1
|
Pang Y, Duan L, Song B, Cui Y, Liu X, Wang T. A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum. Bioprocess Biosyst Eng 2024; 47:1951-1972. [PMID: 38884655 DOI: 10.1007/s00449-024-03039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Microalgae, compared to macroalgae, exhibit advantages such as rapid growth rates, feasible large-scale cultivation, and high fucoxanthin content. Among these microalgae, Phaeodactylum tricornutum emerges as an optimal source for fucoxanthin production. This paper comprehensively reviews the research progress on fucoxanthin production using Phaeodactylum tricornutum from 2012 to 2022, offering detailed insights into various aspects, including strain selection, media optimization, nutritional requirements, lighting conditions, cell harvesting techniques, extraction solvents, extraction methodologies, as well as downstream separation and purification processes. Additionally, an economic analysis is performed to assess the costs of fucoxanthin production from Phaeodactylum tricornutum, with a comparative perspective to astaxanthin production from Haematococcus pluvialis. Lastly, this paper discusses the current challenges and future opportunities in this research field, serving as a valuable resource for researchers, producers, and industry managers seeking to further advance this domain.
Collapse
Affiliation(s)
- Yunlong Pang
- Weihai Vocational College, Weihai, 264200, China.
- Institute of Oceanography, Chinese Academy of Sciences, Qingdao, 266071, China.
- Shandong Haizhibao Marine Technology Co., LTD. Postdoctoral Innovation Practice Base, Weihai, 264200, China.
| | - LiQin Duan
- Institute of Oceanography, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bo Song
- Weihai Ocean Development Research Institute, Weihai, 264200, China
| | - YuLin Cui
- Binzhou Medical College, Yantai, 264003, China
| | - XiaoYong Liu
- Shandong Haizhibao Marine Technology Co., LTD. Postdoctoral Innovation Practice Base, Weihai, 264200, China
| | | |
Collapse
|
2
|
Imamoglu E. Artificial Intelligence and/or Machine Learning Algorithms in Microalgae Bioprocesses. Bioengineering (Basel) 2024; 11:1143. [PMID: 39593803 PMCID: PMC11592280 DOI: 10.3390/bioengineering11111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
This review examines the increasing application of artificial intelligence (AI) and/or machine learning (ML) in microalgae processes, focusing on their ability to improve production efficiency, yield, and process control. AI/ML technologies are used in various aspects of microalgae processes, such as real-time monitoring, species identification, the optimization of growth conditions, harvesting, and the purification of bioproducts. Commonly employed ML algorithms, including the support vector machine (SVM), genetic algorithm (GA), decision tree (DT), random forest (RF), artificial neural network (ANN), and deep learning (DL), each have unique strengths but also present challenges, such as computational demands, overfitting, and transparency. Despite these hurdles, AI/ML technologies have shown significant improvements in system performance, scalability, and resource efficiency, as well as in cutting costs, minimizing downtime, and reducing environmental impact. However, broader implementations face obstacles, including data availability, model complexity, scalability issues, cybersecurity threats, and regulatory challenges. To address these issues, solutions, such as the use of simulation-based data, modular system designs, and adaptive learning models, have been proposed. This review contributes to the literature by offering a thorough analysis of the practical applications, obstacles, and benefits of AI/ML in microalgae processes, offering critical insights into this fast-evolving field.
Collapse
Affiliation(s)
- Esra Imamoglu
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir 35100, Turkey
| |
Collapse
|
3
|
Imbimbo P, Ferrara A, Giustino E, Liberti D, Monti DM. Microalgae Flocculation: Assessment of Extraction Yields and Biological Activity. Int J Mol Sci 2024; 25:10238. [PMID: 39408567 PMCID: PMC11477090 DOI: 10.3390/ijms251910238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Downstream costs represent one of the main obstacles to enabling microalgae to become widespread. The development of an economical, easily scaled-up strategy could reduce the overall process costs. Here, different flocculants were tested on different microalgae strains and a cyanobacterium. The results indicate that flocculation could be an alternative to centrifugation, as CaCl2 induced a complete flocculation of green and red marine strains (96 ± 4% and 87.0 ± 0.5%, respectively), whereas Chitosan was the only agent able to induce flocculation on the cyanobacterium (46 ± 1%). As for the thermoacidophilic red microalga, 100% flocculation was achieved only by increasing the pH. Carotenoids were extracted from the flocculated biomass, and the strategy improved with the use of the wet biomass. The results indicate that flocculation does not affect carotenoid yield, which is at least the same than that obtained upon centrifugation and extraction from the wet biomass. Then, for the first time, the biological activity of the extracts obtained from the flocculated biomasses was evaluated. The results indicate that only the green microalga extract shows increased antioxidant activity. In conclusion, this work highlights that a general downstream procedure cannot be developed for microalgae strains but should be rationally tailored.
Collapse
Affiliation(s)
- Paola Imbimbo
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy; (P.I.); (A.F.); (E.G.)
| | - Alfonso Ferrara
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy; (P.I.); (A.F.); (E.G.)
| | - Enrica Giustino
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy; (P.I.); (A.F.); (E.G.)
| | - Davide Liberti
- Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia 4, 80126 Naples, Italy; (P.I.); (A.F.); (E.G.)
| |
Collapse
|
4
|
Lu X, Yang S, He Y, Zhao W, Nie M, Sun H. Nutritional Value and Productivity Potential of the Marine Microalgae Nitzschia laevis, Phaeodactylum tricornutum and Isochrysis galbana. Mar Drugs 2024; 22:386. [PMID: 39330267 PMCID: PMC11433211 DOI: 10.3390/md22090386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Microalgae are considered promising sustainable feedstocks for the production of food, food additives, feeds, chemicals and various high-value products. Marine microalgae Phaeodactylum tricornutum, Isochrysis galbana and Nitzschia laevis are rich in fucoxanthin, which is effective for weight loss and metabolic diseases. The selection of microalgae species with outstanding nutritional profiles is fundamental for novel foods development, and the nutritional value of P. tricornutum, I. galbana and N. laevis are not yet fully understood. Hence, this study investigates and analyzes the nutritional components of the microalgae by chromatography and mass spectrometry, to explore their nutritional and industrial application potential. The results indicate that the three microalgae possess high nutritional value. Among them, P. tricornutum shows significantly higher levels of proteins (43.29%) and amino acids, while I. galbana has the highest content of carbohydrates (25.40%) and lipids (10.95%). Notwithstanding that P. tricornutum and I. galbana have higher fucoxanthin contents, N. laevis achieves the highest fucoxanthin productivity (6.21 mg/L/day) and polyunsaturated fatty acids (PUFAs) productivity (26.13 mg/L/day) because of the competitive cell density (2.89 g/L) and the advantageous specific growth rate (0.42/day). Thus, compared with P. tricornutum and I. galbana, N. laevis is a more promising candidate for co-production of fucoxanthin and PUFAs.
Collapse
Affiliation(s)
- Xue Lu
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Shufang Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, China
| | - Yongjin He
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Weixuan Zhao
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Man Nie
- Institute of New Materials and Advanced Manufacturing, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Han Sun
- Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
5
|
Mohamed Abdoul-Latif F, Ainane A, Achenani L, Merito Ali A, Mohamed H, Ali A, Jutur PP, Ainane T. Production of Fucoxanthin from Microalgae Isochrysis galbana of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches. Mar Drugs 2024; 22:358. [PMID: 39195473 DOI: 10.3390/md22080358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Fucoxanthin, a carotenoid with remarkable antioxidant properties, has considerable potential for high-value biotechnological applications in the pharmaceutical, nutraceutical, and cosmeceutical fields. However, conventional extraction methods of this molecule from microalgae are limited in terms of cost-effectiveness. This study focused on optimizing biomass and fucoxanthin production from Isochrysis galbana, isolated from the coast of Tadjoura (Djibouti), by testing various culture media. The antioxidant potential of the cultures was evaluated based on the concentrations of fucoxanthin, carotenoids, and total phenols. Different nutrient formulations were tested to determine the optimal combination for a maximum biomass yield. Using the statistical methodology of principal component analysis, Walne and Guillard F/2 media were identified as the most promising, reaching a maximum fucoxanthin yield of 7.8 mg/g. Multiple regression models showed a strong correlation between antioxidant activity and the concentration of fucoxanthin produced. A thorough study of the optimization of I. galbana growth conditions, using a design of experiments, revealed that air flow rate and CO2 flow rate were the most influential factors on fucoxanthin production, reaching a value of 13.4 mg/g. Finally, to validate the antioxidant potential of fucoxanthin, an in silico analysis based on molecular docking was performed, showing that fucoxanthin interacts with antioxidant proteins (3FS1, 3L2C, and 8BBK). This research not only confirmed the positive results of I. galbana cultivation in terms of antioxidant activity, but also provided essential information for the optimization of fucoxanthin production, opening up promising prospects for industrial applications and future research.
Collapse
Affiliation(s)
| | - Ayoub Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Laila Achenani
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| | - Ali Merito Ali
- Medicinal Research Institute, Center for Research and Study of Djibouti, Djibouti City P.O. Box 486, Djibouti
| | - Houda Mohamed
- Medicinal Research Institute, Center for Research and Study of Djibouti, Djibouti City P.O. Box 486, Djibouti
- Peltier Hospital of Djibouti, Djibouti City P.O. Box 2123, Djibouti
| | - Ahmad Ali
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tarik Ainane
- Superior School of Technology, University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco
| |
Collapse
|
6
|
Græsholt C, Brembu T, Volpe C, Bartosova Z, Serif M, Winge P, Nymark M. Zeaxanthin epoxidase 3 Knockout Mutants of the Model Diatom Phaeodactylum tricornutum Enable Commercial Production of the Bioactive Carotenoid Diatoxanthin. Mar Drugs 2024; 22:185. [PMID: 38667802 PMCID: PMC11051370 DOI: 10.3390/md22040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Carotenoids are pigments that have a range of functions in human health. The carotenoid diatoxanthin is suggested to have antioxidant, anti-inflammatory and chemo-preventive properties. Diatoxanthin is only produced by a few groups of microalgae, where it functions in photoprotection. Its large-scale production in microalgae is currently not feasible. In fact, rapid conversion into the inactive pigment diadinoxanthin is triggered when cells are removed from a high-intensity light source, which is the case during large-scale harvesting of microalgae biomass. Zeaxanthin epoxidase (ZEP) 2 and/or ZEP3 have been suggested to be responsible for the back-conversion of high-light accumulated diatoxanthin to diadinoxanthin in low-light in diatoms. Using CRISPR/Cas9 gene editing technology, we knocked out the ZEP2 and ZEP3 genes in the marine diatom Phaeodactylum tricornutum to investigate their role in the diadinoxanthin-diatoxanthin cycle and determine if one of the mutant strains could function as a diatoxanthin production line. Light-shift experiments proved that ZEP3 encodes the enzyme converting diatoxanthin to diadinoxanthin in low light. Loss of ZEP3 caused the high-light-accumulated diatoxanthin to be stable for several hours after the cultures had been returned to low light, suggesting that zep3 mutant strains could be suitable as commercial production lines of diatoxanthin.
Collapse
Affiliation(s)
- Cecilie Græsholt
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Tore Brembu
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Charlotte Volpe
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, 7010 Trondheim, Norway;
| | - Zdenka Bartosova
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, 7010 Trondheim, Norway;
| |
Collapse
|
7
|
Sun H, Wang J, Li Y, Yang S, Chen DD, Tu Y, Liu J, Sun Z. Synthetic biology in microalgae towards fucoxanthin production for pharmacy and nutraceuticals. Biochem Pharmacol 2024; 220:115958. [PMID: 38052271 DOI: 10.1016/j.bcp.2023.115958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Synthetic biology has emerged as a powerful tool for engineering biological systems to produce valuable compounds, including pharmaceuticals and nutraceuticals. Microalgae, in particular, offer a promising platform for the production of bioactive compounds due to their high productivity, low land and water requirements, and ability to perform photosynthesis. Fucoxanthin, a carotenoid pigment found predominantly in brown seaweeds and certain microalgae, has gained significant attention in recent years due to its numerous health benefits, such as antioxidation, antitumor effect and precaution osteoporosis. This review provides an overview of the principles and applications of synthetic biology in the microbial engineering of microalgae for enhanced fucoxanthin production. Firstly, the fucoxanthin bioavailability and metabolism in vivo was introduced for the beneficial roles, followed by the biological functions of anti-oxidant activity, anti-inflammatory activity, antiapoptotic role antidiabetic and antilipemic effects. Secondly, the cultivation condition and strategy were summarized for fucoxanthin improvement with low production costs. Thirdly, the genetic engineering of microalgae, including gene overexpression, knockdown and knockout strategies were discussed for further improving the fucoxanthin production. Then, synthetic biology tools of CRISPR-Cas9 genome editing, transcription activator-like effector nucleases as well as modular assembly and chassis engineering were proposed to precise modification of microalgal genomes to improve fucoxanthin production. Finally, challenges and future perspectives were discussed to realize the industrial production and development of functional foods of fucoxanthin from microalgae.
Collapse
Affiliation(s)
- Han Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yuelian Li
- China National Chemical Information Center, Beijing 100020, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | | | - Yidong Tu
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Algae Innovation Center for Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| |
Collapse
|
8
|
Seo S, Chang KS, Choi MS, Jin E. Overexpression of PtVDL1 in Phaeodactylum tricornutum Increases Fucoxanthin Content under Red Light. J Microbiol Biotechnol 2024; 34:198-206. [PMID: 37957112 PMCID: PMC10840463 DOI: 10.4014/jmb.2309.09018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Phaeodactylum tricornutum is a model diatom with significant biotechnological applications, including enhancing biomass, biofuel, and carotenoid production. Specifically, owing to the capacity of this organism to serve as a valuable source of essential raw materials for pharmaceuticals and nutraceuticals, ongoing research is actively focused on enhancing its productivity. One of the genes involved in various stages of fucoxanthin (Fx) biosynthesis, violaxanthin de-epoxidase like 1 (VDL1), has recently been identified. To validate the intracellular function of this gene and boost Fx production through overexpression, we established and examined three transgenic P. tricornutum lines characterized by elevated P. tricortunum VDL1 ( PtVDL1) expression and evaluate their cell growth and Fx productivity. These transgenic lines exhibited substantially increased PtVDL1 mRNA and protein levels compared to the wild type (WT). Notably, the enzyme substrate violaxanthin was entirely depleted and could not be detected in the transformants, whereas it remained at constant levels in the WT. Interestingly, under standard white light conditions, Fx productivity in the transformants remained unchanged; however, but after 48 h of exposure to red light, it increased by up to 15%. These results indicate that PtVDL1-overexpressing P. tricornutum has industrial potential, particularly for enhancing Fx production under red light conditions.
Collapse
Affiliation(s)
- Seungbeom Seo
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Kwang Suk Chang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Sun Choi
- Korea Radio-Isotope Center for Pharmaceuticals, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
9
|
Chong JWR, Tang DYY, Leong HY, Khoo KS, Show PL, Chew KW. Bridging artificial intelligence and fucoxanthin for the recovery and quantification from microalgae. Bioengineered 2023; 14:2244232. [PMID: 37578162 PMCID: PMC10431731 DOI: 10.1080/21655979.2023.2244232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
Fucoxanthin is a carotenoid that possesses various beneficial medicinal properties for human well-being. However, the current extraction technologies and quantification techniques are still lacking in terms of cost validation, high energy consumption, long extraction time, and low yield production. To date, artificial intelligence (AI) models can assist and improvise the bottleneck of fucoxanthin extraction and quantification process by establishing new technologies and processes which involve big data, digitalization, and automation for efficiency fucoxanthin production. This review highlights the application of AI models such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS), capable of learning patterns and relationships from large datasets, capturing non-linearity, and predicting optimal conditions that significantly impact the fucoxanthin extraction yield. On top of that, combining metaheuristic algorithm such as genetic algorithm (GA) can further improve the parameter space and discovery of optimal conditions of ANN and ANFIS models, which results in high R2 accuracy ranging from 98.28% to 99.60% after optimization. Besides, AI models such as support vector machine (SVM), convolutional neural networks (CNNs), and ANN have been leveraged for the quantification of fucoxanthin, either computer vision based on color space of images or regression analysis based on statistical data. The findings are reliable when modeling for the concentration of pigments with high R2 accuracy ranging from 66.0% - 99.2%. This review paper has reviewed the feasibility and potential of AI for the extraction and quantification purposes, which can reduce the cost, accelerate the fucoxanthin yields, and development of fucoxanthin-based products.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hui Yi Leong
- ISCO (Nanjing) Biotech-Company, Nanjing, Jiangning, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Nurcahyanti ADR, Lady J, Wink M. Fucoxanthin Potentiates the Bactericidal Activity of Cefotaxime Against Staphylococcus aureus. Curr Microbiol 2023; 80:260. [PMID: 37365295 DOI: 10.1007/s00284-023-03381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
The increasing prevalence of antimicrobial resistance (AMR) in Staphylococcus aureus against commonly used antibiotics is a major global health issue. To prevent the emergence of AMR and maintain the desired therapeutic effect, the use of drug combinations in the therapeutic management of infections can be contemplated. This approach allows for the administration of lower antibiotic dosages without compromising the desired therapeutic outcome. Despite the documented antimicrobial activity of fucoxanthin, a widely recognized marine carotenoid, there are a lack of previous reports exploring its potential to enhance the therapeutic effect of antibiotics. The current study aimed to investigate whether fucoxanthin can inhibit S. aureus including the strains resistant to methicillin and to investigate whether fucoxanthin can enhance the therapeutic effect of cefotaxime, a widely prescribed 3rd-generation cephalosporin β-lactam antibiotic known to exhibit resistance in certain cases. Synergism or additive interactions were determined using checkerboard dilution and isobologram analysis, while bactericidal activity was carried out using the time-kill kinetic assay. It is important to highlight that a synergistic bactericidal effect was observed in all strains of S. aureus when fucoxanthin was combined with cefotaxime at a specific concentration ratio. These findings suggest that fucoxanthin holds promise in enhancing the therapeutic efficacy of cefotaxime.
Collapse
Affiliation(s)
- Agustina D R Nurcahyanti
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, Jakarta, 14440, Indonesia.
| | - Jullietta Lady
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya 2, Jakarta, 14440, Indonesia
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Jing W, Qu Y, Shan J, Alam MA, Russel M, Wenchao W, Zhang D, Zhou Y. Isolating Fistulifera pelliculosa from the northern Bohai Sea and analyzing biochemical composition, antibacterial and nutrient removal potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162002. [PMID: 36740060 DOI: 10.1016/j.scitotenv.2023.162002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The microalgae located near the estuary of the Liaohe River along the coast of Panjin have long been in an area with large fluctuations in salinity, temperature, and nutrients, and have high-quality alternatives for high-value metabolites. Three strains of microalgae were screened and the biomass of microalgae could be optimized 0.313-0.790 g L-1 in 10 L bioreactor. The determination results of bioactive substances in these three microalgae showed that, the amount of fucoxanthin in the growth phase II (14 days) was maximum, at 5.354, 6.284 and 14.837 mg g-1 respectively. The diatoxanthin of Dut-wj-J1 in growth phase III (21 days) could reach 5.158 mg g-1. Dut-wj-J4 had the highest lipid production efficiency (9.45 mg L-1 d-1) followed by Dut-wj-J2 (8.49 mg L-1 d-1) and Dut-wj-J1 (8.18 mg L-1 d-1) respectively. These bioactive substances have inhibition zones of 7-13 mm against all four strains of bacteria ie., Acetobacter, Rhodococcus erythropolis, Escherichia coli and Bacillus subtilis Cohn respectively. In addition, these microalgae can play a potential role in nutrient enrichment in eutrophic seawater. The NO3- degradation rates of these three algae in the first 14 days were 75.0 %, 45.8 % and 100 % respectively, as well as the PO4- degradation rates in the first 7 days were 94.8 %, 100 % and 80.9 % respectively. This work manifests the plasticity of algae isolated from the Bohai Sea and provides useful insights for further joint production of bioactive substances.
Collapse
Affiliation(s)
- Wang Jing
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, People's Republic of China
| | - Yihe Qu
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, People's Republic of China
| | - Jiajia Shan
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, People's Republic of China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, People's Republic of China
| | - Mohammad Russel
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, People's Republic of China.
| | - Wu Wenchao
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, People's Republic of China
| | - Dayong Zhang
- School of Ocean Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, People's Republic of China
| | - Yong Zhou
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, College of Life Sciences and Technology, Hubei Engineering University, Xiaogan 432000, People's Republic of China
| |
Collapse
|
12
|
Russo GL, Langellotti AL, Verardo V, Martín-García B, Oliviero M, Baselice M, Di Pierro P, Sorrentino A, Viscardi S, Marileo L, Sacchi R, Masi P. Bioconversion of Cheese Whey and Food By-Products by Phaeodactylum tricornutum into Fucoxanthin and n-3 Lc-PUFA through a Biorefinery Approach. Mar Drugs 2023; 21:md21030190. [PMID: 36976239 PMCID: PMC10054534 DOI: 10.3390/md21030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
This study investigates the potential of utilizing three food wastes: cheese whey (CW), beet molasses (BM), and corn steep liquor (CSL) as alternative nutrient sources for the cultivation of the diatom Phaeodactylum tricornutum, a promising source of polyunsaturated eicosapentaenoic acid (EPA) and the carotenoid fucoxanthin. The CW media tested did not significantly impact the growth rate of P. tricornutum; however, CW hydrolysate significantly enhances cell growth. BM in cultivation medium enhances biomass production and fucoxanthin yield. The optimization of the new food waste medium was conducted through the application of a response surface methodology (RSM) using hydrolyzed CW, BM, and CSL as factors. The results showed a significant positive impact of these factors (p < 0.005), with an optimized biomass yield of 2.35 g L-1 and a fucoxanthin yield of 3.64 mg L-1 using a medium composed of 33 mL L-1 of CW, 2.3 g L-1 of BM, and 2.24 g L-1 of CSL. The experimental results reported in this study showed that some food by-products from a biorefinery perspective could be utilized for the efficient production of fucoxanthin and other high-added-value products such as eicosapentaenoic acid (EPA).
Collapse
Affiliation(s)
- Giovanni Luca Russo
- CAISIAL Center, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
| | | | - Vito Verardo
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Granada, Spain
| | - Beatriz Martín-García
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Center, University of Granada, Avda del Conocimiento sn., 18100 Granada, Spain
| | - Maria Oliviero
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute, 2, 80055 Portici, Italy
| | - Marco Baselice
- Department of Civil, Environmental, Land, Construction and Chemistry (DICATECh), Politecnico di Bari, 70126 Bari, Italy
| | - Prospero Di Pierro
- Department of Agricultural Sciences, Unit of Food Science and Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Angela Sorrentino
- CAISIAL Center, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
| | - Sharon Viscardi
- Biotechnology of Functional Foods Laboratory, Camino Sanquilco, Parcela 18, Padre Las Casas 4850827, La Araucanía, Chile
- Núcleo de Investigación en Producción Alimentaria, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4780694, La Araucanía, Chile
| | - Luis Marileo
- Biotechnology of Functional Foods Laboratory, Camino Sanquilco, Parcela 18, Padre Las Casas 4850827, La Araucanía, Chile
- Programa de Doctorado en Ciencias Agropecuarias, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4813302, La Araucanía, Chile
| | - Raffaele Sacchi
- Department of Agricultural Sciences, Unit of Food Science and Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Paolo Masi
- CAISIAL Center, University of Naples Federico II, Via Università 133, 80055 Portici, Italy
- Department of Agricultural Sciences, Unit of Food Science and Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
13
|
Saini RK, Ravishankar GA, Keum Y. Microalgae and Thraustochytrids are Sustainable Sources of Vegan EPA and DHA with Commercial Feasibility. Indian J Microbiol 2023; 63:155-158. [PMID: 37188231 PMCID: PMC10172403 DOI: 10.1007/s12088-023-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/21/2023] [Indexed: 01/29/2023] Open
Abstract
Vegan diets preclude the availability of some of the essential fatty acids supplied by foods of animal origin. Significantly, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are long-chain (LC)-omega - 3 (n - 3) polyunsaturated fatty acids (PUFAs), widely known for preventing a variety of metabolic diseases. In addition to vegan-food supplements, there is increasing demand for infant foods and health foods from dietary sources of EPA and DHA from plant origin. Their demands are being met industrially by utilizing thraustochytrids (marine protists) and microalgae-based platforms. The importance of these organisms is highlighted for the sustainable production of biotechnologically derived specialty lipids for human health.
Collapse
Affiliation(s)
| | | | - Young‐Soo Keum
- Department of Crop Science, Konkuk University, Seoul, 143-701 Korea
| |
Collapse
|
14
|
Phaeodactylum tricornutum as a potential feedstock for an integrated biorefinery process under varying cultivation conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|