1
|
Barboza-Rodríguez R, Rodríguez-Jasso RM, Rosero-Chasoy G, Rosales Aguado ML, Ruiz HA. Photobioreactor configurations in cultivating microalgae biomass for biorefinery. BIORESOURCE TECHNOLOGY 2024; 394:130208. [PMID: 38113947 DOI: 10.1016/j.biortech.2023.130208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Microalgae, highly prized for their protein, lipid, carbohydrate, phycocyanin, and carotenoid-rich biomass, have garnered significant industrial attention in the context of third-generation (3G) biorefineries, seeking sustainable alternatives to non-renewable resources. Two primarily cultivation methods, open ponds and closed photobioreactors systems, have emerged. Open ponds, favored for their cost-effectiveness in large-scale industrial production, although lacking precise environmental control, contrast with closed photobioreactors, offering controlled conditions and enhanced biomass production at the laboratory scale. However, their high operational costs challenge large-scale deployment. This review comprehensively examines the strength, weakness, and typical designs of both outdoor and indoor microalgae cultivation systems, with an emphasis on their application in terms of biorefinery concept. Additionally, it incorporates techno-economic analyses, providing insights into the financial aspects of microalgae biomass production. These multifaceted insights, encompassing both technological and economic dimensions, are important as the global interest in harnessing microalgae's valuable resources continue to grow.
Collapse
Affiliation(s)
- Regina Barboza-Rodríguez
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| | - Gilver Rosero-Chasoy
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Miriam L Rosales Aguado
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico
| | - Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
2
|
Panbehkar Bisheh M, Amini Rad H. Optimization of the culture of Chlorella sorokiniana PA.91 by RSM: effect of temperature, light intensity, and MgAC-NPs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50896-50919. [PMID: 36807861 DOI: 10.1007/s11356-023-25779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 04/16/2023]
Abstract
The unique physicochemical properties of magnesium amino clay nanoparticles (MgAC-NPs) tends to be beneficial in the application as a co-additive in treating microalgae. Also, MgAC-NPs can create oxidative stress in the environment, concurrently elective control bacteria in mixotrophic culture, and stimulate CO2 biofixation. The condition of the cultivation of newly isolated strains, Chlorella sorokiniana PA.91, was optimized for the first time for MgAC-NPs at various temperatures and light intensities in the culture medium of municipal wastewater (MWW) by central composite design in the response surface methodology (RSM-CCD). This study examined synthesized MgAC-NP with their FE-SEM, EDX, XRD, and FT-IR characteristics. The synthesized MgAC-NPs were naturally stable, cubic shaped, and within the size range of 30-60 nm. The optimization results show that at culture conditions of 20 °C, 37 μmol m-2 s-1, and 0.05 g L-1, microalga MgAC-NPs have the best growth productivity and biomass performance. Maximum dry biomass weight (55.41%), specific growth rate (30.26%), chlorophyll (81.26%), and carotenoids (35.71%) were achieved under the optimized condition. Experimental results displayed that C.S. PA.91 has a high capacity for lipid extraction (1.36 g L-1) and significant lipid efficiency (45.1%). Also, in 0.2 and 0.05 g L-1 of the MgAC-NPs, COD removal efficiency 91.1% and 81.34% from C.S. PA.91 showed, respectively. These results showed the potential of C.S. PA.91-MgAC-NPs for nutrient removal in wastewater treatment plants and their quality as sources of biodiesel.
Collapse
Affiliation(s)
- Masoumeh Panbehkar Bisheh
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, 47148-7313, Iran
| | - Hasan Amini Rad
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Babol, 47148-7313, Iran.
| |
Collapse
|
3
|
Díaz JP, Inostroza C, Acién FG. Yield and production cost of Chlorella sp. culture in a Fibonacci-type photobioreactor. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Modeling and Simulation of Photobioreactors with Computational Fluid Dynamics—A Comprehensive Review. ENERGIES 2022. [DOI: 10.3390/en15113966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Computational Fluid Dynamics (CFD) have been frequently applied to model the growth conditions in photobioreactors, which are affected in a complex way by multiple, interacting physical processes. We review common photobioreactor types and discuss the processes occurring therein as well as how these processes have been considered in previous CFD models. The analysis reveals that CFD models of photobioreactors do often not consider state-of-the-art modeling approaches. As a comprehensive photobioreactor model consists of several sub-models, we review the most relevant models for the simulation of fluid flows, light propagation, heat and mass transfer and growth kinetics as well as state-of-the-art models for turbulence and interphase forces, revealing their strength and deficiencies. In addition, we review the population balance equation, breakage and coalescence models and discretization methods since the predicted bubble size distribution critically depends on them. This comprehensive overview of the available models provides a unique toolbox for generating CFD models of photobioreactors. Directions future research should take are also discussed, mainly consisting of an extensive experimental validation of the single models for specific photobioreactor geometries, as well as more complete and sophisticated integrated models by virtue of the constant increase of the computational capacity.
Collapse
|
5
|
Abstract
The problem of global warming and the emission of greenhouse gases is already directly affecting the world’s energy. In the future, the impact of CO2 emissions on the world economy will constantly grow. In this paper, we review the available literature sources on the benefits of using algae cultivation for CO2 capture to decrease CO2 emission. CO2 emission accounts for about 77% of all greenhouse gases, and the calculation of greenhouse gas emissions is 56% of all CO2 imports. As a result of the study of various types of algae, it was concluded that Chlorella sp. is the best at capturing CO2. Various methods of cultivating microalgae were also considered and it was found that vertical tubular bioreactors are emerging. Moreover, for energy purposes, thermochemical methods for processing algae that absorb CO2 from flue gases were considered. Of all five types of thermochemical processes for producing synthesis gas, the most preferred method is the method of supercritical gasification of algae. In addition, attention is paid to the drying and flocculation of biofuels. Several different experiments were also reviewed on the use of flue gases through the cultivation of algae biomass. Based on this literature review, it can be concluded that microalgae are a third generation biofuel. With the absorption of greenhouse gases, the growth of microalgae cultures is accelerated. When a large mass of microalgae appears, it can be used for energy purposes. In the results, we present a plan for further studies of microalgae cultivation, a thermodynamic analysis of gasification and pyrolysis, and a comparison of the results with other biofuels and other algae cultures.
Collapse
|
6
|
Advanced HRT-Controller Aimed at Optimising Nitrogen Recovery by Microalgae: Application in an Outdoor Flat-Panel Membrane Photobioreactor. CHEMENGINEERING 2022. [DOI: 10.3390/chemengineering6020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A fuzzy knowledge-based controller of hydraulic retention time (HRT) was designed and tested in an outdoor membrane photobioreactor (MPBR) to improve nitrogen recovery from a microalgae cultivation system, maintaining the algae as photosynthetically active as possible and limiting their competition with other microorganisms. The hourly flow of the MPBR system was optimised by adjusting the influent flow rate to the outdoor environmental conditions which microalgae were exposed to at any moment and to the nitrogen uptake capacity of the culture. A semi-empirical photosynthetically active radiation (PAR) prediction model was calibrated using total cloud cover (TCC) forecast. Dissolved oxygen, standardised to 25 °C (DO25), was used as an on-line indicator of microalgae photosynthetic activity. Different indexes, based on suspended solids (SS), DO25, and predicted and real PAR, were used as input variables, while the initial HRT of each operating day (HRT0) and the variation of HRT (ΔHRT) served as output variables. The nitrogen recovery efficiency, measured as nitrogen recovery rate (NRR) per nitrogen loading rate (NLR) in pseudo-steady state conditions, was improved by 45% when the HRT-controller was set in comparison to fixed 1.25-d HRT. Consequently, the average effluent total soluble nitrogen (TSN) concentration in the MPBR was reduced by 47%, accomplishing the discharge requirements of the EU Directive 91/271/EEC.
Collapse
|
7
|
Rodas-Zuluaga LI, Castillo-Zacarías C, Núñez-Goitia G, Martínez-Prado MA, Rodríguez-Rodríguez J, López-Pacheco IY, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R. Implementation of k La-Based Strategy for Scaling Up Porphyridium purpureum (Red Marine Microalga) to Produce High-Value Phycoerythrin, Fatty Acids, and Proteins. Mar Drugs 2021; 19:md19060290. [PMID: 34064032 PMCID: PMC8224092 DOI: 10.3390/md19060290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Porphyridium purpureum is a well-known Rhodophyta that recently has attracted enormous attention because of its capacity to produce many high-value metabolites such as the pigment phycoerythrin and several high-value fatty acids. Phycoerythrin is a fluorescent red protein-pigment commercially relevant with antioxidant, antimicrobial activity, and fluorescent properties. The volumetric mass transfer coefficient (kLa) was kept constant within the different scaling-up stages in the present study. This scaling-up strategy was sought to maintain phycoerythrin production and other high-value metabolites by Porphyridium purpureum, using hanging-bag photobioreactors. The kLa was monitored to ensure the appropriate mixing and CO2 diffusion in the entire culture during the scaling process (16, 80, and 400 L). Then, biomass concentration, proteins, fatty acids, carbohydrates, and phycoerythrin were determined in each step of the scaling-up process. The kLa at 16 L reached a level of 0.0052 s-1, while at 80 L, a value of 0.0024 s-1 was achieved. This work result indicated that at 400 L, 1.22 g L-1 of biomass was obtained, and total carbohydrates (117.24 mg L-1), proteins (240.63 mg L-1), and lipids (17.75% DW) were accumulated. Regarding fatty acids production, 46.03% palmitic, 8.03% linoleic, 22.67% arachidonic, and 2.55% eicosapentaenoic acid were identified, principally. The phycoerythrin production was 20.88 mg L-1 with a purity of 2.75, making it viable for food-related applications. The results of these experiments provide insight into the high-scale production of phycoerythrin via the cultivation of P. purpureum in an inexpensive and straightforward culture system.
Collapse
Affiliation(s)
- Laura Isabel Rodas-Zuluaga
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Carlos Castillo-Zacarías
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Gabriela Núñez-Goitia
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico; (G.N.-G.); (M.A.M.-P.)
| | - María Adriana Martínez-Prado
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico; (G.N.-G.); (M.A.M.-P.)
| | - José Rodríguez-Rodríguez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Itzel Y. López-Pacheco
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Juan Eduardo Sosa-Hernández
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
- Correspondence: (H.M.N.I.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
- Correspondence: (H.M.N.I.); (R.P.-S.)
| |
Collapse
|