1
|
Guieysse B, Plouviez M. Microalgae cultivation: closing the yield gap from laboratory to field scale. Front Bioeng Biotechnol 2024; 12:1359755. [PMID: 38419726 PMCID: PMC10901112 DOI: 10.3389/fbioe.2024.1359755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Benoit Guieysse
- Massey Agrifood Digital Laboratory, Massey University, Palmerston North, New Zealand
| | - Maxence Plouviez
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Hosseini H, Saadaoui I, Cherif M, Amir Siddiqui S, Sayadi S. Exploring the dynamics of algae-associated microbiome during the scale-up process of Tetraselmis sp. microalgae: A metagenomics approach. BIORESOURCE TECHNOLOGY 2024; 393:129991. [PMID: 37949148 DOI: 10.1016/j.biortech.2023.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Microalgae have become a key source of valuable compounds, promoting commercial scale applications. However, biological contamination is one of the most critical problems associated with large scale algal production, especially in open systems such as raceway ponds. The current research is the first to assess the effectiveness of open raceway ponds in maintaining a pure culture of Tetraselmis sp., starting from 20 L culture up to 10,000 L culture. Microbial profiling of each successive stage revealed lower abundance of eukaryotic organisms, whereas bacterial abundance increased notably resulting in a significant decrease in Tetraselmis sp. abundance. Furthermore, several bacteria with algae growth-promoting properties were found throughout the various culture stages including Balneola, Roseovarius, and Marinobacter. However, some algae-suppressive bacteria were evidenced at later stages such as Ulvibacter, Aestuariicoccus, and Defluviimonas. Overall, due to the increasing bacterial concentration, considerations limiting bacterial contamination need to be taken.
Collapse
Affiliation(s)
- Hoda Hosseini
- Biotechnology Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Imen Saadaoui
- Biotechnology Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biological and Environmental Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Maroua Cherif
- Biotechnology Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Simil Amir Siddiqui
- Biotechnology Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sami Sayadi
- Biotechnology Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
3
|
Maroušek J, Maroušková A, Gavurová B, Tuček D, Strunecký O. Competitive algae biodiesel depends on advances in mass algae cultivation. BIORESOURCE TECHNOLOGY 2023; 374:128802. [PMID: 36858122 DOI: 10.1016/j.biortech.2023.128802] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The aim of this review was to study why, despite large investments in research and development, algae biodiesel is still not price competitive with fossil fuels. Microalgal production was confirmed to be a critical cost item (84 up to 93 %) for biodiesel regardless of the production technology. Techno-economic assessment revealed the main cost drivers during mass cultivation. It is argued that a breakthrough in the cultivation efficiency of microalgae is identified as a necessary condition for achieving price-competitive microalgal biodiesel. The key bottlenecks were identified as follows: (1) light and O2 concentration management; (2) overnight respiratory loss of oil. It is concluded that most of the research on microalgae biodiesel yields economically over-optimistic presumptions because it has been based on laboratory scale experiments with a low level of interdisciplinary overlap.
Collapse
Affiliation(s)
- Josef Maroušek
- Institute of Technology and Business in České Budějovice, Faculty of Technology, Okružní 517/10, České Budějovice 370 01, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Agriculture, Studentská 1668, České Budějovice 370 05, Czech Republic.
| | - Anna Maroušková
- Institute of Technology and Business in České Budějovice, Faculty of Technology, Okružní 517/10, České Budějovice 370 01, Czech Republic
| | - Beata Gavurová
- Technical University of Kosice, Faculty of Mining, Ecology, Process Control and Geotechnologies, Letna 9, Košice 042 00, Slovakia
| | - David Tuček
- Tomas Bata University in Zlín, Faculty of Management and Economics, Mostní 5139, Zlín 760 01, Czech Republic
| | - Otakar Strunecký
- Institute of Technology and Business in České Budějovice, Faculty of Technology, Okružní 517/10, České Budějovice 370 01, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
4
|
Miyasato EM, Cardinale BJ. Impacts of Fungal Disease on Algal Biofuel Systems: Using Life Cycle Assessment to Compare Control Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2602-2610. [PMID: 36734469 DOI: 10.1021/acs.est.2c07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
While climate change has incentivized attention on sustainable fuel sources, algae has positioned itself as a both promising and problematic biofuel feedstock. Diseases such as fungal pathogens cause costly algal feedstock crashes, but the life cycle assessments (LCAs) used to analyze the viability of algal feedstocks for biofuel have yet to consider the impact of disease on life cycle metrics. Here, we incorporate a disease model into a well-documented LCA for algal biorefineries to compare two sustainability metrics, energy return on investment (EROI) and global warming potential (GWP). We begin by showing that failure to consider disease leads to overly optimistic LCA metric outputs. Then, we compare two leading control strategies of disease─chemical and biological. Our analyses show that biological engineering of a multispecies consortium of algae has a greater positive impact on LCA metrics than chemical control of the fungal pathogen using a fungicide. We expand how and when bi-cultures might advantageously exhibit the "dilution effect" whereby differentially susceptible species exhibit compensatory dynamics that stabilize feedstock production. Our results emphasize the impact of disease and suggest that multispecies consortia of algae can be biologically engineered to reduce greenhouse gas emissions and improve the economic viability of biofuel.
Collapse
Affiliation(s)
| | - Bradley J Cardinale
- Pennsylvania State University, University Park, Pennsylvania16802, United States
| |
Collapse
|
5
|
McGowen J, Knoshaug EP, Laurens LM, Forrester J. Outdoor annual algae productivity improvements at the pre-pilot scale through crop rotation and pond operational management strategies. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
6
|
Huesemann MH, Knoshaug EP, Laurens LM, Dale T, Lane TW, McGowen J. Development of integrated screening, cultivar optimization, and verification research (DISCOVR): A coordinated research-driven approach to improve microalgal productivity, composition, and culture stability for commercially viable biofuels production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Saravanan A, Deivayanai VC, Senthil Kumar P, Rangasamy G, Varjani S. CO 2 bio-mitigation using genetically modified algae and biofuel production towards a carbon net-zero society. BIORESOURCE TECHNOLOGY 2022; 363:127982. [PMID: 36126842 DOI: 10.1016/j.biortech.2022.127982] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
CO2 sequestration carried by biological methodologies shows enhanced potential and has the advantage that biomass produced from the captured CO2 can be used for different applications. Bio-mitigation of carbons through a micro-algal system addresses a promising and feasible option. This review mostly focused on the role of algae, particular mechanisms, bioreactors in algae cultivation, and genetically modified algae in CO2 fixation and energy generation systems. A combination of CO2 bio-mitigation and biofuel production might deliver an extremely promising alternative to current CO2 mitigation systems. Bio mitigation in which the excess carbon is captured and bio fixation which the carbon is captured by algae or autotrophs and used for producing biofuel. This review revealed that steps for biofuel production from algae include factors affecting, harvesting techniques, oil extraction and transesterification. This review helps environmentalists and researchers to assess the effect of algae-based biorefinery on the green environment.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - V C Deivayanai
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| |
Collapse
|
8
|
Kaushik A, Sangtani R, Parmar HS, Bala K. Algal metabolites: Paving the way towards new generation antidiabetic therapeutics. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Hülsen T, Barnes AC, Batstone DJ, Capson-Tojo G. Creating value from purple phototrophic bacteria via single-cell protein production. Curr Opin Biotechnol 2022; 76:102726. [DOI: 10.1016/j.copbio.2022.102726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
|
10
|
Selection of Production Reliability Indicators for Project Simulation Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Due to technological enhancements, traditional, qualitative decision-making methods are usually replaced by data-driven decision-making even in smaller companies. Process simulation is one of these solutions, which can help companies avoid costly failures as well as evaluate positive or negative effects. The reason for this paper is twofold: first, authors conducted a Quality Function Deployment analysis to find the most vital reliability indicators in the field of production scheduling. The importance was acquired from the meta-analysis of papers published in major journals. The authors found 3 indicators to be the most important: mean time between failure (MTBF), mean repair time and mean downtime. The second part of the research is for the implementation of these indicators to the stochastic environment: possible means of application are proposed, confirming the finding with a case study in which 100 products must be produced. The database created from the simulation is analyzed in terms of major production KPIs, such as production quantity, total process time and efficiency of the production. The results of the study show that calculating with reliability issues in production during the negotiation of a production deadline supports business excellence.
Collapse
|
11
|
Abstract
The problem of global warming and the emission of greenhouse gases is already directly affecting the world’s energy. In the future, the impact of CO2 emissions on the world economy will constantly grow. In this paper, we review the available literature sources on the benefits of using algae cultivation for CO2 capture to decrease CO2 emission. CO2 emission accounts for about 77% of all greenhouse gases, and the calculation of greenhouse gas emissions is 56% of all CO2 imports. As a result of the study of various types of algae, it was concluded that Chlorella sp. is the best at capturing CO2. Various methods of cultivating microalgae were also considered and it was found that vertical tubular bioreactors are emerging. Moreover, for energy purposes, thermochemical methods for processing algae that absorb CO2 from flue gases were considered. Of all five types of thermochemical processes for producing synthesis gas, the most preferred method is the method of supercritical gasification of algae. In addition, attention is paid to the drying and flocculation of biofuels. Several different experiments were also reviewed on the use of flue gases through the cultivation of algae biomass. Based on this literature review, it can be concluded that microalgae are a third generation biofuel. With the absorption of greenhouse gases, the growth of microalgae cultures is accelerated. When a large mass of microalgae appears, it can be used for energy purposes. In the results, we present a plan for further studies of microalgae cultivation, a thermodynamic analysis of gasification and pyrolysis, and a comparison of the results with other biofuels and other algae cultures.
Collapse
|
12
|
Nguyen DD, Sauer JS, Camarda LP, Sherman SL, Prather KA, Golden SS, Pomeroy R, Dorrestein PC, Simkovsky R. Grazer-induced changes in molecular signatures of cyanobacteria. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
13
|
Quiroz D, Greene JM, McGowen J, Quinn JC. Geographical assessment of open pond algal productivity and evaporation losses across the United States. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Lane TW. Barriers to microalgal mass cultivation. Curr Opin Biotechnol 2021; 73:323-328. [PMID: 34710649 DOI: 10.1016/j.copbio.2021.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/23/2022]
Abstract
Economically successful microalgal mass cultivation is dependent on overcoming several barriers that contribute to the cost of production. The severity of these barriers is dependent on the market value of the final product. These barriers prevent the commercially viable production of algal biofuels but are also faced by any producers of any algal product. General barriers include the cost of water and limits on recycling, costs and recycling of nutrients, CO2 utilization, energy costs associated with harvesting and biomass loss due to biocontamination and pond crashes. In this paper, recent advances in overcoming these barriers are discussed.
Collapse
Affiliation(s)
- Todd W Lane
- Bioresource and Environmental Security Department, Sandia National Laboratories, P.O. Box 969, Livermore, CA 94550, USA.
| |
Collapse
|
15
|
Abiotic and Biotic Damage of Microalgae Generate Different Volatile Organic Compounds (VOCs) for Early Diagnosis of Algal Cultures for Biofuel Production. Metabolites 2021; 11:metabo11100707. [PMID: 34677422 PMCID: PMC8541270 DOI: 10.3390/metabo11100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Open microalgal ponds used in industrial biomass production are susceptible to a number of biotic and abiotic environmental stressors (e.g., grazers, pathogens, pH, temperature, etc.) resulting in pond crashes with high economic costs. Identification of signature chemicals to aid in rapid, non-invasive, and accurate identification of the stressors would facilitate targeted and effective treatment to save the algal crop from a catastrophic crash. Specifically, we were interested in identifying volatile organic compounds (VOCs) that can be used to as an early diagnostic for algal crop damage. Cultures of Microchloropsis gaditana were subjected to two forms of algal crop damage: (1) active grazing by the marine rotifer, Brachionus plicatilis, or (2) repeated freeze–thaw cycles. VOCs emitted above the headspace of these algal cultures were collected using fieldable solid phase microextraction (SPME) fibers. An untargeted analysis and identification of VOCs was conducted using gas chromatography-mass spectrometry (GC-MS). Diagnostic VOCs unique to each algal crop damage mechanism were identified. Active rotifer grazing of M. gaditana was characterized by the appearance of carotenoid degradation products, including β-cyclocitral and various alkenes. Freeze–thaw algae produced a different set of VOCs, including palmitoleic acid. Both rotifer grazing and freeze–thawed algae produced β-ionone as a VOC, possibly suggesting a common stress-induced cellular mechanism. Importantly, these identified VOCs were all absent from healthy algal cultures of M. gaditana. Early detection of biotic or abiotic environmental stressors will facilitate early diagnosis and application of targeted treatments to prevent algal pond crashes. Thus, our work further supports the use of VOCs for monitoring the health of algal ponds to ultimately enhance algal crop yields for production of biofuel.
Collapse
|
16
|
Sauer JS, Simkovsky R, Moore AN, Camarda L, Sherman SL, Prather KA, Pomeroy RS. Continuous measurements of volatile gases as detection of algae crop health. Proc Natl Acad Sci U S A 2021; 118:e2106882118. [PMID: 34599100 PMCID: PMC8501783 DOI: 10.1073/pnas.2106882118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Algae cultivation in open raceway ponds is considered the most economical method for photosynthetically producing biomass for biofuels, chemical feedstocks, and other high-value products. One of the primary challenges for open ponds is diminished biomass yields due to attack by grazers, competitors, and infectious organisms. Higher-frequency observations are needed for detection of grazer infections, which can rapidly reduce biomass levels. In this study, real-time measurements were performed using chemical ionization mass spectrometry (CIMS) to monitor the impact of grazer infections on cyanobacterial cultures. Numerous volatile gases were produced during healthy growth periods from freshwater Synechococcus elongatus Pasteur Culture Collection (PCC) 7942, with 6-methyl-5-hepten-2-one serving as a unique metabolic indicator of exponential growth. Following the introduction of a Tetrahymena ciliate grazer, the concentrations of multiple volatile species were observed to change after a latent period as short as 18 h. Nitrogenous gases, including ammonia and pyrroline, were found to be reliable indicators of grazing. Detection of grazing by CIMS showed indicators of infections much sooner than traditional methods, microscopy, and continuous fluorescence, which did not detect changes until 37 to 76 h after CIMS detection. CIMS analysis of gases produced by PCC 7942 further shows a complex temporal array of biomass-dependent volatile gas production, which demonstrates the potential for using volatile gas analysis as a diagnostic for grazer infections. Overall, these results show promise for the use of continuous volatile metabolite monitoring for the detection of grazing in algal monocultures, potentially reducing current grazing-induced biomass losses, which could save hundreds of millions of dollars.
Collapse
Affiliation(s)
- Jon S Sauer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Ryan Simkovsky
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - Alexia N Moore
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Luis Camarda
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Summer L Sherman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Kimberly A Prather
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
| | - Robert S Pomeroy
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|