1
|
Jeong S, Kim YY, Lee D, Kim SH, Lee S. Hispidulin Alleviates Mast Cell-Mediated Allergic Airway Inflammation through FcεR1 and Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel) 2024; 13:528. [PMID: 38790633 PMCID: PMC11118000 DOI: 10.3390/antiox13050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Allergic asthma is a type 2 immune-response-mediated chronic respiratory disease. Mast cell activation influences the pathogenesis and exacerbation of allergic asthma. Therefore, the development of mast cell-targeting pharmacotherapy is important for managing allergic airway inflammation. We investigated the efficacy of hispidulin (HPD), natural flavone, in a mast-cell-mediated ovalbumin (OVA)-induced allergic airway inflammation model. HPD alleviated symptoms of allergic asthma and decreased the levels of immunoglobulin (Ig) E, type 2 inflammation, immune cell infiltration, and mast cell activation in the lung. Furthermore, in vivo analysis confirmed the efficacy of HPD through the evaluation of IgE-mediated allergic responses in a mast cell line. HPD treatment inhibited mast cell degranulation through inhibition of the FcεR1 signaling pathway and suppressed the expression of inflammatory cytokines (TNF-α, IL-4, IL-6, and IL-13) through suppression of the NF-κB signaling pathway. The antioxidant effects of HPD in activated mast cells were identified through modulation of antioxidant enzymes and the Nrf2/HO-1 signaling pathway. In conclusion, HPD may be a potential therapeutic candidate for allergic airway inflammation of asthma and acts by suppressing mast cell activation and oxidative stress.
Collapse
Affiliation(s)
- Seungwon Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea; (S.J.); (Y.-Y.K.)
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567, Baekje-daero, Jeonju 54896, Republic of Korea;
| | - Yeon-Yong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea; (S.J.); (Y.-Y.K.)
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567, Baekje-daero, Jeonju 54896, Republic of Korea;
- Department of Polymer Nano Science and Technology, Jeonbuk National University, 567, Baekje-daero, Jeonju 54896, Republic of Korea
| | - Sang-Hyun Kim
- Cell Matrix Research Institute, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Soyoung Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jeongeup 56212, Republic of Korea; (S.J.); (Y.-Y.K.)
| |
Collapse
|
2
|
van Dijk YE, Rutjes NW, Golebski K, Şahin H, Hashimoto S, Maitland-van der Zee AH, Vijverberg SJH. Developments in the Management of Severe Asthma in Children and Adolescents: Focus on Dupilumab and Tezepelumab. Paediatr Drugs 2023; 25:677-693. [PMID: 37658954 PMCID: PMC10600295 DOI: 10.1007/s40272-023-00589-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Severe asthma in children and adolescents exerts a substantial health, financial, and societal burden. Severe asthma is a heterogeneous condition with multiple clinical phenotypes and underlying inflammatory patterns that might be different in individual patients. Various add-on treatments have been developed to treat severe asthma, including monoclonal antibodies (biologics) targeting inflammatory mediators. Biologics that are currently approved to treat children (≥ 6 years of age) or adolescents (≥ 12 years of age) with severe asthma include: anti-immunoglobulin E (omalizumab), anti-interleukin (IL)-5 (mepolizumab), anti-IL5 receptor (benralizumab), anti-IL4/IL13 receptor (dupilumab), and antithymic stromal lymphopoietin (TSLP) (tezepelumab). However, access to these targeted treatments varies across countries and relies on few and crude indicators. There is a need for better treatment stratification to guide which children might benefit from these treatments. In this narrative review we will assess the most recent developments in the treatment of severe pediatric asthma, as well as potential biomarkers to assess treatment efficacy for this patient population.
Collapse
Affiliation(s)
- Yoni E van Dijk
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels W Rutjes
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Korneliusz Golebski
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Havva Şahin
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Simone Hashimoto
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anke-Hilse Maitland-van der Zee
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne J H Vijverberg
- Pulmonary Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Pediatric Pulmonology, Emma's Childrens Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Sakama T, Ichinose M, Obara T, Shibata M, Kagawa T, Takakura H, Hirai K, Furuya H, Kato M, Mochizuki H. Effect of wheeze and lung function on lung sound parameters in children with asthma. Allergol Int 2023; 72:545-550. [PMID: 36935346 DOI: 10.1016/j.alit.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND In children with asthma, there are many cases in which wheeze is confirmed by auscultation with a normal lung function, or in which the lung function is decreased without wheeze. Using an objective lung sound analysis, we examined the effect of wheeze and the lung function on lung sound parameters in children with asthma. METHODS A total of 114 children with asthma (males to females = 80: 34, median age 10 years old) were analyzed for their lung sound parameters using conventional methods, and wheeze and the lung function were checked. The effects of wheeze and the lung function on lung sound parameters were examined. RESULTS The patients with wheeze or decreased forced expiratory flow and volume in 1 s (FEV1) (% pred) showed a significantly higher sound power of respiration and expiration-to-inspiration sound power ratio (E/I) than those without wheeze and a normal FEV1 (% pred). There was no marked difference in the sound power of respiration or E/I between the patients without wheeze and a decreased FEV1 (% pred) and the patients with wheeze and a normal FEV1 (% pred). CONCLUSIONS Our data suggest that bronchial constriction in the asthmatic children with wheeze similarly exists in the asthmatic children with a decreased lung function. A lung sound analysis is likely to enable an accurate understanding of airway conditions.
Collapse
Affiliation(s)
- Takashi Sakama
- Department of Pediatrics, Tokai University Hachioji Hospital, Tokyo, Japan; Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| | - Mami Ichinose
- Department of Pediatrics, Tokai University Hachioji Hospital, Tokyo, Japan; Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| | - Takeru Obara
- Department of Pediatrics, Tokai University Hachioji Hospital, Tokyo, Japan; Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| | - Mayuko Shibata
- Department of Pediatrics, Tokai University Hachioji Hospital, Tokyo, Japan; Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| | - Takanori Kagawa
- Department of Pediatrics, Tokai University Hachioji Hospital, Tokyo, Japan; Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| | - Hiromitsu Takakura
- Department of Pediatrics, Tokai University Hachioji Hospital, Tokyo, Japan; Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| | - Kota Hirai
- Department of Pediatrics, Tokai University Hachioji Hospital, Tokyo, Japan; Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Furuya
- Department of Basic Clinical Science and Public Health, Tokai University School of Medicine, Kanagawa, Japan
| | - Masahiko Kato
- Department of Pediatrics, Tokai University Hachioji Hospital, Tokyo, Japan; Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroyuki Mochizuki
- Department of Pediatrics, Tokai University Hachioji Hospital, Tokyo, Japan; Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
4
|
Adrish M, Akuthota P. Approach to non-type 2 asthma. Respir Med 2023:107327. [PMID: 37307904 DOI: 10.1016/j.rmed.2023.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/21/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Affiliation(s)
- Muhammad Adrish
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, Sleep Medicine & Physiology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Peri F, Amaddeo A, Badina L, Maschio M, Barbi E, Ghirardo S. T2-Low Asthma: A Discussed but Still Orphan Disease. Biomedicines 2023; 11:biomedicines11041226. [PMID: 37189844 DOI: 10.3390/biomedicines11041226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Asthma affects 10% of the worldwide population; about 5% of cases are severe with the need for target therapies such as biologics. All the biologics approved for asthma hit the T2 pathway of inflammation. T2-high asthma is classified as allergic and non-allergic, whereas T2-low asthma can be further defined as paucigranulocytic asthma, Type 1 and Type-17 inflammation and the neutrophilic form that accounts for 20-30% of all patients with asthma. Neutrophilic asthma's prevalence is even higher in patients with severe or refractory asthma. We searched Medline and PubMed archives from the past ten years for articles with the subsequent titles: "neutrophilic asthma", "non-type 2 asthma" and "paucigranulocytic asthma". We identified 177 articles; 49 were considered relevant by the title and 33 by the reading of the abstract. Most of these articles are reviews (n = 19); only 6 are clinical trials. No study identified an effective treatment. We used the literature reported by these articles to search for further biologic treatments that target pathways different from T2. We identified 177 articles, 93 of which were considered relevant for the review and included in the present article. In conclusion, T2-low asthma remains poorly investigated in terms of biomarkers, especially as a therapeutic orphan disease.
Collapse
Affiliation(s)
- Francesca Peri
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alessandro Amaddeo
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Laura Badina
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Massimo Maschio
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Egidio Barbi
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| | - Sergio Ghirardo
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy
| |
Collapse
|
6
|
Ichinose M, Obara T, Shibata M, Kagawa T, Sakama T, Takakura H, Hirai K, Furuya H, Kato M, Mochizuki H. Clinical application of a lung sound analysis in infants with respiratory syncytial virus acute bronchiolitis. Pediatr Int 2023; 65:e15605. [PMID: 37615369 DOI: 10.1111/ped.15605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/11/2023] [Accepted: 06/09/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Objective investigation of the characteristics of acute bronchiolitis in infants is important for its diagnosis and treatment. METHODS Lung sound data of 50 patients diagnosed with respiratory syncytial virus (RSV) acute bronchiolitis (m:f = 29:21, median of age 7 months), 20 patients with RSV acute respiratory tract infections without acute bronchiolitis (m:f = 10:10, 5 months) and 38 age-matched control infants (m:f = 23:15, 8 months) were analyzed using a conventional method and compared. Furthermore, the relationships between lung sound parameters and clinical symptoms (clinical score, length of hospital stay and SpO2 level) in the bronchiolitis and the non-bronchiolitis patients were examined. RESULTS Results of lung sound analysis showed that the inspiratory sound power of patients with RSV respiratory tract infections was low and the expiratory sound power was high compared with those of the controls. When the patients with RSV respiratory tract infections were divided into the bronchiolitis and non-bronchiolitis groups, the expiratory/inspiratory ratio of the bronchiolitis patients was greater than that of the non-bronchiolitis patients. There was no difference in the clinical symptoms, clinical score and length of hospital stay between the bronchiolitis and non-bronchiolitis patients, except for the SpO2 level on admission. CONCLUSION Lung sound analysis confirmed that patients with RSV acute bronchiolitis present with marked airway narrowing. Considering these results as a characteristic of acute bronchiolitis, it would be meaningful to reflect it in the improvement of diagnosis, treatment and subsequent management.
Collapse
Affiliation(s)
- Mami Ichinose
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Japan
- Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Takeru Obara
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Japan
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Mayuko Shibata
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Japan
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Takanori Kagawa
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Japan
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Sakama
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Japan
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Hiromitsu Takakura
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Japan
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Kota Hirai
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Japan
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Furuya
- Department of Basic Clinical Science and Public Health, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Kato
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Japan
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Hiroyuki Mochizuki
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Japan
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
7
|
Kuruma K, Otomo T, Sakama T, Akiyama K, Takakura H, Toyama D, Hirai K, Furuya H, Kato M, Mochizuki H. Breath sound analyses of infants with respiratory syncytial virus acute bronchiolitis. Pediatr Pulmonol 2022; 57:2320-2326. [PMID: 35670233 DOI: 10.1002/ppul.26034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The reliability of a breath sound analysis using an objective method in infants has been reported. OBJECTIVE Breath sounds of infants with respiratory syncytial virus (RSV) acute bronchiolitis were analyzed via a breath sound spectrogram to evaluate their characteristics and examine their relationship with the severity. SUBJECTS AND METHODS We evaluated the inspiratory and expiratory breath sound parameters of 33 infants diagnosed with RSV acute bronchiolitis. The sound powers of inspiration and expiration were evaluated at the acute phase and recovery phase of infection. Furthermore, the relationship between the breath sound parameters and the clinical severity of acute bronchiolitis was examined. RESULTS Analyses of the breath sound spectrogram showed that the power of expiration as well as the expiration-to-inspiration sound ratio in the mid-frequency (E/I MF) was increased in the acute phase and decreased during the recovery phase. The E/I MF was inversely correlated with the SpO2 and positively correlated with the severity score. CONCLUSION In infants with RSV acute bronchiolitis, the sound power of respiration was large at the acute phase, significantly decreasing in the recovery phase. In 61% of participants, nonuniform, granular bands were shown in the low-pitched region of the expiratory spectrogram.
Collapse
Affiliation(s)
- Kenta Kuruma
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan.,Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Tomofumi Otomo
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan.,Department of Pediatrics, Tokai University School of Medicine, Tokyo, Japan
| | - Takashi Sakama
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan.,Department of Pediatrics, Tokai University School of Medicine, Tokyo, Japan
| | - Kosuke Akiyama
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan.,Department of Pediatrics, Tokai University School of Medicine, Tokyo, Japan
| | - Hiromitsu Takakura
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan.,Department of Pediatrics, Tokai University School of Medicine, Tokyo, Japan
| | - Daisuke Toyama
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan.,Department of Pediatrics, Tokai University School of Medicine, Tokyo, Japan
| | - Kota Hirai
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan.,Department of Pediatrics, Tokai University School of Medicine, Tokyo, Japan
| | - Hiroyuki Furuya
- Department of Basic Clinical Science and Public Health, Tokai University School of Medicine, Tokyo, Japan
| | - Masahiko Kato
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan.,Department of Pediatrics, Tokai University School of Medicine, Tokyo, Japan
| | - Hiroyuki Mochizuki
- Department of Pediatrics, Tokai University Hachioji Hospital, Hachioji, Tokyo, Japan.,Department of Pediatrics, Tokai University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
9
|
Misiukiewicz-Stepien P, Paplinska-Goryca M. Biological effect of PM 10 on airway epithelium-focus on obstructive lung diseases. Clin Immunol 2021; 227:108754. [PMID: 33964432 DOI: 10.1016/j.clim.2021.108754] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
Recently, a continuous increase in environmental pollution has been observed. Despite wide-scale efforts to reduce air pollutant emissions, the problem is still relevant. Exposure to elevated levels of airborne particles increased the incidence of respiratory diseases. PM10 constitute the largest fraction of air pollutants, containing particles with a diameter of less than 10 μm, metals, pollens, mineral dust and remnant material from anthropogenic activity. The natural airway defensive mechanisms against inhaled material, such as mucus layer, ciliary clearance and macrophage phagocytic activity, may be insufficient for proper respiratory function. The epithelium layer can be disrupted by ongoing oxidative stress and inflammatory processes induced by exposure to large amounts of inhaled particles as well as promote the development and exacerbation of obstructive lung diseases. This review draws attention to the current state of knowledge about the physical features of PM10 and its impact on airway epithelial cells, and obstructive pulmonary diseases.
Collapse
Affiliation(s)
- Paulina Misiukiewicz-Stepien
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland; Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Poland.
| | | |
Collapse
|
10
|
Crisford H, Sapey E, Rogers GB, Taylor S, Nagakumar P, Lokwani R, Simpson JL. Neutrophils in asthma: the good, the bad and the bacteria. Thorax 2021; 76:thoraxjnl-2020-215986. [PMID: 33632765 PMCID: PMC8311087 DOI: 10.1136/thoraxjnl-2020-215986] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/30/2022]
Abstract
Airway inflammation plays a key role in asthma pathogenesis but is heterogeneous in nature. There has been significant scientific discovery with regard to type 2-driven, eosinophil-dominated asthma, with effective therapies ranging from inhaled corticosteroids to novel biologics. However, studies suggest that approximately 1 in 5 adults with asthma have an increased proportion of neutrophils in their airways. These patients tend to be older, have potentially pathogenic airway bacteria and do not respond well to classical therapies. Currently, there are no specific therapeutic options for these patients, such as neutrophil-targeting biologics.Neutrophils comprise 70% of the total circulatory white cells and play a critical defence role during inflammatory and infective challenges. This makes them a problematic target for therapeutics. Furthermore, neutrophil functions change with age, with reduced microbial killing, increased reactive oxygen species release and reduced production of extracellular traps with advancing age. Therefore, different therapeutic strategies may be required for different age groups of patients.The pathogenesis of neutrophil-dominated airway inflammation in adults with asthma may reflect a counterproductive response to the defective neutrophil microbial killing seen with age, resulting in bystander damage to host airway cells and subsequent mucus hypersecretion and airway remodelling. However, in children with asthma, neutrophils are less associated with adverse features of disease, and it is possible that in children, neutrophils are less pathogenic.In this review, we explore the mechanisms of neutrophil recruitment, changes in cellular function across the life course and the implications this may have for asthma management now and in the future. We also describe the prevalence of neutrophilic asthma globally, with a focus on First Nations people of Australia, New Zealand and North America.
Collapse
Affiliation(s)
- Helena Crisford
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Geraint B Rogers
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, South Australia, Australia
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Steven Taylor
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, South Australia, Australia
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Prasad Nagakumar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Respiratory Medicine, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Ravi Lokwani
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Jodie L Simpson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
11
|
Relationship between Particulate Matter (PM 10) and Airway Inflammation Measured with Exhaled Nitric Oxide Test in Seoul, Korea. Can Respir J 2020; 2020:1823405. [PMID: 32256904 PMCID: PMC7103060 DOI: 10.1155/2020/1823405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/18/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose Particulate matter (PM) is increasing every year in Asia. It is not fully understood how the airway is affected when inhaling PM. We investigated the correlation between particulate matter with a diameter of less than 10 μm (PM10) and fractional exhaled nitric oxide (FeNO) to determine whether PM causes airway inflammation. Material and Methods. We analyzed patients who visited our outpatient clinic and tested FeNO from January 2016 to December 2017 at the Korea University Guro Hospital. PM10 data were provided by the government of the Republic of South Korea, and measuring station of PM10 is located 800 meters from the hospital. We analyzed the correlation between PM10 and FeNO by a Pearson correlation analysis and by a multivariate linear regression analysis. To identify the most correlated times, we analyzed the correlation between the FeNO and PM10 daily average from the day of visit to 4 days before visit. Results FeNO positively correlated with PM10 at two days before hospital visit in the Pearson correlation (Pearson correlation coefficient = 0.057; P-value = 0.023) and in the multivariate linear regression analysis (B = 0.051, P-value = 0.026). If the PM10 increased by 100 μg/m3, the FeNO result was expected to rise to 8.3 ppb in healthy people without respiratory disease. Conclusion The positive correlation was found in both healthy people and asthmatic patients. Therefore, PM10 can increase airway inflammation.
Collapse
|
12
|
Shimoda T, Obase Y, Nagasaka Y, Asai S. Phenotype classification using the combination of lung sound analysis and fractional exhaled nitric oxide for evaluating asthma treatment. Allergol Int 2018; 67:253-258. [PMID: 29066290 DOI: 10.1016/j.alit.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2017] [Accepted: 09/23/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND We report the utility of combining lung sound analysis and fractional exhaled nitric oxide (FeNO) for phenotype classification of airway inflammation in patients with bronchial asthma. We investigated the usefulness of the combination of the expiration-to-inspiration sound power ratio in the mid-frequency range (E/I MF) of 200-400 Hz and FeNO for comprehensively classifying disease type and evaluating asthma treatment. METHODS A total of 233 patients with bronchial asthma were included. The cutoff values of FeNO and E/I MF were set to 38 ppb and 0.36, respectively, according to a previous study. The patients were divided into 4 subgroups based on the FeNO and E/I MF cutoff values. Respiratory function, the percentages of sputum eosinophils and neutrophils, and patient background characteristics were compared among groups. RESULTS Respiratory function was well controlled in the FeNO low/E/I MF low group (good control). Sputum neutrophil was higher and FEV1,%pred was lower in the FeNO low/E/I MF high group (poor control). History of childhood asthma and atopic asthma were associated with the FeNO high/E/I MF low group (insufficient control). The FeNO high/E/I MF high group corresponded to a longer disease duration, increased blood or sputum eosinophils, and lower FEV1/FVC (poor control). CONCLUSIONS The combination of FeNO and E/I MF assessed by lung sound analysis allows the condition of airway narrowing and the degree of airway inflammation to be assessed in patients with asthma and is useful for evaluating bronchial asthma treatments.
Collapse
|