1
|
Morgado D, Fanesi A, Martin T, Tebbani S, Bernard O, Lopes F. Exploring the dynamics of astaxanthin production in Haematococcus pluvialis biofilms using a rotating biofilm-based system. Biotechnol Bioeng 2024; 121:991-1004. [PMID: 38098364 DOI: 10.1002/bit.28624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/20/2024]
Abstract
Microalgae biofilm emerged as a solid alternative to conventional suspended cultures which present high operative costs and complex harvesting processes. Among several designs, rotating biofilm-based systems stand out for their scalability, although their primary applications have been in wastewater treatment and aquaculture. In this work, a rotating system was utilized to produce a high-value compound (astaxanthin) using Haematococcus pluvialis biofilms. The effect of nitrogen regime, light intensity, and light history on biofilm traits was assessed to better understand how to efficiently operate the system. Our results show that H. pluvialis biofilms follow the classical growth stages described for bacterial biofilms (from adhesion to maturation) and that a two-stage (green and red stages) allowed to reach astaxanthin productivities of 204 mg m-2 d-1 . The higher light intensity applied during the red stage (400 and 800 µmol m-2 s-1 ) combined with nitrogen depletion stimulated similar astaxanthin productivities. However, by training the biofilms during the green stage, using mild-light intensity (200 µmol m-2 s-1 ), a process known as priming, the final astaxanthin productivity was enhanced by 40% with respect to biofilms pre-exposed to 50 µmol m-2 s-1 . Overall, this study shows the possibility of utilizing rotating microalgae biofilms to produce high-value compounds laying the foundation for further biotechnological applications of these emerging systems.
Collapse
Affiliation(s)
- David Morgado
- CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Andrea Fanesi
- CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thierry Martin
- CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sihem Tebbani
- CentraleSupélec, CNRS, Laboratoire des Signaux et Systèmes (L2S), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Olivier Bernard
- INRIA, Centre d'Université Côte d'Azur, Biocore, CNRS, Sorbonne Université, Sophia-Antipolis, France
| | - Filipa Lopes
- CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Vieira EA, Gaspar M, Caldeira CF, Munné-Bosch S, Braga MR. Desiccation tolerance in the resurrection plant Barbacenia graminifolia involves changes in redox metabolism and carotenoid oxidation. FRONTIERS IN PLANT SCIENCE 2024; 15:1344820. [PMID: 38425802 PMCID: PMC10902171 DOI: 10.3389/fpls.2024.1344820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Desiccation tolerance in vegetative tissues enables resurrection plants to remain quiescent under severe drought and rapidly recover full metabolism once water becomes available. Barbacenia graminifolia is a resurrection plant that occurs at high altitudes, typically growing on rock slits, exposed to high irradiance and limited water availability. We analyzed the levels of reactive oxygen species (ROS) and antioxidants, carotenoids and its cleavage products, and stress-related phytohormones in fully hydrated, dehydrated, and rehydrated leaves of B. graminifolia. This species exhibited a precise adjustment of its antioxidant metabolism to desiccation. Our results indicate that this adjustment is associated with enhanced carotenoid and apocarotenoids, α-tocopherol and compounds of ascorbate-glutathione cycle. While α-carotene and lutein increased in dried-leaves suggesting effective protection of the light-harvesting complexes, the decrease in β-carotene was accompanied of 10.2-fold increase in the content of β-cyclocitral, an apocarotenoid implicated in the regulation of abiotic stresses, compared to hydrated plants. The principal component analysis showed that dehydrated plants at 30 days formed a separate cluster from both hydrated and dehydrated plants for up to 15 days. This regulation might be part of the protective metabolic strategies employed by this resurrection plant to survive water scarcity in its inhospitable habitat.
Collapse
Affiliation(s)
| | - Marilia Gaspar
- Biodiversity Conservation Center, Institute of Environmental Research, São Paulo, Brazil
| | | | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marcia Regina Braga
- Biodiversity Conservation Center, Institute of Environmental Research, São Paulo, Brazil
| |
Collapse
|
3
|
Holzinger A, Plag N, Karsten U, Glaser K. Terrestrial Trentepohlia sp. (Ulvophyceae) from alpine and coastal collection sites show strong desiccation tolerance and broad light and temperature adaptation. PROTOPLASMA 2023; 260:1539-1553. [PMID: 37291393 PMCID: PMC10590310 DOI: 10.1007/s00709-023-01866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/20/2023] [Indexed: 06/10/2023]
Abstract
For the present study, we collected the Ulvophyceae species Trentepohlia aurea from limestone rock near Berchtesgaden, Germany, and the closely related taxa T. umbrina from Tilia cordata tree bark and T. jolithus from concrete wall both in Rostock, Germany. Freshly sampled material stained with Auramine O, DIOC6, and FM 1-43 showed an intact physiological status. Cell walls were depicted with calcofluor white and Carbotrace. When subjected to three repeated and controlled cycles of desiccation over silica gel (~ 10% relative humidity) followed by rehydration, T. aurea recovered about 50% of the initial photosynthetic yield of photosystem II (YII). In contrast, T. umbrina and T. jolithus recovered to 100% of the initial YII. HPLC and GC analysis of compatible solutes found highest proportions of erythritol in T. umbrina and mannitol/arabitol in T. jolithus. The lowest total compatible solute concentrations were detected in T. aurea, while the C/N ratio was highest in this species, indicative of nitrogen limitation. The prominent orange to red coloration of all Trentepohlia was due to extremely high carotenoid to Chl a ratio (15.9 in T. jolithus, 7.8 in T. aurea, and 6.6. in T. umbrina). Photosynthetic oxygen production was positive up to ~ 1500 µmol photons m-2 s-1 with the highest Pmax and alpha values in T. aurea. All strains showed a broad temperature tolerance with optima for gross photosynthesis between 20 and 35 °C. The presented data suggest that all investigated Trentepohlia species are well adapted to their terrestrial lifestyle on exposed to sunlight on a vertical substrate with little water holding capacity. Nevertheless, the three Trentepohlia species differed concerning their desiccation tolerance and compatible solute concentrations. The lower compatible solute contents in T. aurea explain the incomplete recovery of YII after rehydration.
Collapse
Affiliation(s)
- Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria.
| | - Niklas Plag
- Applied Phycology and Ecology, University of Rostock, Albert Einstein Strasse 3, 18059, Rostock, Germany
| | - Ulf Karsten
- Applied Phycology and Ecology, University of Rostock, Albert Einstein Strasse 3, 18059, Rostock, Germany
| | - Karin Glaser
- Applied Phycology and Ecology, University of Rostock, Albert Einstein Strasse 3, 18059, Rostock, Germany
| |
Collapse
|
4
|
Miyauchi H, Ishikawa T, Hirakawa Y, Sudou A, Okada K, Hijikata A, Sato N, Tsuzuki M, Fujiwara S. Cellular response of Parachlorella kessleri to a solid surface culture environment. FRONTIERS IN PLANT SCIENCE 2023; 14:1175080. [PMID: 37342150 PMCID: PMC10277731 DOI: 10.3389/fpls.2023.1175080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023]
Abstract
Attached culture allows high biomass productivity and is a promising biomass cultivating system because neither a huge facility area nor a large volume of culture medium are needed. This study investigates photosynthetic and transcriptomic behaviors in Parachlorella kessleri cells on a solid surface after their transfer from liquid culture to elucidate the physiological and gene-expression regulatory mechanisms that underlie their vigorous proliferation. The chlorophyll content shows a decrease at 12 h after the transfer; however, it has fully recovered at 24 h, suggesting temporary decreases in the amounts of light harvesting complexes. On PAM analysis, it is demonstrated that the effective quantum yield of PSII decreases at 0 h right after the transfer, followed by its recovery in the next 24 h. A similar changing pattern is observed for the photochemical quenching, with the PSII maximum quantum yield remaining at an almost unaltered level. Non-photochemical quenching was increased at both 0 h and 12 h after the transfer. These observations suggest that electron transfer downstream of PSII but not PSII itself is only temporarily damaged in solid-surface cells just after the transfer, with light energy in excess being dissipated as heat for PSII protection. It thus seems that the photosynthetic machinery acclimates to high-light and/or dehydration stresses through its temporal size-down and functional regulation that start right after the transfer. Meanwhile, transcriptomic analysis by RNA-Seq demonstrates temporary upregulation at 12 h after the transfer as to the expression levels of many genes for photosynthesis, amino acid synthesis, general stress response, and ribosomal subunit proteins. These findings suggest that cells transferred to a solid surface become stressed immediately after transfer but can recover their high photosynthetic activity through adaptation of photosynthetic machinery and metabolic flow as well as induction of general stress response mechanisms within 24 h.
Collapse
|
5
|
Chekanov K. Diversity and Distribution of Carotenogenic Algae in Europe: A Review. Mar Drugs 2023; 21:108. [PMID: 36827149 PMCID: PMC9958874 DOI: 10.3390/md21020108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Microalgae are the richest source of natural carotenoids, which are valuable pigments with a high share of benefits. Often, carotenoid-producing algae inhabit specific biotopes with unfavorable or even extremal conditions. Such biotopes, including alpine snow fields and hypersaline ponds, are widely distributed in Europe. They can serve as a source of new strains for biotechnology. The number of algal species used for obtaining these compounds on an industrial scale is limited. The data on them are poor. Moreover, some of them have been reported in non-English local scientific articles and theses. This review aims to summarize existing data on microalgal species, which are known as potential carotenoid producers in biotechnology. These include Haematococcus and Dunaliella, both well-known to the scientific community, as well as less-elucidated representatives. Their distribution will be covered throughout Europe: from the Greek Mediterranean coast in the south to the snow valleys in Norway in the north, and from the ponds in Amieiro (Portugal) in the west to the saline lakes and mountains in Crimea (Ukraine) in the east. A wide spectrum of algal secondary carotenoids is reviewed: β-carotene, astaxanthin, canthaxanthin, echinenone, adonixanthin, and adonirubin. For convenience, the main concepts of biology of carotenoid-producing algae are briefly explained.
Collapse
|
6
|
Aigner S, Arc E, Schletter M, Karsten U, Holzinger A, Kranner I. Metabolite Profiling in Green Microalgae with Varying Degrees of Desiccation Tolerance. Microorganisms 2022; 10:946. [PMID: 35630392 PMCID: PMC9144557 DOI: 10.3390/microorganisms10050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Trebouxiophyceae are microalgae occupying even extreme environments such as polar regions or deserts, terrestrial or aquatic, and can occur free-living or as lichen photobionts. Yet, it is poorly understood how environmental factors shape their metabolism. Here, we report on responses to light and temperature, and metabolic adjustments to desiccation in Diplosphaera epiphytica, isolated from a lichen, and Edaphochlorella mirabilis, isolated from Tundra soil, assessed via growth and photosynthetic performance parameters. Metabolite profiling was conducted by GC-MS. A meta-analysis together with data from a terrestrial and an aquatic Chlorella vulgaris strain reflected elements of phylogenetic relationship, lifestyle, and relative desiccation tolerance of the four algal strains. For example, compatible solutes associated with desiccation tolerance were up-accumulated in D. epiphytica, but also sugars and sugar alcohols typically produced by lichen photobionts. The aquatic C. vulgaris, the most desiccation-sensitive strain, showed the greatest variation in metabolite accumulation after desiccation and rehydration, whereas the most desiccation-tolerant strain, D. epiphytica, showed the least, suggesting that it has a more efficient constitutive protection from desiccation and/or that desiccation disturbed the metabolic steady-state less than in the other three strains. The authors hope that this study will stimulate more research into desiccation tolerance mechanisms in these under-investigated microorganisms.
Collapse
Affiliation(s)
- Siegfried Aigner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Michael Schletter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Ulf Karsten
- Institute of Biological Sciences, University of Rostock, Albert-Einstein-Straße 3, D-18057 Rostock, Germany;
| | - Andreas Holzinger
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria; (S.A.); (E.A.); (M.S.); (A.H.)
| |
Collapse
|