Díaz-Reinoso B, Domínguez H. Intensification Strategies for the Extraction of Polyunsaturated Fatty Acids and Other Lipophilic Fractions From Seaweeds. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02757-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Pan YL, Rodrigues MJ, Pereira CG, Engrola S, Colen R, Mansinhos I, Romano A, Andrade PB, Fernandes F, Custódio L. Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella spallanzanii and Microcosmus squamiger. Animals (Basel) 2021; 11:3557. [PMID: 34944333 PMCID: PMC8697903 DOI: 10.3390/ani11123557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Sabella spallanzanii and Microcosmus squamiger were profiled for proximate composition, minerals, amino acids, fatty acids (FA), carotenoids, radical scavenging activity on the 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical, oxygen radical absorbance capacity (ORAC) and iron and copper chelating properties. Microcosmus squamiger had the highest level of moisture and crude protein, S. spallanzanii was enriched in crude fat and ash. Both species had similar levels of carbohydrates and energy. There was a prevalence of arginine and glycine in S. spallanzanii, and of taurine in M. squamiger. The most abundant minerals in both species were Na, Ca, and K. The methanol extract of S. spallanzanii had metal chelating properties towards copper and iron, while the methanol extract of M. squamiger was able to chelate copper. M. squamiger extracts had similar ORAC values. Fucoxanthinol and fucoxanthin were the major carotenoids in the M. squamiger dichloromethane extract. Saturated FA were more abundant than unsaturated ones in methanol extracts, and unsaturated FA prevailed in the dichloromethane extracts. Palmitic acid was the predominant FA in methanol extracts, whereas eicosapentaenoic (EPA) and dihomo-γ-linolenic acids were the major compounds in dichloromethane extracts. Low n-6/n-3 ratios were obtained. Our results suggests that both species could be explored as sources of bioactive ingredients with multiple applications.
Collapse
Affiliation(s)
- Yu-Lun Pan
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Maria João Rodrigues
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Catarina G. Pereira
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Rita Colen
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Inês Mansinhos
- MED–Mediterranean Institute for Agriculture, Environment and Development, Faculty of Sciences and Technology, Campus de Gambelas, Ed. 8, University of Algarve, 8005-139 Faro, Portugal; (I.M.); (A.R.)
| | - Anabela Romano
- MED–Mediterranean Institute for Agriculture, Environment and Development, Faculty of Sciences and Technology, Campus de Gambelas, Ed. 8, University of Algarve, 8005-139 Faro, Portugal; (I.M.); (A.R.)
| | - Paula B. Andrade
- REQUIMTE/LAQV: Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (P.B.A.); (F.F.)
| | - Fátima Fernandes
- REQUIMTE/LAQV: Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (P.B.A.); (F.F.)
| | - Luísa Custódio
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| |
Collapse
|
7
|
Potential of Asparagopsis armata as a Biopesticide for Weed Control under an Invasive Seaweed Circular-Economy Framework. BIOLOGY 2021; 10:biology10121321. [PMID: 34943236 PMCID: PMC8698409 DOI: 10.3390/biology10121321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/27/2022]
Abstract
Simple Summary The invasive seaweed Asparagopsis armata has the potential to be used as a biopesticide. The application of its exudate shows severe impacts on energetic and carotenoid metabolism and induces significant oxidative stress in a model weed. This points to the potential use of this macroalga as a resource for a biopesticide cocktail, for sustainable and eco-friendly weed control and as a substitute for the chemical pesticides widely used nowadays. Abstract Marine macroalgae have been increasingly targeted as a source of bioactive compounds to be used in several areas, such as biopesticides. When harvesting invasive species, such as Asparagopsis armata, for this purpose, there is a two-folded opportunity: acquiring these biomolecules from a low-cost resource and controlling its spreading and impacts. The secondary metabolites in this seaweed’s exudate have been shown to significantly impact the physiology of species in the ecosystems where it invades, indicating a possible biocidal potential. Considering this in the present work, an A. armata exudate cocktail was applied in the model weed Thellungiella halophila to evaluate its physiological impact and mode of action, addressing its potential use as a natural biocide. A. armata greatly affected the test plants’ physiology, namely, their photochemical energy transduction pathway (impairing light-harvesting and chemical energy production throughout the chloroplast electron transport chain), carotenoid metabolism and oxidative stress. These mechanisms of action are similar to the ones triggered when using the common chemical pesticides, highlighting the potential of the A. armata exudate cocktail as an eco-friendly biopesticide.
Collapse
|
8
|
Félix R, Dias P, Félix C, Cerqueira T, Andrade PB, Valentão P, Lemos MF. The biotechnological potential of Asparagopsis armata: What is known of its chemical composition, bioactivities and current market? ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Pereira AG, Fraga-Corral M, Garcia-Oliveira P, Lourenço-Lopes C, Carpena M, Prieto MA, Simal-Gandara J. The Use of Invasive Algae Species as a Source of Secondary Metabolites and Biological Activities: Spain as Case-Study. Mar Drugs 2021; 19:178. [PMID: 33805184 PMCID: PMC8064379 DOI: 10.3390/md19040178] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
In the recent decades, algae have proven to be a source of different bioactive compounds with biological activities, which has increased the potential application of these organisms in food, cosmetic, pharmaceutical, animal feed, and other industrial sectors. On the other hand, there is a growing interest in developing effective strategies for control and/or eradication of invasive algae since they have a negative impact on marine ecosystems and in the economy of the affected zones. However, the application of control measures is usually time and resource-consuming and not profitable. Considering this context, the valorization of invasive algae species as a source of bioactive compounds for industrial applications could be a suitable strategy to reduce their population, obtaining both environmental and economic benefits. To carry out this practice, it is necessary to evaluate the chemical and the nutritional composition of the algae as well as the most efficient methods of extracting the compounds of interest. In the case of northwest Spain, five algae species are considered invasive: Asparagopsis armata, Codium fragile, Gracilaria vermiculophylla, Sargassum muticum, and Grateulopia turuturu. This review presents a brief description of their main bioactive compounds, biological activities, and extraction systems employed for their recovery. In addition, evidence of their beneficial properties and the possibility of use them as supplement in diets of aquaculture animals was collected to illustrate one of their possible applications.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
| |
Collapse
|