1
|
Olayah F, Senan EM, Ahmed IA, Awaji B. Blood Slide Image Analysis to Classify WBC Types for Prediction Haematology Based on a Hybrid Model of CNN and Handcrafted Features. Diagnostics (Basel) 2023; 13:diagnostics13111899. [PMID: 37296753 DOI: 10.3390/diagnostics13111899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
White blood cells (WBCs) are one of the main components of blood produced by the bone marrow. WBCs are part of the immune system that protects the body from infectious diseases and an increase or decrease in the amount of any type that causes a particular disease. Thus, recognizing the WBC types is essential for diagnosing the patient's health and identifying the disease. Analyzing blood samples to determine the amount and WBC types requires experienced doctors. Artificial intelligence techniques were applied to analyze blood samples and classify their types to help doctors distinguish between types of infectious diseases due to increased or decreased WBC amounts. This study developed strategies for analyzing blood slide images to classify WBC types. The first strategy is to classify WBC types by the SVM-CNN technique. The second strategy for classifying WBC types is by SVM based on hybrid CNN features, which are called VGG19-ResNet101-SVM, ResNet101-MobileNet-SVM, and VGG19-ResNet101-MobileNet-SVM techniques. The third strategy for classifying WBC types by FFNN is based on a hybrid model of CNN and handcrafted features. With MobileNet and handcrafted features, FFNN achieved an AUC of 99.43%, accuracy of 99.80%, precision of 99.75%, specificity of 99.75%, and sensitivity of 99.68%.
Collapse
Affiliation(s)
- Fekry Olayah
- Department of Information System, Faculty Computer Science and information System, Najran University, Najran 66462, Saudi Arabia
| | - Ebrahim Mohammed Senan
- Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana'a, Yemen
| | | | - Bakri Awaji
- Department of Computer Science, Faculty of Computer Science and Information System, Najran University, Najran 66462, Saudi Arabia
| |
Collapse
|
2
|
Thomsen GN, Christoffersen MN, Lindegaard HM, Davidsen JR, Hartmeyer GN, Assing K, Mortz CG, Martin-Iguacel R, Møller MB, Kjeldsen AD, Havelund T, El Fassi D, Broesby-Olsen S, Maiborg M, Johansson SL, Andersen CL, Vestergaard H, Bjerrum OW. The multidisciplinary approach to eosinophilia. Front Oncol 2023; 13:1193730. [PMID: 37274287 PMCID: PMC10232806 DOI: 10.3389/fonc.2023.1193730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
Eosinophilic granulocytes are normally present in low numbers in the bloodstream. Patients with an increased number of eosinophilic granulocytes in the differential count (eosinophilia) are common and can pose a clinical challenge because conditions with eosinophilia occur in all medical specialties. The diagnostic approach must be guided by a thorough medical history, supported by specific tests to guide individualized treatment. Neoplastic (primary) eosinophilia is identified by one of several unique acquired genetic causes. In contrast, reactive (secondary) eosinophilia is associated with a cytokine stimulus in a specific disease, while idiopathic eosinophilia is a diagnosis by exclusion. Rational treatment is disease-directed in secondary cases and has paved the way for targeted treatment against the driver in primary eosinophilia, whereas idiopathic cases are treated as needed by principles in eosinophilia originating from clonal drivers. The vast majority of patients are diagnosed with secondary eosinophilia and are managed by the relevant specialty-e.g., rheumatology, allergy, dermatology, gastroenterology, pulmonary medicine, hematology, or infectious disease. The overlap in symptoms and the risk of irreversible organ involvement in eosinophilia, irrespective of the cause, warrants that patients without a diagnostic clarification or who do not respond to adequate treatment should be referred to a multidisciplinary function anchored in a hematology department for evaluation. This review presents the pathophysiology, manifestations, differential diagnosis, diagnostic workup, and management of (adult) patients with eosinophilia. The purpose is to place eosinophilia in a clinical context, and therefore justify and inspire the establishment of a multidisciplinary team of experts from diagnostic and clinical specialties at the regional level to support the second opinion. The target patient population requires highly specialized laboratory analysis and therapy and occasionally has severe eosinophil-induced organ dysfunction. An added value of a centralized, clinical function is to serve as a platform for education and research to further improve the management of patients with eosinophilia. Primary and idiopathic eosinophilia are key topics in the review, which also address current research and discusses outstanding issues in the field.
Collapse
Affiliation(s)
| | | | - Hanne Merete Lindegaard
- Department of Rheumatology, Odense University Hospital, Denmark; Research Unit for Rheumatology, Odense University Hospital, Odense, Denmark; University of Southern Denmark, Odense, Denmark
| | - Jesper Rømhild Davidsen
- Department of Respiratory Medicine, Odense University Hospital, Denmark; Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Kristian Assing
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Charlotte G. Mortz
- Department of Dermatology and Allergy Centre, Odense Research Centre for Anaphylaxis (ORCA), Odense University Hospital, Denmark; University of Southern Denmark, Odense, Denmark
| | | | | | - Anette Drøhse Kjeldsen
- Department of ORL- Head and Neck Surgery and Audiology, Odense University Hospital, Odense, Denmark; University of Southern Denmark, Odense, Denmark
| | - Troels Havelund
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Daniel El Fassi
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sigurd Broesby-Olsen
- Department of Dermatology and Allergy Centre, Odense Research Centre for Anaphylaxis (ORCA), Odense University Hospital, Denmark; University of Southern Denmark, Odense, Denmark
| | - Michael Maiborg
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | | | - Christen Lykkegaard Andersen
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Centre for General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Vestergaard
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Ole Weis Bjerrum
- Department of Hematology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Valent P, Klion AD, Roufosse F, Simon D, Metzgeroth G, Leiferman KM, Schwaab J, Butterfield JH, Sperr WR, Sotlar K, Vandenberghe P, Hoermann G, Haferlach T, Moriggl R, George TI, Akin C, Bochner BS, Gotlib J, Reiter A, Horny HP, Arock M, Simon HU, Gleich GJ. Proposed refined diagnostic criteria and classification of eosinophil disorders and related syndromes. Allergy 2023; 78:47-59. [PMID: 36207764 PMCID: PMC9797433 DOI: 10.1111/all.15544] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 12/31/2022]
Abstract
Eosinophilia and eosinophil activation are recurrent features in various reactive states and certain hematologic malignancies. In patients with hypereosinophilia (HE), HE-induced organ damage is often encountered and may lead to the diagnosis of a hypereosinophilic syndrome (HES). A number of known mechanisms and etiologies contribute to the development of HE and HES. Based on these etiologies and the origin of eosinophils, HE and HES are divided into primary forms where eosinophils are clonal cells, reactive forms where an underlying reactive or neoplastic condition is detected and eosinophils are considered to be "non-clonal" cells, and idiopathic HE and HES in which neither a clonal nor a reactive underlying pathology is detected. Since 2012, this classification and the related criteria have been widely accepted and regarded as standard. However, during the past few years, new developments in the field and an increasing number of markers and targets have created a need to update these criteria and the classification of HE and HES. To address this challenge, a Working Conference on eosinophil disorders was organized in 2021. In this conference, a panel of experts representing the relevant fields, including allergy, dermatology, hematology, immunology, laboratory medicine, and pathology, met and discussed new markers and concepts as well as refinements in definitions, criteria and classifications of HE and HES. The outcomes of this conference are presented in this article and should assist in the diagnosis and management of patients with HE and HES in daily practice and in the preparation and conduct of clinical trials.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria,Correspondence: Peter Valent, M.D. Department of Medicine I, Division of Hematology & Hemostaseology and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria, Phone: 43 1 40400 4415; Fax: 43 1 40040 4030,
| | - Amy D. Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, NIH/NIAID, Bethesda, MD, USA
| | - Florence Roufosse
- Department of Internal Medicine, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, University Hospital Mannheim - Heidelberg University, Germany
| | | | - Juliana Schwaab
- Department of Hematology and Oncology, University Hospital Mannheim - Heidelberg University, Germany
| | | | - Wolfgang R. Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Karl Sotlar
- Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Peter Vandenberghe
- Division of Hematology, University Hospital Leuven and Department of Human Genetics, KU Leuven, Belgium
| | | | | | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Tracy I. George
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Bruce S. Bochner
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim - Heidelberg University, Germany
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig Maximilian University Munich (LMU), Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Hospital, Pierre et Marie Curie University (UPMC), Paris, France
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland,Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Gerald J. Gleich
- Departments of Dermatology and Medicine, University of Utah Health, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Takeuchi I, Yanagi K, Takada S, Uchiyama T, Igarashi A, Motomura K, Hayashi Y, Nagano N, Matsuoka R, Sugiyama H, Yoshioka T, Saito H, Kawai T, Miyaji Y, Inuzuka Y, Matsubara Y, Ohya Y, Shimizu T, Matsumoto K, Arai K, Nomura I, Kaname T, Morita H. STAT6 gain-of-function variant exacerbates multiple allergic symptoms. J Allergy Clin Immunol 2022; 151:1402-1409.e6. [PMID: 36538978 DOI: 10.1016/j.jaci.2022.12.802] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Allergic diseases were long considered to be complex multifactorial disorders. However, recent findings indicate that severe allergic inflammation can be caused by monogenic immune defects. OBJECTIVES We sought to clarify the molecular pathogenesis of a patient with early-onset multiple allergic diseases, a high serum IgE level, hypereosinophilia, treatment-resistant severe atopic dermatitis with increased dermal collagen fiber deposition, and eosinophilic gastrointestinal disorder with numerous polypoid nodules. METHODS A missense variant in STAT6 was identified, and its function was examined using peripheral blood, transfected HEK293 cells, lymphoblastoid cell lines, and knock-in mice with the corresponding mutation. RESULTS Whole-exome sequencing identified a de novo heterozygous missense variant in signal transducer and activator of transcription 6 (STAT6) (p.Asp419Asn). Luciferase reporter assay revealed that the transcriptional activity of this STAT6 mutant was upregulated even without IL-4 stimulation. Phosphorylation of STAT6 was not observed in either the patient's TH2 cells or lymphoblastoid cell lines without stimulation, whereas it was induced more strongly in both by IL-4 stimulation compared with healthy controls. STAT6 protein was present in the nuclear fraction of the lymphoblastoid cell lines of the patient even in the absence of IL-4 stimulation. The patient's gastric mucosa showed upregulation of STAT6-, fibrosis-, and germinal center formation-related molecules. Some of the knock-in mice with the corresponding mutation spontaneously developed dermatitis with skin thickening and eosinophil infiltration. Moreover, serum IgE levels and mRNA expression of type 2 cytokines were increased in the knock-in mice-with or without development of spontaneous dermatitis-compared with the wild-type mice. CONCLUSIONS A novel STAT6 gain-of-function variant is a potential cause of primary atopic disorders.
Collapse
Affiliation(s)
- Ichiro Takeuchi
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan; Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Arisa Igarashi
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuka Hayashi
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Naoko Nagano
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ryo Matsuoka
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroki Sugiyama
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Toshinao Kawai
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Yumiko Miyaji
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Inuzuka
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoichi Matsubara
- National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yukihiro Ohya
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Katsuhiro Arai
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, Tokyo, Japan; Allergy Center, National Center for Child Health and Development, Tokyo, Japan.
| | - Ichiro Nomura
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan; Division of Eosinophilic Gastrointestinal Disorders, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Tadashi Kaname
- Department of Genome Medicine, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Allergy Center, National Center for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
5
|
Liquidano-Pérez E, Maza-Ramos G, Yamazaki-Nakashimada MA, Barragán-Arévalo T, Lugo-Reyes SO, Scheffler-Mendoza S, Espinosa-Padilla SE, González-Serrano ME. [Combined immunodeficiency due to DOCK8 deficiency. State of the art]. REVISTA ALERGIA MÉXICO 2022; 69:31-47. [PMID: 36927749 DOI: 10.29262/ram.v69i1.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Combinedimmunodeficiency (CID) due to DOCK8 deficiency is an inborn error of immunity (IBD) characterized by dysfunctional T and B lymphocytes; The spectrum of manifestations includes allergy, autoimmunity, inflammation, predisposition to cancer, and recurrent infections. DOCK8 deficiency can be distinguished from other CIDs or within the spectrum of hyper-IgE syndromes by exhibiting profound susceptibility to viral skin infections, associated skin cancers, and severe food allergies. The 9p24.3 subtelomeric locus where DOCK8 is located includes numerous repetitive sequence elements that predispose to the generation of large germline deletions and recombination-mediated somatic DNA repair. Residual production DOCK8 protein contributes to the variable phenotype of the disease. Severe viral skin infections and varicella-zoster virus (VZV)-associated vasculopathy, reflect an essential role of the DOCK8 protein, which is required to maintain lymphocyte integrity as cells migrate through the tissues. Loss of DOCK8 causes immune deficiencies through other mechanisms, including a cell survival defect. In addition, there are alterations in the response of dendritic cells, which explains susceptibility to virus infection and regulatory T lymphocytes that could help explain autoimmunity in patients. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment; it improves eczema, allergies, and susceptibility to infections.
Collapse
Affiliation(s)
- Eduardo Liquidano-Pérez
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | | | | - Tania Barragán-Arévalo
- Fundación de Asistencia Privada, Instituto de Oftalmología Conde de Valenciana, Departamento de Genética, Ciudad de México, México
| | - Saúl Oswaldo Lugo-Reyes
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | | - Sara Elva Espinosa-Padilla
- Instituto Nacional de Pediatría, Unidad de Investigación en Inmunodeficiencias, Ciudad de México, México
| | | |
Collapse
|
6
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
7
|
Olbrich P, Ortiz Aljaro P, Freeman AF. Eosinophilia Associated With Immune Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1140-1153. [PMID: 35227935 DOI: 10.1016/j.jaip.2022.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The differential diagnosis of eosinophilia is broad and includes infections, malignancies, and atopy as well as inborn errors of immunity (IEI). Certain types of IEIs are known to be associated with elevated numbers of eosinophils and frequently elevated serum IgE, whereas for others the degree and frequency of eosinophilia are less established. The molecular defects underlying IEI are heterogeneous and affect different pathways, which highlights the complex regulations of this cell population within the immune system. In this review, we list and discuss clinical manifestations and therapies of immune deficiency or immune dysregulation disorders associated with peripheral blood or tissue eosinophilia with or without raised IgE levels. We present illustrative case vignettes for the most common entities and propose a diagnostic algorithm aiming to help physicians systematically to evaluate patients with eosinophilia and suspicion of an underlying IEI.
Collapse
Affiliation(s)
- Peter Olbrich
- Sección Infectología, Reumatología e Inmunología Pediátrica, UGC de Pediatría, Hospital Universitario Virgen del Rocío, Seville, Spain; Laboratorio de Alteraciones Congénitas de la Inmunidad, Laboratorio 205, Instituto de Biomedicina de Sevilla, Seville, Spain; Departamento de Farmacología, Pediatría y Radiología, Facultad de Medicina, Universidad de Sevilla, Spain.
| | - Pilar Ortiz Aljaro
- Servicio de Inmunología, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Seville, Spain
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| |
Collapse
|
8
|
Matsumoto K. Valuable lessons from analyses of common signs and symptoms in rare diseases. Allergol Int 2021; 70:405-406. [PMID: 34493448 DOI: 10.1016/j.alit.2021.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|