1
|
Bharti S, Raj A, Saratale GD, Romanholo Ferreira LF, Lucena de Souza R, Mulla SI, Bharagava RN. A critical review on the symbiotic effect of bacteria and microalgae on treatment of sewage with biofertilizer production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123704. [PMID: 39693975 DOI: 10.1016/j.jenvman.2024.123704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Wastes like sewage, kitchen and industrial are the major sources of environmental pollution and health hazards. Sewage contains 99.9% water and 0.1% solid waste including urinal waste and faecal matter alongwith large amounts of nitrate, nitrite, ammonium and phosphate ions. Sewage may also contain a variety of harmful contaminants like analgesics, antihypertensive drugs, antibiotics, dioxin, furans, polychlorinated biphenyls, chlorinated hydrocarbon pesticides, chlorine derivatives and plasticizers etc. making it more harmfull to environment and public health. Hence, sewage must be adequately treated by an effective process before its final discharge into the environment. Biological treatment of sewage is an emerging idea in recent years, which has diverse economic and environmental advantages. Sewage treatment by bacteria and microalgae has numerous advantages as it removes various excessive nutrients from waste with large biomass production and also prevents the utilization of toxic chemicals in conventional treatment process. Microalgae-bacterial biomass have potential to be used as biofertilizers, bio-stimulants and bio-seed primers in agricultural field as these contain various biologically active substances like polysaccharides, carotenoids, free fatty acids, phenols, and terpenoids. This review paper mainly discussing the sewage characteristics and different kinds of organic and inorganic pollutants it contained alongwith its harmfull impacts on environment and public health. It also deals the different conventional as well as emerging treatment technologies and different factors affecting the treatment efficiency. In addition, the utilization of developed microalgal and bacterial biomass as biofertilizer and its effects on crop plant alongwith future prospects has been also discussed in detail.
Collapse
Affiliation(s)
- Sandeep Bharti
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India
| | - Abhay Raj
- Environmental Microbiology Division, Council for Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research (IITR), VishVigyan Bhavan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University, Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | | | - Ranyere Lucena de Souza
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil; Institute of Technology and Research, Av. Murilo Dantas, 300, Farolândia, 49032-490, Aracaju, SE, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore-560064, Karnataka, India
| | - Ram Naresh Bharagava
- Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India.
| |
Collapse
|
2
|
Kariyawasam T, Helvig C, Petkovich M, Vriens B. Pharmaceutical removal from wastewater by introducing cytochrome P450s into microalgae. Microb Biotechnol 2024; 17:e14515. [PMID: 38925623 PMCID: PMC11197475 DOI: 10.1111/1751-7915.14515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pharmaceuticals are of increasing environmental concern as they emerge and accumulate in surface- and groundwater systems around the world, endangering the overall health of aquatic ecosystems. Municipal wastewater discharge is a significant vector for pharmaceuticals and their metabolites to enter surface waters as humans incompletely absorb prescription drugs and excrete up to 50% into wastewater, which are subsequently incompletely removed during wastewater treatment. Microalgae present a promising target for improving wastewater treatment due to their ability to remove some pollutants efficiently. However, their inherent metabolic pathways limit their capacity to degrade more recalcitrant organic compounds such as pharmaceuticals. The human liver employs enzymes to break down and absorb drugs, and these enzymes are extensively researched during drug development, meaning the cytochrome P450 enzymes responsible for metabolizing each approved drug are well studied. Thus, unlocking or increasing cytochrome P450 expression in endogenous wastewater microalgae could be a cost-effective strategy to reduce pharmaceutical loads in effluents. Here, we discuss the challenges and opportunities associated with introducing cytochrome P450 enzymes into microalgae. We anticipate that cytochrome P450-engineered microalgae can serve as a new drug removal method and a sustainable solution that can upgrade wastewater treatment facilities to function as "mega livers".
Collapse
Affiliation(s)
- Thamali Kariyawasam
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| | - Christian Helvig
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Martin Petkovich
- Department of Biomedical EngineeringQueen's UniversityKingstonOntarioCanada
| | - Bas Vriens
- Department of Geological Sciences and EngineeringQueen's UniversityKingstonOntarioCanada
- Beaty Water Research CenterQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
3
|
Li Y, Wu X, Liu Y, Taidi B. Immobilized microalgae: principles, processes and its applications in wastewater treatment. World J Microbiol Biotechnol 2024; 40:150. [PMID: 38548998 DOI: 10.1007/s11274-024-03930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/16/2024] [Indexed: 04/02/2024]
Abstract
Microalgae have emerged as potential candidates for biomass production and pollutant removal. However, expensive biomass harvesting, insufficient biomass productivity, and low energy intensity limit the large-scale production of microalgae. To break through these bottlenecks, a novel technology of immobilized microalgae culture coupled with wastewater treatment has received increasing attention in recent years. In this review, the characteristics of two immobilized microalgae culture technologies are first presented and then their mechanisms are discussed in terms of biofilm formation theories, including thermodynamic theory, Derjaguin-Landau-Verwei-Overbeek theory (DLVO) and its extended theory (xDLVO), as well as ionic cross-linking mechanisms in the process of microalgae encapsulated in alginate. The main factors (algal strains, carriers, and culture conditions) affecting the growth of microalgae are also discussed. It is also summarized that immobilized microalgae show considerable potential for nitrogen and phosphorus removal, heavy metal removal, pesticide and antibiotic removal in wastewater treatment. The role of bacteria in the cultivation of microalgae by immobilization techniques and their application in wastewater treatment are clarified. This is economically feasible and technically superior. The problems and challenges faced by immobilized microalgae are finally presented.
Collapse
Affiliation(s)
- Yanpeng Li
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang`an University, Xi`an, 710054, People's Republic of China.
| | - Xuexue Wu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Yi Liu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Behnam Taidi
- LGPM, CentraleSupélec, Université Paris Saclay, 3 rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Narindri Rara Winayu B, Chu FJ, Sutopo CCY, Chu H. Bioprospecting photosynthetic microorganisms for the removal of endocrine disruptor compounds. World J Microbiol Biotechnol 2024; 40:120. [PMID: 38433170 DOI: 10.1007/s11274-024-03910-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Endocrine disruption compounds can be found in various daily products, like pesticides, along with cosmetic and pharmaceutical commodities. Moreover, occurrence of EDCs in the wastewater alarms the urgency for their removal before discharge owing to the harmful effect for the environment and human health. Compared to implementation of physical and chemical strategies, cultivation of photosynthetic microorganisms has been acknowledged for their high efficiency and eco-friendly process in EDCs removal along with accumulation of valuable byproducts. During the process, photosynthetic microorganisms remove EDCs via photodegradation, bio-adsorption, -accumulation, and -degradation. Regarding their high tolerance in extreme environment, photosynthetic microorganisms have high feasibility for implementation in wastewater treatment plant. However, several considerations are critical for their scaling up process. This review discussed the potency of EDCs removal by photosynthetic microorganisms and focused on the efficiency, mechanism, challenge, along with the prospect. Details on the mechanism's pathway, accumulation of valuable byproducts, and recent progress in scaling up and application in real wastewater were also projected in this review.
Collapse
Affiliation(s)
| | - Feng-Jen Chu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
| | - Christoper Caesar Yudho Sutopo
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
5
|
Wang Y, Yuan X, Liu J, Jia X. Recent Advances in Zeolites-Catalyzed Biomass Conversion to Hydroxymethylfurfural: The Role of Porosity and Acidity. Chempluschem 2024; 89:e202300399. [PMID: 37889167 DOI: 10.1002/cplu.202300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Biomass is an attractive raw material for the production of fuel oil and chemical intermediates due to its abundant reserves, low price, easy biodegradability, and renewable use. Hydroxymethylfurfural (5-HMF) is a valuable platform chemically derived from biomass that has gained significant research interest owing to its economic and environmental benefits. In this review, recent advances in biomass catalytic conversion systems for 5-HMF production were examined with a focus on the catalysts selection and feedstocks' impact on the 5-HMF selectivity and yield. Specifically, the potential of zeolite-based catalysts for efficient biomass catalysis was evaluated given their unique pore structure and tunable (Lewis and Brønsted) acidity. The benefits of hierarchical modifications and the interactions between porosity and acidity in zeolites, which are critical factors for the development of green catalytic systems to convert biomass to 5-HMF efficiently, were summarized and assessed. This Review suggests that zeolite-based catalysts hold significant promise in facilitating the sustainable utilization of biomass resources.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemical Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 83400, P.R. China
| | - Xiaoxian Yuan
- Department of Chemical Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 83400, P.R. China
| | - Jianxin Liu
- Department of Chemical Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 83400, P.R. China
- Department of Mechanical and Transportation Engineering, China University of Petroleum-Beijing, Beijing, 102249, P.R. China
| | - Xicheng Jia
- Department of Chemical Engineering, China University of Petroleum-Beijing at Karamay, Karamay, 83400, P.R. China
| |
Collapse
|
6
|
Fayaz T, Renuka N, Ratha SK. Antibiotic occurrence, environmental risks, and their removal from aquatic environments using microalgae: Advances and future perspectives. CHEMOSPHERE 2024; 349:140822. [PMID: 38042426 DOI: 10.1016/j.chemosphere.2023.140822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/14/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
Antibiotic pollution has caused a continuous increase in the development of antibiotic-resistant bacteria and antibiotic-resistant genes (ARGs) in aquatic environments worldwide. Algae-based bioremediation technology is a promising eco-friendly means to remove antibiotics and highly resistant ARGs, and the generated biomass can be utilized to produce value-added products of industrial significance. This review discussed the prevalence of antibiotics and ARGs in aquatic environments and their environmental risks to non-target organisms. The potential of various microalgal species for antibiotic and ARG removal, their mechanisms, strategies for enhanced removal, and future directions were reviewed. Antibiotics can be degraded into non-toxic compounds in microalgal cells through the action of extracellular polymeric substances, glutathione-S-transferase, and cytochrome P450; however, antibiotic stress can alter microalgal gene expression and growth. This review also deciphered the effect of antibiotic stress on microalgal physiology, biomass production, and biochemical composition that can impact their commercial applications.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| |
Collapse
|
7
|
Su M, Bastiaens L, Verspreet J, Hayes M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023; 12:3878. [PMID: 37893770 PMCID: PMC10606004 DOI: 10.3390/foods12203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.
Collapse
Affiliation(s)
- Min Su
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| | - Leen Bastiaens
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Joran Verspreet
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Maria Hayes
- The Food BioSciences Department Ashtown, Teagasc Food Research Centre, 15D05 Dublin, Ireland;
| |
Collapse
|
8
|
Peralta-Reyes E, Regalado-Méndez A, Chimeo-Sánchez AA, Robles-Gómez EE, Natividad R. Electrochemical degradation of ciprofloxacin through a DoE-driven optimization in a filter-press type reactor under batch recirculation mode. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1294-1316. [PMID: 37771228 PMCID: wst_2023_279 DOI: 10.2166/wst.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
In this work, the electrochemical degradation of ciprofloxacin (CIP) was studied in a filter-press-type reactor without division in a batch recirculation manner. For this purpose, two boron-doped diamond (BDD) electrodes (as cathode and anode) were employed. Also, the optimal operating conditions were found by response surface methodology (RSM) following a central composite face-centered design with three factors, namely current intensity (i), initial pH (pH0), and initial concentration ([C]0) with two responses, namely remotion efficiency (η) and operating cost. Optimal operating conditions were i = 3 A, pH0 = 8.49, and [C]0 = 33.26 mg L-1 within an electrolysis time of 5 h, leading to a maximum removal efficiency of 93.49% with a minimum operating cost of $0.013 USD L-1. Also, a TOC analysis shows an 80% of mineralization extent with an energy consumption of 5.11 kWh g-1 TOC. Furthermore, the CIP degradation progress was followed by mass spectrometry (LC/MS) and a degradation pathway is proposed.
Collapse
Affiliation(s)
- Ever Peralta-Reyes
- Investigation Laboratories, Universidad del Mar, Puerto Ángel, Oaxaca 70902, México E-mail:
| | | | | | - Edson E Robles-Gómez
- Investigation Laboratories, Universidad del Mar, Puerto Ángel, Oaxaca 70902, México
| | - Reyna Natividad
- Chemical Engineering Laboratory, Centro Conjunto de Investigación en Química Sustentable, UAEMex-UNAM, Universidad Autónoma del Estado de México, Estado de México, Toluca 50200, México
| |
Collapse
|
9
|
Narindri Rara Winayu B, Cheng HF, Hsueh HT, Chu H. Removal of endocrine disruptor compounds, CO 2 fixation, and macromolecules accumulation in Thermosynechococcus sp. CL-1 cultivation. J Biotechnol 2023; 373:1-11. [PMID: 37330059 DOI: 10.1016/j.jbiotec.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Recently, concern on several environmental issues including the pollutant discharge and high concentration of CO2 have gained high interest due to its impact on ecosystem and global warming effect, respectively. Implementation of photosynthetic microorganism carries out numerous advantages including high efficiency of CO2 fixation, the great endurance under extreme conditions and generation of valuable bioproducts. Thermosynechococcus sp. CL-1 (TCL-1), a cyanobacterium, has the ability to perform CO2 fixation and accumulation of various byproducts under extreme conditions like high temperature and alkalinity, presence of estrogen, or even using swine wastewater. This study aimed to assess TCL-1 performance under various endocrine disruptor compounds (bisphenol-A, 17-β-estradiol/E2, and 17-α-ethynilestradiol/EE2), concentrations (0-10 mg/L), light intensities (500-2000 µE/m2/s), and dissolved inorganic carbon/DIC levels (0-113.2 mM). Addition of E2 content even until 10 mg/L carried out insignificant biomass growth interruption along with the improvement in CO2 fixation rate (79.8 ± 0.1 mg/L/h). Besides the influence of E2, application of higher DIC level and light intensity also enhanced the CO2 fixation rate and biomass growth. The highest biodegradation of E2 at 71% was achieved by TCL-1 in the end of 12 h cultivation period. TCL-1 dominantly produced protein (46.7% ± 0.2%), however, production of lipid and carbohydrate (39.5 ± 1.5 and 23.3 ± 0.9%, respectively) also could be considered as the potential source for biofuel production. Thus, this study can provide an efficient strategy in simultaneously dealing with environmental issues with side advantage in production of macromolecules.
Collapse
Affiliation(s)
| | - Hsiu Fang Cheng
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
10
|
Efremenko E, Stepanov N, Senko O, Maslova O, Lyagin I, Aslanli A. Progressive Biocatalysts for the Treatment of Aqueous Systems Containing Pharmaceutical Pollutants. Life (Basel) 2023; 13:841. [PMID: 36983996 PMCID: PMC10052509 DOI: 10.3390/life13030841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The review focuses on the appearance of various pharmaceutical pollutants in various water sources, which dictates the need to use various methods for effective purification and biodegradation of the compounds. The use of various biological catalysts (enzymes and cells) is discussed as one of the progressive approaches to solving problems in this area. Antibiotics, hormones, pharmaceuticals containing halogen, nonsteroidal anti-inflammatory drugs, analgesics and antiepileptic drugs are among the substrates for the biocatalysts in water purification processes that can be carried out. The use of enzymes in soluble and immobilized forms as effective biocatalysts for the biodegradation of various pharmaceutical compounds (PCPs) has been analyzed. Various living cells (bacteria, fungi, microalgae) taken as separate cultures or components of natural or artificial consortia can be involved in biocatalytic processes under aerobic or anaerobic conditions. Cells as biocatalysts introduced into water treatment systems in suspended or immobilized form are used for deep biodegradation of PCPs. The potential of combinations of biocatalysts with physical-chemical methods of wastewater treatment is evaluated in relation to the effective removing of PCPs. The review analyzes recent results and the main current trends in the development of biocatalytic approaches to biodegradation of PCPs, the pros and cons of the processes and the biocatalysts used.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
11
|
Han K, Liu Y, Hu J, Jia J, Sun S. Effect of live and inactivated Chlamydomonas reinhardtii on the removal of tetracycline in aquatic environments. CHEMOSPHERE 2022; 309:136666. [PMID: 36220431 DOI: 10.1016/j.chemosphere.2022.136666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
With the development of medical drugs, the widely used tetracycline has brought many adverse effects on the ecosystem and human health. Tetracycline pollution of water environment is becoming more and more serious, and has become an emerging environmental problem. As single celled organisms, microalgae are not only model organisms for risk assessment of aquatic ecosystems, but also can efficiently purify sewage. Microalgae-mediated pollutant remediation has attracted more and more attention from researchers. In this paper, Chlamydomonas reinhardtii (C. reinhardtii) was used to remove tetracycline in aqueous solution, and the removal efficiency and mechanism of microalgae on tetracycline were studied. The results showed that the removal rates of tetracycline by active and inactivated microalgae at a density of 5 × 106 cells·mL-1 were 81.9% and 89.8%, respectively. C. reinhardtii removed tetracycline through biosorption and nonmetabolic processes. Microalgal cell supernatant and hydroxyl radicals could significantly promote the removal of tetracycline. The positively charged tetracycline was electrostatically adsorbed on the microalgae surface and extracellular polymeric substances. Microalgae biomass can promote the production of ROS and enhance the ability of microalgae to remove tetracycline.
Collapse
Affiliation(s)
- Kai Han
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yanjun Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jianan Hu
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Junjie Jia
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shujuan Sun
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, China.
| |
Collapse
|
12
|
Zhang J, Xia A, Yao D, Guo X, Lam SS, Huang Y, Zhu X, Zhu X, Liao Q. Removal of oxytetracycline and ofloxacin in wastewater by microalgae-bacteria symbiosis for bioenergy production. BIORESOURCE TECHNOLOGY 2022; 363:127891. [PMID: 36089133 DOI: 10.1016/j.biortech.2022.127891] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The development of microalgae-bacteria symbiosis for treating wastewater is flourishing owing to its high biomass productivity and exceptional ability to purify contaminants. A nature-selected microalgae-bacteria symbiosis, mainly consisting of Dictyosphaerium and Pseudomonas, was used to treat oxytetracycline (OTC), ofloxacin (OFLX), and antibiotic-containing swine wastewater. Increased antibiotic concentration gradually reduced biomass productivity and intricately changed symbiosis composition, while 1 mg/L OTC accelerated the growth of symbiosis. The symbiosis biomass productivity reached 3.4-3.5 g/L (5.7-15.3 % protein, 18.4-39.3 % carbohydrate, and 2.1-3.9 % chlorophyll) when cultured in antibiotic-containing swine wastewater. The symbiosis displayed an excellent capacity to remove 76.3-83.4 % chemical oxygen demand, 53.5-62.4 % total ammonia nitrogen, 97.5-100.0 % total phosphorus, 96.3-100.0 % OTC, and 32.8-60.1 % OFLX in swine wastewater. The microbial community analysis revealed that the existence of OTC/OFLX increased the richness and evenness of microalgae but reduced bacteria species in microalgae-bacteria, and the toxicity of OFLX to bacteria was stronger than that of OTC.
Collapse
Affiliation(s)
- Jingmiao Zhang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Dunxue Yao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaobo Guo
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|