1
|
Castells M, Madden M, Oskeritzian CA. Mast Cells and Mas-related G Protein-coupled Receptor X2: Itching for Novel Pathophysiological Insights to Clinical Relevance. Curr Allergy Asthma Rep 2024; 25:5. [PMID: 39585499 PMCID: PMC11588779 DOI: 10.1007/s11882-024-01183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Clinical interest in non-IgE activation of mast cells has been growing since the description of the human MRGPRX2 receptor. Its participation in many allergic and inflammatory conditions such as non histaminergic itch, urticaria, asthma and drug hypersensitivity has been growing. We present here an updated review of its structure, expression and biology to help understand conditions and diseases attributed to its activation and/or overpexression and the search for agonists and antagonists of clinical utility. RECENT FINDINGS The description of patients presenting anaphylaxis when exposed to one or multiple MRGPRX2 agonists such as general anesthetics, antibiotics, opiods and other agents has provided evidence of potential heterogeneity in humans. This review provides the most recent developments into the receptor structure, tissue expression and signaling pathways including the potential enhancement of IgE-mediated mast cell activation. New insight into its agonists and antagonists is described and future developments to adress its modulations.
Collapse
Affiliation(s)
- Mariana Castells
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Harvard Medical School, Smith Building, Room 626D, 1 Jimmy Fund Way, Boston, MA, 02115, USA.
| | - Michael Madden
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC, 29209, USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Building 2, Room C10, 6439 Garners Ferry Road, Columbia, SC, 29209, USA.
| |
Collapse
|
2
|
Bawazir M, Sutradhar S, Roy S, Ali H. MRGPRX2 facilitates IgE-mediated systemic anaphylaxis in a newly established knock-in mouse model. J Allergy Clin Immunol 2024:S0091-6749(24)01238-7. [PMID: 39581296 DOI: 10.1016/j.jaci.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND In addition to FcεRI, a subtype of human mast cells (MCs) expresses Mas-related G protein-coupled receptor X2 (MRGPRX2; mouse counterpart MrgprB2). Although MrgprB2 contributes to IgE-mediated passive systemic anaphylaxis (PSA) in vivo, an MRGPRX2 inhibitor, compound 9 (C9), does not block MrgprB2- or IgE-mediated MC degranulation in vitro. OBJECTIVE Our aim was to generate mice expressing human MRGPRX2 to study receptor function in vitro and PSA in vivo. METHODS The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated gene editing approach was utilized to replace endogenous MrgprB2 with human MRGPRX2 in mice (MRGPRX2-KI mice). MRGPRX2 expression in the skin, gingiva, trachea, and colon were evaluated by using an anti-human MRGPRX2 antibody. Peritoneal MCs (PMCs) cultured from wild-type, MRGPRX2-KI, and MrgprB2-/- mice were used to study agonists-induced degranulation. The effects of selective MRGPRX2 inhibitors (C9 and compound 9-6 [C9-6]) on substance P- or IgE-mediated MC degranulation in vitro and IgE-mediated PSA in vivo were tested. RESULTS MRGPRX2-expressing MCs were present in tissues of MRGPRX2-KI mice. Most of the agonists tested induced greater degranulation at lower concentrations in PMCs from MRGPRX2-KI mice than in cells from wild-type mice. Furthermore, C9 and C9-6 inhibited degranulation in MRGPRX2-KI PMCs in response to substance P. In contrast, they had no effect on IgE-mediated degranulation in vitro but did inhibit PSA in MRGPRX2-KI mice in vivo. CONCLUSIONS MRGPRX2-KI mice provide a readily available source of primary MCs for signaling studies. Furthermore, transactivation of MRGPRX2 contributes to IgE-mediated PSA, suggesting that MRGPRX2-KI mice could be utilized as a preclinical model for testing novel therapeutics targeting MRGPRX2 and its cross talk with FcεRI.
Collapse
Affiliation(s)
- Maram Bawazir
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa; Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sangita Sutradhar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Saptarshi Roy
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Hydar Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
3
|
Jia Q, Lv Y, Miao C, Feng J, Ding Y, Zhou T, Han S, He L. A new MAS-related G protein-coupled receptor X2 cell membrane chromatography analysis model based on HALO-tag technology and its applications. Talanta 2024; 268:125317. [PMID: 37879202 DOI: 10.1016/j.talanta.2023.125317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/04/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023]
Abstract
Cell membrane chromatography (CMC) is an effective method for studying receptors with multiple transmembrane structure such as MAS-related G protein-coupled receptor X2 (MrgX2). CMC relies on the maintenance of the complete biological structure of a membrane receptor; however, it needs to be further improved to obtain a more convenient and stable CMC model. In the present study, the haloalkane dehalogenase protein tag (HALO-tag) technology was used to construct a new MrgX2/CMC model. The fusion receptors of MrgX2 with HALO-tag at the C terminus were expressed in HEK293 cells. The silica gel was modified with a substrate of HALO-tag (chloroalkanes) via one-step acylation for the rapid capture of fusion receptors. The new CMC model (MrgX2-HALO-tag/CMC model) was not only quicker to prepare but also more stable and had a longer lifespan than a previous MrgX2-SNAP-tag/CMC model. In combination with the high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) system, the MrgX2-HALO-tag/CMC model was used to screen and identify bioactive components in traditional Chinese medicine. Using this combination, sanggenon C and morusin were identified from Mori Cortex as anti-pseudo-allergic components. The MrgX2-HALO-tag/CMC model alone was also applied to analyze ligand-receptor interaction. The affinity order of four ligands to MrgX2 was as follows: desipramine < imipramine < amitriptyline < clomipramine. This was consistent with the results obtained using the MrgX2-SNAP-tag/CMC model. The MrgX2-HALO-tag/CMC model provides ideas and application prospects for the immobilization of cell membrane that contains receptors with more transmembrane structures.
Collapse
Affiliation(s)
- Qianqian Jia
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Yanni Lv
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Chenyang Miao
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Jingting Feng
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Yifan Ding
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Tongpei Zhou
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China
| | - Shengli Han
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China.
| | - Langchong He
- School of Pharmacy, Xi'an Jiaotong University, 76# Yanta West Road, Xi'an, 710061, China; Institute of Pharmaceutical Science and Technology, Western China Science &Technology Innovation Harbour, Xi'an, 710115, China.
| |
Collapse
|
4
|
Baldo BA. MRGPRX2, drug pseudoallergies, inflammatory diseases, mechanisms and distinguishing MRGPRX2- and IgE/FcεRI-mediated events. Br J Clin Pharmacol 2023; 89:3232-3246. [PMID: 37430437 DOI: 10.1111/bcp.15845] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
MRGPRX2, a novel Gaq -coupled human mast cell receptor, mediates non-immune adverse reactions without the involvement of antibody priming. Constitutively expressed by human skin mast cells, MRGPRX2 modulates cell degranulation producing pseudoallergies manifesting as itch, inflammation and pain. The term pseudoallergy is defined in relation to adverse drug reactions in general and immune/non-immune-mediated reactions in particular. A list of drugs with MRGPRX2 activity is presented, including a detailed examination of three important and widely used approved therapies: neuromuscular blockers, quinolones and opioids. For the clinician, the significance of MRGPRX2 is considered as an aid in distinguishing and ultimately identifying specific immune and non-immune inflammatory reactions. Anaphylactoid/anaphylactic reactions, neurogenic inflammation and inflammatory diseases with a clear or strongly suspected association with MRGPRX2 activation are examined. Inflammatory diseases include chronic urticaria, rosacea, atopic dermatitis, allergic contact dermatitis, mastocytosis, allergic asthma, ulcerative colitis and rheumatoid arthritis. MRGPRX2- and allergic IgE/FcεRI-mediated reactions may be clinically similar. Importantly, the usual testing procedures do not distinguish the two mechanisms. Currently, identification of MRGPRX2 activation and diagnosis of pseudoallergic reactions is generally viewed as a process of exclusion once other non-immune and immune processes, particularly IgE/FcεRI-mediated degranulation of mast cells, are ruled out. This does not take into account that MRGPRX2 signals via β-arrestin, which can be utilized to detect MRGPRX2 activation by employing MRGPRX2 transfected cells to assess MRGPRX2 activation via two pathways, the G-protein-independent β-arrestin pathway and the G-protein-dependent Ca2+ pathway. Testing procedures, interpretations for distinguishing mechanisms, patient diagnosis, agonist identification and drug safety evaluations are addressed.
Collapse
Affiliation(s)
- Brian A Baldo
- Royal North Shore Hospital of Sydney, Kolling Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Gutowski Ł, Kanikowski S, Formanowicz D. Mast Cell Involvement in the Pathogenesis of Selected Musculoskeletal Diseases. Life (Basel) 2023; 13:1690. [PMID: 37629547 PMCID: PMC10455104 DOI: 10.3390/life13081690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, there has been a noteworthy revival of interest in the function of mast cells (MCs) in the human body. It is now acknowledged that MCs impact a wide array of processes beyond just allergies, leading to a shift in research direction. Unfortunately, some earlier conclusions were drawn from animal models with flawed designs, particularly centered around the receptor tyrosine kinase (Kit) pathway. Consequently, several subsequent findings may have been unreliable. Thus, what is now required is a re-examination of these earlier findings. Nevertheless, the remaining data are fascinating and hold promise for a better comprehension of numerous diseases and the development of more effective therapies. As the field continues to progress, many intriguing issues warrant further investigation and analysis. For instance, exploring the bidirectional action of MCs in rheumatoid arthritis, understanding the extent of MCs' impact on symptoms associated with Ehlers-Danlos syndrome, and unraveling the exact role of the myofibroblast-mast cell-neuropeptides axis in the joint capsule during post-traumatic contractures are all captivating areas for exploration. Hence, in this review, we summarize current knowledge regarding the influence of MCs on the pathogenesis of selected musculoskeletal diseases, including rheumatoid arthritis, spondyloarthritis, psoriatic arthritis, gout, muscle and joint injuries, tendinopathy, heterotopic ossification, and Ehlers-Danlos syndrome. We believe that this review will provide in-depth information that can guide and inspire further research in this area.
Collapse
Affiliation(s)
- Łukasz Gutowski
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Szymon Kanikowski
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland
| |
Collapse
|
6
|
Safwat A, Helmy A, Gupta A. The Role of Substance P Within Traumatic Brain Injury and Implications for Therapy. J Neurotrauma 2023; 40:1567-1583. [PMID: 37132595 DOI: 10.1089/neu.2022.0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
This review examines the role of the neuropeptide substance P within the neuroinflammation that follows traumatic brain injury. It examines it in reference to its preferential receptor, the neurokinin-1 receptor, and explores the evidence for antagonism of this receptor in traumatic brain injury with therapeutic intent. Expression of substance P increases following traumatic brain injury. Subsequent binding to the neurokinin-1 receptor results in neurogenic inflammation, a cause of deleterious secondary effects that include an increased intracranial pressure and poor clinical outcome. In several animal models of TBI, neurokinin-1 receptor antagonism has been shown to reduce brain edema and the resultant rise in intracranial pressure. A brief overview of the history of substance P is presented, alongside an exploration into the chemistry of the neuropeptide with a relevance to its functions within the central nervous system. This review summarizes the scientific and clinical rationale for substance P antagonism as a promising therapy for human TBI.
Collapse
Affiliation(s)
- Adam Safwat
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Arun Gupta
- Neurosciences Critical Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
7
|
Kouroupis D, Kaplan LD, Huard J, Best TM. CD10-Bound Human Mesenchymal Stem/Stromal Cell-Derived Small Extracellular Vesicles Possess Immunomodulatory Cargo and Maintain Cartilage Homeostasis under Inflammatory Conditions. Cells 2023; 12:1824. [PMID: 37508489 PMCID: PMC10377825 DOI: 10.3390/cells12141824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The onset and progression of human inflammatory joint diseases are strongly associated with the activation of resident synovium/infrapatellar fat pad (IFP) pro-inflammatory and pain-transmitting signaling. We recently reported that intra-articularly injected IFP-derived mesenchymal stem/stromal cells (IFP-MSC) acquire a potent immunomodulatory phenotype and actively degrade substance P (SP) via neutral endopeptidase CD10 (neprilysin). Our hypothesis is that IFP-MSC robust immunomodulatory therapeutic effects are largely exerted via their CD10-bound small extracellular vesicles (IFP-MSC sEVs) by attenuating synoviocyte pro-inflammatory activation and articular cartilage degradation. Herein, IFP-MSC sEVs were isolated from CD10High- and CD10Low-expressing IFP-MSC cultures and their sEV miRNA cargo was assessed using multiplex methods. Functionally, we interrogated the effect of CD10High and CD10Low sEVs on stimulated by inflammatory/fibrotic cues synoviocyte monocultures and cocultures with IFP-MSC-derived chondropellets. Finally, CD10High sEVs were tested in vivo for their therapeutic capacity in an animal model of acute synovitis/fat pad fibrosis. Our results showed that CD10High and CD10Low sEVs possess distinct miRNA profiles. Reactome analysis of miRNAs highly present in sEVs showed their involvement in the regulation of six gene groups, particularly those involving the immune system. Stimulated synoviocytes exposed to IFP-MSC sEVs demonstrated significantly reduced proliferation and altered inflammation-related molecular profiles compared to control stimulated synoviocytes. Importantly, CD10High sEV treatment of stimulated chondropellets/synoviocyte cocultures indicated significant chondroprotective effects. Therapeutically, CD10High sEV treatment resulted in robust chondroprotective effects by retaining articular cartilage structure/composition and PRG4 (lubricin)-expressing cartilage cells in the animal model of acute synovitis/IFP fibrosis. Our study suggests that CD10High sEVs possess immunomodulatory miRNA attributes with strong chondroprotective/anabolic effects for articular cartilage in vivo. The results could serve as a foundation for sEV-based therapeutics for the resolution of detrimental aspects of immune-mediated inflammatory joint changes associated with conditions such as osteoarthritis (OA).
Collapse
Affiliation(s)
- Dimitrios Kouroupis
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
- Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lee D. Kaplan
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA;
| | - Thomas M. Best
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, FL 33146, USA (T.M.B.)
| |
Collapse
|
8
|
MAS-related G protein-coupled receptors X (MRGPRX): Orphan GPCRs with potential as targets for future drugs. Pharmacol Ther 2022; 238:108259. [DOI: 10.1016/j.pharmthera.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
|
9
|
Chumasov EI, Petrova ES, Korzhevskii DE. Morphological Signs of Neurogenic Inflammation in the Heart of Rats during Aging. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s2079057022020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Chompunud Na Ayudhya C, Ali H. Mas-Related G Protein–Coupled Receptor-X2 and Its Role in Non-immunoglobulin E–Mediated Drug Hypersensitivity. Immunol Allergy Clin North Am 2022; 42:269-284. [PMID: 35469618 PMCID: PMC9674431 DOI: 10.1016/j.iac.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A diverse group of Food and Drug Administration-approved cationic drugs including antibiotics, neuromuscular blocking drugs, opioids, antidepressants, and radiocontrast media activate mast cells and cause hypersensitivity reactions by both an immunoglobulin E IgE-dependent and independent manner. The recent discovery that these drugs activate mast cells via the G protein-coupled receptor known as Mas-related GPCR-X2 (MRGPRX2) has represented a paradigm shift of how drug hypersensitivity reactions are viewed. This article provides an overview of the current status of the role of MRGPRX2 on non-IgE-mediated drug hypersensitivity. Potential risk factors and evaluation for suspected MRGPRX2-mediated drug reactions are also discussed.
Collapse
Affiliation(s)
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Ko KR, Lee H, Han SH, Ahn W, Kim DK, Kim IS, Jung BS, Lee S. Substance P, A Promising Therapeutic Target in Musculoskeletal Disorders. Int J Mol Sci 2022; 23:ijms23052583. [PMID: 35269726 PMCID: PMC8910130 DOI: 10.3390/ijms23052583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
A large number of studies have focused on the role of substance P (SP) and the neurokinin-1 receptor (NK1R) in the pathogenesis of a variety of medical conditions. This review provides an overview of the role of the SP-NK1R pathway in the pathogenesis of musculoskeletal disorders and the evidence for its role as a therapeutic target for these disorders, which are major public health problems in most countries. To summarize, the brief involvement of SP may affect tendon healing in an acute injury setting. SP combined with an adequate conjugate can be a regenerative therapeutic option in osteoarthritis. The NK1R antagonist is a promising agent for tendinopathy, rheumatoid arthritis, and osteoarthritis. Research on the SP-NK1R pathway will be helpful for developing novel drugs for osteoporosis.
Collapse
Affiliation(s)
- Kyung Rae Ko
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (K.R.K.); (I.-S.K.)
| | - Hyunil Lee
- Department of Orthopedic Surgery, Ilsan Paik Hospital, Inje University, 170 Juhwa-ro, Ilsanseo-gu, Goyang-si 10380, Gyeonggi-do, Korea;
| | - Soo-Hong Han
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Wooyeol Ahn
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Do Kyung Kim
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
| | - Il-Su Kim
- Department of Orthopedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea; (K.R.K.); (I.-S.K.)
| | - Bo Sung Jung
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
- Correspondence: (B.S.J.); (S.L.); Tel.: +82-31-780-5289 (B.S.J. & S.L.); Fax: +82-31-881-7114 (B.S.J. & S.L.)
| | - Soonchul Lee
- Department of Orthopedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Korea; (S.-H.H.); (W.A.); (D.K.K.)
- Correspondence: (B.S.J.); (S.L.); Tel.: +82-31-780-5289 (B.S.J. & S.L.); Fax: +82-31-881-7114 (B.S.J. & S.L.)
| |
Collapse
|
12
|
Li R, Chen S, Gu X, An S, Wang Z. Role of the nuclear receptor subfamily 4a in mast cells in the development of irritable bowel syndrome. Comput Struct Biotechnol J 2022; 20:1198-1207. [PMID: 35317226 PMCID: PMC8907967 DOI: 10.1016/j.csbj.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022] Open
Abstract
The activation of mast cells (MCs) and mediator release are closely related to the pathophysiology of irritable bowel syndrome (IBS). However, the exact underlying mechanisms are still not completely understood. The nuclear receptor subfamily 4a (Nr4a) is a family of orphan nuclear receptors implicated in regulating MC activation, degranulation, cytokine/chemokine synthesis and release. Acute and chronic stress trigger hypothalamic–pituitaryadrenal axis (HPA) activation to induce the release of corticotropin-releasing hormone (CRH), resulting in MC activation and induction of the Nr4a family. Our newest data showed that Nr4a members were specially over-expressed in colonic MCs of the chronic water-avoidance stress (WAS)-induced visceral hyperalgesia mice, suggesting that Nr4a members might be involved in the pathophysiology of visceral hypersensitivity. In this review, we highlight the present knowledge on roles of Nr4a members in the activation of MCs and the pathophysiology of IBS, and discuss signaling pathways that modulate the activation of Nr4a family members. We propose that a better understanding of Nr4a members and their modulators may facilitate the development of more selective and effective therapies to treat IBS patients.
Collapse
Affiliation(s)
| | | | | | - Shuhong An
- Corresponding authors at: Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian 271000, China.
| | - Zhaojin Wang
- Corresponding authors at: Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, 2 Ying Sheng Dong Lu, Taian 271000, China.
| |
Collapse
|
13
|
Single-Cell RNA-Sequencing Identifies Infrapatellar Fat Pad Macrophage Polarization in Acute Synovitis/Fat Pad Fibrosis and Cell Therapy. Bioengineering (Basel) 2021; 8:bioengineering8110166. [PMID: 34821732 PMCID: PMC8615266 DOI: 10.3390/bioengineering8110166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis and progression of knee inflammatory pathologies is modulated partly by residing macrophages in the infrapatellar fat pad (IFP), thus, macrophage polarization towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes is important in joint disease pathologies. Alteration of M1/M2 balance contributes to the initiation and progression of joint inflammation and can be potentially altered with mesenchymal stem cell (MSC) therapy. In an acute synovial/IFP inflammation rat model a single intra-articular injection of IFP-MSC was performed, having as controls (1) diseased rats not receiving IFP-MSC and (2) non-diseased rats. After 4 days, cell specific transcriptional profiling via single-cell RNA-sequencing was performed on isolated IFP tissue from each group. Eight transcriptomically distinct cell populations were identified within the IFP across all three treatment groups with a noted difference in the proportion of myeloid cells across the groups. Largely myeloid cells consisted of macrophages (>90%); one M1 sub-cluster highly expressing pro-inflammatory markers and two M2 sub-clusters with one of them expressing higher levels of canonical M2 markers. Notably, the diseased samples (11.9%) had the lowest proportion of cells expressing M2 markers relative to healthy (14.8%) and MSC treated (19.4%) samples. These results suggest a phenotypic polarization of IFP macrophages towards the pro-inflammatory M1 phenotype in an acute model of inflammation, which are alleviated by IFP-MSC therapy inducing a switch towards an alternate M2 status. Understanding the IFP cellular heterogeneity and associated transcriptional programs may offer insights into novel therapeutic strategies for disabling joint disease pathologies.
Collapse
|
14
|
Ogasawara H, Noguchi M. Therapeutic Potential of MRGPRX2 Inhibitors on Mast Cells. Cells 2021; 10:cells10112906. [PMID: 34831128 PMCID: PMC8616451 DOI: 10.3390/cells10112906] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Mast cells (MCs) act as primary effectors in inflammatory and allergic reactions by releasing intracellularly-stored inflammatory mediators in diseases. The two major pathways for MC activation are known to be immunoglobulin E (IgE)-dependent and -independent. Although IgE-dependent signaling is the main pathway to MC activation, IgE-independent pathways have also been found to serve pivotal roles in the pathophysiology of various inflammatory conditions. Recent studies have shown that human and mouse MCs express several regulatory receptors such as toll-like receptors (TLRs), CD48, C300a, and GPCRs, including mas-related GPCR-X2 (MRGPRX2). MRGPRX2 has been reported as a novel GPCR that is expressed in MCs activated by basic secretagogues, neurokinin peptides, host defense antimicrobial peptides, and small molecule compounds (e.g., neuromuscular blocking agents) and leads to MC degranulation and eicosanoids release under in vitro experimental condition. Functional analyses of MRGPRX2 and Mrgprb2 (mouse ortholog) indicate that MRGPRX2 is involved in MC hypersensitivity reactions causing neuroinflammation such as postoperative pain, type 2 inflammation, non-histaminergic itch, and drug-induced anaphylactic-like reactions. In this review, we discuss the roles in innate immunity through functional studies on MRGPRX2-mediated IgE-independent MC activation and also the therapeutic potential of MRGPRX2 inhibitors on allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Hiroyuki Ogasawara
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan;
- Correspondence: ; Tel.: +81-45-786-7690
| | - Masato Noguchi
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Yokohama 236-0004, Japan;
- Office of Research Development and Sponsored Projects, Shinanomachi Campus, Keio University, Tokyo 160-8582, Japan
| |
Collapse
|
15
|
Nishimori N, Toyoshima S, Sasaki-Sakamoto T, Hayama K, Terui T, Okayama Y. Serum level of hemokinin-1 is significantly lower in patients with chronic spontaneous urticaria than in healthy subjects. Allergol Int 2021; 70:480-488. [PMID: 34090787 DOI: 10.1016/j.alit.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND We previously reported upregulation of expression of Mas-related G protein-coupled receptor X2 (MRGPRX2) on mast cells (MCs) in the skin of patients with severe chronic spontaneous urticaria (CSU). Serum levels of substance P (SP) were reportedly significantly elevated, in correlation with the severity of CSU. Hemokinin-1 (HK-1) reportedly induced histamine release from LAD2 cells via MRGPRX2. We aimed to investigate HK-1's role in CSU. METHODS The concentrations of HK-1 and SP were measured using ELISAs. Skin- and synovium-derived cultured MCs were generated by culturing dispersed skin and synovial cells, respectively, with stem cell factor. MRGPRX2 expression in the MCs was reduced using a lentiviral shRNA silencing technique. RESULTS Anti-SP Ab used in the SP ELISA showed 100% cross-reactivity to HK-1, but anti-HK-1 Ab showed 0% cross-reactivity to SP. The serum level of HK-1 was significantly lower in patients with CSU (n = 151) than in non-atopic healthy control (NC) subjects (n = 114). The EC50 of histamine release from MCs induced by HK-1 (5056 nM) was 12-fold higher than by SP (426 nM). Brief pretreatment of MCs with HK-1 at concentrations of 3.0-10 μM significantly reduced histamine release by 0.1 μM SP. However, brief incubation of MCs with HK-1 did not elicit rapid MRGPRX2 internalization. CONCLUSIONS In NC subjects, high HK-1 concentrations may desensitize MGRPRX2-mediated MC activation, thereby preventing MC degranulation by SP.
Collapse
|
16
|
Fang S, Xu X, Zhong L, Wang AQ, Gao WL, Lu M, Yin ZS. Bioinformatics-based study to identify immune infiltration and inflammatory-related hub genes as biomarkers for the treatment of rheumatoid arthritis. Immunogenetics 2021; 73:435-448. [PMID: 34477936 DOI: 10.1007/s00251-021-01224-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease whose principal pathological change is aggressive chronic synovial inflammation; however, the specific etiology and pathogenesis have not been fully elucidated. We downloaded the synovial tissue gene expression profiles of four human knees from the Gene Expression Omnibus database, analyzed the differentially expressed genes in the normal and RA groups, and assessed their enrichment in functions and pathways using bioinformatics methods and the STRING online database to establish protein-protein interaction networks. Cytoscape software was used to obtain 10 hub genes; receiver operating characteristic (ROC) curves were calculated for each hub gene and differential expression analysis of the two groups of hub genes. The CIBERSORT algorithm was used to impute immune infiltration. We identified the signaling pathways that play important roles in RA and 10 hub genes: Ccr1, Ccr2, Ccr5, Ccr7, Cxcl5, Cxcl6, Cxcl13, Ccl13, Adcy2, and Pnoc. The diagnostic value of these 10 hub genes for RA was confirmed using ROC curves and expression analysis. Adcy2, Cxcl13, and Ccr5 are strongly associated with RA development. The study also revealed that the differential infiltration profile of different inflammatory immune cells in the synovial tissue of RA is an extremely critical factor in RA progression. This study may contribute to the understanding of signaling pathways and biological processes associated with RA and the role of inflammatory immune infiltration in the pathogenesis of RA. In addition, this study shows that Adcy2, Cxcl13, and Ccr5 have the potential to be biomarkers for RA treatment.
Collapse
Affiliation(s)
- Sheng Fang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China
| | - Xin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China
| | - Lin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China.,Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, 390 Huaihe Road, Hefei, Anhui Province, 230061, People's Republic of China
| | - An-Quan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China
| | - Wei-Lu Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China
| | - Ming Lu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, People's Republic of China.
| |
Collapse
|
17
|
Syed M, Kammala AK, Callahan B, Oskeritzian CA, Subramanian H. Lactic acid suppresses MRGPRX2 mediated mast cell responses. Cell Immunol 2021; 368:104422. [PMID: 34399172 DOI: 10.1016/j.cellimm.2021.104422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023]
Abstract
MAS related G-protein coupled receptor X2 (MRGPRX2) is a G-protein coupled receptor (GPCR) expressed in human mast cells that has been implicated to play an important role in causing pseudo-allergic reactions as well as exacerbating inflammation during asthma and other allergic diseases. Lactic acid, a byproduct of glucose metabolism, is abundantly present in inflamed tissues and has been shown to regulate functions of several immune cells. Because the endogenous ligands for MRGPRX2 (substance P and LL-37) are elevated during pathologic conditions, such as cancer and asthma, and given that lactic acid levels are also enhanced in these patients, we explored the role of lactic acid in regulating mast cells response via MRGPRX2 and MrgprB2, the mouse orthologue of the human receptor. We found that lactic acid suppressed both the early (Ca2+ mobilization and degranulation) and late (chemokine/cytokine release) phases of mast cell activation; this data was confirmed in LAD2, human skin and mouse peritoneal mast cells. In LAD2 cells, the reduction in degranulation and chemokine/cytokine production mediated by lactic acid was dependent on pH. In agreement with our in vitro studies, lactic acid also reduced passive systemic anaphylaxis to compound 48/80 (a known MRGPRX2/MrgprB2 ligand) and skin inflammation in a mouse model of rosacea that is dependent on MrgprB2 expression on skin mast cells. Our data thus suggest that lactic acid may serve to inhibit mast cell-mediated inflammation during asthma and reduce immune response during cancer by affecting mast cell activation through MRGPRX2.
Collapse
Affiliation(s)
- Meesum Syed
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
| | - Ananth K Kammala
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
| | - Brianna Callahan
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, United States
| | - Hariharan Subramanian
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
18
|
Roy S, Chompunud Na Ayudhya C, Thapaliya M, Deepak V, Ali H. Multifaceted MRGPRX2: New insight into the role of mast cells in health and disease. J Allergy Clin Immunol 2021; 148:293-308. [PMID: 33957166 PMCID: PMC8355064 DOI: 10.1016/j.jaci.2021.03.049] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Cutaneous mast cells (MCs) express Mas-related G protein-coupled receptor-X2 (MRGPRX2; mouse ortholog MrgprB2), which is activated by an ever-increasing number of cationic ligands. Antimicrobial host defense peptides (HDPs) generated by keratinocytes contribute to host defense likely by 2 mechanisms, one involving direct killing of microbes and the other via MC activation through MRGPRX2. However, its inappropriate activation may cause pseudoallergy and likely contribute to the pathogenesis of rosacea, atopic dermatitis, allergic contact dermatitis, urticaria, and mastocytosis. Gain- and loss-of-function missense single nucleotide polymorphisms in MRGPRX2 have been identified. The ability of certain ligands to serve as balanced or G protein-biased agonists has been defined. Small-molecule HDP mimetics that display both direct antimicrobial activity and activate MCs via MRGPRX2 have been developed. In addition, antibodies and reagents that modulate MRGPRX2 expression and signaling have been generated. In this article, we provide a comprehensive update on MrgprB2 and MRGPRX2 biology. We propose that harnessing MRGPRX2's host defense function by small-molecule HDP mimetics may provide a novel approach for the treatment of antibiotic-resistant cutaneous infections. In contrast, MRGPRX2-specific antibodies and inhibitors could be used for the modulation of allergic and inflammatory diseases that are mediated via this receptor.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Chalatip Chompunud Na Ayudhya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Monica Thapaliya
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Vishwa Deepak
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pa.
| |
Collapse
|
19
|
Falduto GH, Pfeiffer A, Luker A, Metcalfe DD, Olivera A. Emerging mechanisms contributing to mast cell-mediated pathophysiology with therapeutic implications. Pharmacol Ther 2020; 220:107718. [PMID: 33130192 DOI: 10.1016/j.pharmthera.2020.107718] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Mast cells are tissue-resident immune cells that play key roles in the initiation and perpetuation of allergic inflammation, usually through IgE-mediated mechanisms. Mast cells are, however, evolutionary ancient immune cells that can be traced back to urochordates and before the emergence of IgE antibodies, suggesting their involvement in antibody-independent biological functions, many of which are still being characterized. Herein, we summarize recent advances in understanding the roles of mast cells in health and disease, partly through the study of emerging non-IgE receptors such as the Mas-related G protein-coupled receptor X2, implicated in pseudo-allergic reactions as well as in innate defense and neuronal sensing; the mechano-sensing adhesion G protein-coupled receptor E2, variants of which are associated with familial vibratory urticaria; and purinergic receptors, which orchestrate tissue damage responses similarly to the IL-33 receptor. Recent evidence also points toward novel mechanisms that contribute to mast cell-mediated pathophysiology. Thus, in addition to releasing preformed mediators contained in granules and synthesizing mediators de novo, mast cells also secrete extracellular vesicles, which convey biological functions. Understanding their release, composition and uptake within a variety of clinical conditions will contribute to the understanding of disease specific pathology and likely lead the way to novel therapeutic approaches. We also discuss recent advances in the development of therapies targeting mast cell activity, including the ligation of inhibitory ITIM-containing receptors, and other strategies that suppress mast cells or responses to mediators for the management of mast cell-related diseases.
Collapse
Affiliation(s)
- Guido H Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Luker
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Kühn H, Kolkhir P, Babina M, Düll M, Frischbutter S, Fok JS, Jiao Q, Metz M, Scheffel J, Wolf K, Kremer AE, Maurer M. Mas-related G protein-coupled receptor X2 and its activators in dermatologic allergies. J Allergy Clin Immunol 2020; 147:456-469. [PMID: 33071069 DOI: 10.1016/j.jaci.2020.08.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The Mas-related G protein-coupled receptor X2 (MRGPRX2) is a multiligand receptor responding to various exogenous and endogenous stimuli. Being highly expressed on skin mast cells, MRGPRX2 triggers their degranulation and release of proinflammatory mediators, and it promotes multicellular signaling cascades, such as itch induction and transmission in sensory neurons. The expression of MRGPRX2 by skin mast cells and the levels of the MRGPRX2 agonists (eg, substance P, major basic protein, eosinophil peroxidase) are upregulated in the serum and/or skin of patients with inflammatory and pruritic skin diseases, such as chronic spontaneous urticaria or atopic dermatitis. Therefore, MRGPRX2 and its agonists might be potential biomarkers for the progression of cutaneous inflammatory diseases and the response to treatment. In addition, they may represent promising targets for prevention and treatment of signs and symptoms in patients with skin diseases or drug reactions. To assess this possibility, this review explores the role and relevance of MRGPRX2 and its activators in cutaneous inflammatory disorders and chronic pruritus.
Collapse
Affiliation(s)
- Helen Kühn
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pavel Kolkhir
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; I.M. Sechenov First Moscow State Medical University (Sechenov University), Division of Immune-mediated Skin Diseases, Moscow, Russia
| | - Magda Babina
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Miriam Düll
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jie Shen Fok
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Respiratory Medicine, Box Hill Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Qingqing Jiao
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Martin Metz
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Wolf
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
21
|
Khorasani S, Boroumand N, Lavi Arab F, Hashemy SI. The immunomodulatory effects of tachykinins and their receptors. J Cell Biochem 2020; 121:3031-3041. [PMID: 32115751 DOI: 10.1002/jcb.29668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/16/2020] [Indexed: 12/26/2022]
Abstract
Tachykinins (TKs) are a family of neuropeptides mainly expressed by neuronal and non-neuronal cell types, especially immune cells. Expression of TKs receptors on immune cell surfaces, their involvement in immune-related disorders, and therefore, understanding their immunomodulatory roles have become of particular interest to researchers. In fact, the precise understanding of TKs intervention in the immune system would help to design novel therapeutic approaches for patients suffering from immune disorders. The present review summarizes studies on TKs function as modulators of the immune system by reviewing their roles in generation, activation, development, and migration of immune cells. Also, it discusses TKs involvement in three main cellular mechanisms including inflammation, apoptosis, and proliferation.
Collapse
Affiliation(s)
- Sahar Khorasani
- Ferdows Paramedical School, Birjand University of Medical Sciences, Birjand, Iran
| | - Nadia Boroumand
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Occhiuto CJ, Kammala AK, Yang C, Nellutla R, Garcia M, Gomez G, Subramanian H. Store-Operated Calcium Entry via STIM1 Contributes to MRGPRX2 Induced Mast Cell Functions. Front Immunol 2020; 10:3143. [PMID: 32038646 PMCID: PMC6985555 DOI: 10.3389/fimmu.2019.03143] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Mast cells are inflammatory immune cells that play an essential role in mediating allergic reactions in humans. It is well-known that mast cell activation is critically regulated by intracellular calcium ion (Ca2+) concentrations. MAS-related G-protein coupled receptor-X2 (MRGPRX2) is a G-protein coupled receptor (GPCR) expressed on mast cells that is activated by various ligands, including several FDA approved drugs; consequently, this receptor has been implicated in causing pseudo-allergic reactions in humans. MRGPRX2 activation leads to an increase in intracellular Ca2+ levels; however, the Ca2+ mobilizing mechanisms utilized by this receptor are largely unknown. Previous reports showed that store-operated Ca2+ entry (SOCE) via the calcium sensor, stromal interaction molecule 1 (STIM1), regulates mast cell response induced by the high-affinity IgE receptor (FcεRI). In this study, using complementary pharmacologic and genetic ablation approaches we demonstrate that SOCE through STIM1 promotes MRGPRX2-induced human mast cell response in vitro. Importantly, SOCE also critically modulates MrgprB2 (mouse ortholog of human MRGPRX2) dependent inflammation in in vivo mouse models of pseudo-allergy. Collectively, our data suggests that MRGPRX2/MrgprB2 activation of mast cells is dependent on SOCE via STIM1, and further characterization of the MRGPRX2-SOCE-STIM1 pathway will lead to the identification of novel targets for the treatment of pseudo-allergic reactions in humans.
Collapse
Affiliation(s)
| | - Ananth K Kammala
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Canchai Yang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Rithvik Nellutla
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Marco Garcia
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Hariharan Subramanian
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
23
|
Min HK, Kim KW, Lee SH, Kim HR. Roles of mast cells in rheumatoid arthritis. Korean J Intern Med 2020; 35:12-24. [PMID: 31722515 PMCID: PMC6960056 DOI: 10.3904/kjim.2019.271] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory arthritis, and the complex interaction and activation of innate and adaptive immune cells are involved in RA pathogenesis. Mast cells (MCs) are one of the tissue-resident innate immune cells, and they contribute to RA pathogenesis. In the present review, the evidence of the pathologic role of MC in RA is discussed based on human and animal data. In addition, the potential role of MC in RA pathogenesis and the research area that should be focused on in the future are suggested.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Kyoung-Woon Kim
- Conversant Research Consortium in Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Sang-Heon Lee
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- Correspondence to Hae-Rim Kim, M.D. Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea Tel: +82-2-2030-7542, Fax: +82-2-2030-7728, E-mail:
| |
Collapse
|
24
|
Eapen PM, Rao CM, Nampoothiri M. Crosstalk between neurokinin receptor signaling and neuroinflammation in neurological disorders. Rev Neurosci 2019; 30:233-243. [PMID: 30260793 DOI: 10.1515/revneuro-2018-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022]
Abstract
The neurokinin 1 receptor with the natural substrate substance P is one of the intensely studied receptors among the neurokinin receptors. The intracellular signaling mechanism uses G protein-coupled transduction regulating various physiological processes from nausea to Alzheimer's disease. The neurokinin 1 receptor plays a significant role in neuroinflammation-mediated alterations in neural circuitry. Neurokinin 1 receptor antagonists are selective, potent and exhibited efficacy in animal models of nervous system disorders. Evolving data now strengthen the viewpoint of brain substance P/neurokinin 1 receptor axis-mediated action in neural circuit dysfunction. Thus, a deep-rooted analysis of disease mechanism in which the neurokinin 1 receptor is involved is necessary for augmenting disease models which encourage the pharmaceutical industry to intensify the research pipeline. This review is an attempt to outline the concept of neurokinin 1 receptor signaling interlinked to the brain innate immune system. We also uncover the mechanisms of the neurokinin 1 receptor involved in neurological disorder and various methods of modulating the neurokinin 1 receptor, which may result in therapeutic action.
Collapse
Affiliation(s)
- Prasanth M Eapen
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chamallamudi Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
25
|
Varricchi G, Pecoraro A, Loffredo S, Poto R, Rivellese F, Genovese A, Marone G, Spadaro G. Heterogeneity of Human Mast Cells With Respect to MRGPRX2 Receptor Expression and Function. Front Cell Neurosci 2019; 13:299. [PMID: 31333418 PMCID: PMC6616107 DOI: 10.3389/fncel.2019.00299] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Mast cells and their mediators play a role in the control of homeostasis and in the pathogenesis of several disorders. The concept of rodent mast cell heterogeneity, initially established in the mid-1960s has been extended in humans. Human mast cells isolated and purified from different anatomic sites can be activated via aggregation of cell surface high affinity IgE receptors (FcεRI) by antigens, superantigens, anti-IgE, and anti-FcεRI. MAS-related G protein-coupled receptor-X2 (MRGPRX2) is expressed at high level in human skin mast cells (MCs) (HSMCs), synovial MCs (HSyMCs), but not in lung MCs (HLMCs). MRGPX2 can be activated by neuropeptide substance P, several opioids, cationic drugs, and 48/80. Substance P (5 × 10−7 M – 5 × 10−6 M) induced histamine and tryptase release from HSMCs and to a lesser extent from HSyMCs, but not from HLMCs and human cardiac MCs (HHMCs). Morphine (10−5 M – 3 × 10−4 M) selectively induced histamine and tryptase release from HSMCs, but not from HLMCs and HHMCs. SP and morphine were incomplete secretagogues because they did not induce the de novo synthesis of arachidonic acid metabolites from human mast cells. In the same experiments anti-IgE (3 μg/ml) induced the release of histamine and tryptase and the de novo synthesis of prostaglandin D2 (PGD2) from HLMCs, HHMCs, HSyMCs, and HSMCs. By contrast, anti-IgE induced the production of leukotriene C4 (LTC4) from HLMCs, HHMCs, HSyMCs, but not from HSMCs. These results are compatible with the heterogeneous expression and function of MRGPRX2 receptor on primary human mast cells isolated from different anatomic sites.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Felice Rivellese
- Center for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Arturo Genovese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
26
|
Rivellese F, Rossi FW, Galdiero MR, Pitzalis C, de Paulis A. Mast Cells in Early Rheumatoid Arthritis. Int J Mol Sci 2019; 20:ijms20082040. [PMID: 31027208 PMCID: PMC6515166 DOI: 10.3390/ijms20082040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by inflammation of the synovial membrane, with thickening of the synovial layer, cellular hyperplasia, and infiltration of immune cells. Mast cells (MCs) are cells of the innate immunity present in healthy synovia and part of the cellular hyperplasia characterizing RA synovitis. Although their presence in synovia has been well described, the exact functions and the correlation of MCs with disease development and progression have been debated, particularly because of contradictory data obtained in animal models and from patients with longstanding disease. Here, we present a revision of the literature on MCs in RA, including the most recent observations obtained from patients with early RA, indicating MCs as relevant markers of disease severity in early RA.
Collapse
Affiliation(s)
- Felice Rivellese
- William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
| | - Costantino Pitzalis
- William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
27
|
Contribution of Infrapatellar Fat Pad and Synovial Membrane to Knee Osteoarthritis Pain. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6390182. [PMID: 31049352 PMCID: PMC6462341 DOI: 10.1155/2019/6390182] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is the most common form of joint disease and a major cause of pain and disability in the adult population. Interestingly, there are patients with symptomatic OA displaying pain, while patients with asymptomatic OA that do not experience pain but show radiographic signs of joint damage. Pain is a complex experience integrating sensory, affective, and cognitive processes related to several peripheral and central nociceptive factors besides inflammation. During the last years, the role of infrapatellar fat pad (IFP), other than the synovial membrane, has been investigated as a potential source of pain in OA. Interestingly, new findings suggest that IFP and synovial membrane might act as a functional unit in OA pathogenesis and pain. The present review discuss the role of IFP and synovial membrane in the development of OA, with a particular focus on pain onset and the possible involved mediators that may play a role in OA pathology and pain mechanisms. Inflammation of IFP and synovial membrane may drive peripheral and central sensitization in KOA. Since sensitization is associated with pain severity in knee OA and may potentially contribute to the transition from acute to chronic, persistent pain in knee OA, preventing sensitization would be a potentially effective and novel means of preventing worsening of pain in knee OA.
Collapse
|
28
|
Forsythe P. Mast Cells in Neuroimmune Interactions. Trends Neurosci 2019; 42:43-55. [DOI: 10.1016/j.tins.2018.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/17/2018] [Accepted: 09/11/2018] [Indexed: 01/28/2023]
|
29
|
Substance P and IL-33 administered together stimulate a marked secretion of IL-1β from human mast cells, inhibited by methoxyluteolin. Proc Natl Acad Sci U S A 2018; 115:E9381-E9390. [PMID: 30232261 DOI: 10.1073/pnas.1810133115] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mast cells are critical for allergic and inflammatory responses in which the peptide substance P (SP) and the cytokine IL-33 are involved. SP (0.01-1 μM) administered together with IL-33 (30 ng/mL) to human cultured LAD2 mast cells stimulates a marked increase (P < 0.0001) in secretion of the proinflammatory cytokine IL-1β. Preincubation of LAD2 (30 min) with the SP receptor (NK-1) antagonists L-733,060 (10 μM) or CP-96345 (10 µM) inhibits (P < 0.001) secretion of IL-1β stimulated by either SP (1 μM) or SP together with IL-33 (30 ng/mL). Surprisingly, secretion of IL-1β stimulated by IL-33 is inhibited (P < 0.001) by each NK-1 antagonist. Preincubation with an antibody against the IL-33 receptor ST2 inhibits (P < 0.0001) secretion of IL-1β stimulated either by IL-33 or together with SP. The combination of SP (1 μM) with IL-33 (30 ng/mL) increases IL-1β gene expression by 90-fold in LAD2 cells and by 200-fold in primary cultured mast cells from human umbilical cord blood. The combination of SP and IL-33 increases intracellular levels of IL-1β in LAD2 by 100-fold and gene expression of IL-1β and procaspase-1 by fivefold and pro-IL-1β by twofold. Active caspase-1 is present even in unstimulated cells and is detected extracellularly. Preincubation of LAD2 cells with the natural flavonoid methoxyluteolin (1-100 mM) inhibits (P < 0.0001) secretion and gene expression of IL-1β, procaspase-1, and pro-IL-1β. Mast cell secretion of IL-1β in response to SP and IL-33 reveals targets for the development of antiinflammatory therapies.
Collapse
|
30
|
Alkanfari I, Gupta K, Jahan T, Ali H. Naturally Occurring Missense MRGPRX2 Variants Display Loss of Function Phenotype for Mast Cell Degranulation in Response to Substance P, Hemokinin-1, Human β-Defensin-3, and Icatibant. THE JOURNAL OF IMMUNOLOGY 2018; 201:343-349. [PMID: 29794017 DOI: 10.4049/jimmunol.1701793] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
Human mast cells (MCs) express a novel G protein-coupled receptor (GPCR) known as Mas-related GPCR X2 (MRGPRX2). Activation of this receptor by a diverse group of cationic ligands such as neuropeptides, host defense peptides, and Food and Drug Administration-approved drugs contributes to chronic inflammatory diseases and pseudoallergic drug reactions. For most GPCRs, the extracellular (ECL) domains and their associated transmembrane (TM) domains display the greatest structural diversity and are responsible for binding different ligands. The goal of the current study was to determine if naturally occurring missense variants within MRGPRX2's ECL/TM domains contribute to gain or loss of function phenotype for MC degranulation in response to neuropeptides (substance P and hemokinin-1), a host defense peptide (human β-defensin-3) and a Food and Drug Administration-approved cationic drug (bradykinin B2 receptor antagonist, icatibant). We have identified eight missense variants within MRGPRX2's ECL/TM domains from publicly available exome-sequencing databases. We investigated the ability of MRGPRX2 ligands to induce degranulation in rat basophilic leukemia-2H3 cells individually expressing these naturally occurring MRGPRX2 missense variants. Using stable and transient transfections, we found that all variants express in rat basophilic leukemia cells. However, four natural MRGPRX2 variants, G165E (rs141744602), D184H (rs372988289), W243R (rs150365137), and H259Y (rs140862085) failed to respond to any of the ligands tested. Thus, diverse MRGPRX2 ligands use common sites on the receptor to induce MC degranulation. These findings have important clinical implications for MRGPRX2 and MC-mediated pseudoallergy and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ibrahim Alkanfari
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kshitij Gupta
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Tahsin Jahan
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hydar Ali
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
31
|
Serum substance P: an indicator of disease activity and subclinical inflammation in rheumatoid arthritis. Clin Rheumatol 2017; 37:901-908. [DOI: 10.1007/s10067-017-3929-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/21/2017] [Indexed: 12/26/2022]
|
32
|
Abstract
PURPOSE OF THE REVIEW Mounting evidence supports a role of low-grade inflammation in the pathophysiology of osteoarthritis (OA). We review and discuss the role of synovitis, complement activation, cytokines, and immune cell population in OA. RECENT FINDINGS Using newer imaging modalities, synovitis is found in the majority of knees with OA. Complement activation and pro-inflammatory cytokines play a significant role in the development of cartilage destruction and synovitis. Immune cell infiltration of OA synovial tissue by sub-populations of T cells and activated macrophages correlates with OA disease progression and pain. The innate and acquired immune system plays a key role in the low-grade inflammation found associated with OA. Targets of these pathways my hold promise for future disease-modifying osteoarthritis drugs (DMOADs).
Collapse
Affiliation(s)
| | - Adrian Filiberti
- Department of Medicine, University of Oklahoma Health Sciences Center, 975 N.E. 10th St, BRC 256, Oklahoma City, OK, 73104, USA
| | - Syed Ali Husain
- Department of Medicine, University of Oklahoma Health Sciences Center, 975 N.E. 10th St, BRC 256, Oklahoma City, OK, 73104, USA
| | - Mary Beth Humphrey
- Department of Medicine, University of Oklahoma Health Sciences Center, 975 N.E. 10th St, BRC 256, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs, Oklahoma City, OK, USA.
| |
Collapse
|
33
|
Ali H. Emerging Roles for MAS-Related G Protein-Coupled Receptor-X2 in Host Defense Peptide, Opioid, and Neuropeptide-Mediated Inflammatory Reactions. Adv Immunol 2017; 136:123-162. [PMID: 28950944 DOI: 10.1016/bs.ai.2017.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) are tissue-resident immune cells that contribute to host defense but are best known for their roles in allergic and inflammatory diseases. In humans, MCs are divided into two subtypes based on the protease content of their secretory granules. Thus, human lung MCs contain only tryptase and are known as MCT, whereas skin MCs contain both tryptase and chymase and are known as MCTC. Patients with severe asthma display elevated MCs in the lung, which undergo phenotypic change from MCT to MCTC. Although the human genome contains four Mas related G protein coupled receptor X (MRGPRX) genes, an important feature of MCTC is that they selectively express MRGPRX2. It is activated by antimicrobial host defense peptides such as human β-defensins and the cathelicidin LL-37 and likely contributes to host defense. MRGPRX2 is also a receptor for the neuropeptide substance P, major basic protein, eosinophil peroxidase, opioids, and many FDA-approved cationic drugs. Increased expression of MRGPRX2 or enhanced downstream signaling likely contributes to chronic inflammatory diseases such as rosacea, atopic dermatitis, chronic urticaria, and severe asthma. In this chapter, I will discuss the expression profile and function of MRGPRX1-4 and review the emerging roles of MRGPRX2 on host defense, chronic inflammatory diseases, and drug-induced pseudoallergic reactions. I will also examine the novel aspects of MRGPRX2 signaling in MCs as it related to degranulation and review the mechanisms of its regulation.
Collapse
Affiliation(s)
- Hydar Ali
- University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States.
| |
Collapse
|