1
|
Wang F, Lv Z. A patient suffered a second myocardial infarction after a bee sting: a case report. J Int Med Res 2024; 52:3000605241259428. [PMID: 38844785 PMCID: PMC11159549 DOI: 10.1177/03000605241259428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
A few cases have shown that bee stings can be linked to coronary stent thrombosis. However, instances of recurrent myocardial infarction resulting from bee stings among patients who have successfully undergone revascularization treatment are rare. This case report describes a man in his early 60s who experienced an acute myocardial infarction. The left anterior descending coronary artery was revascularized by a drug-eluting stent. Just 1 week later, the patient experienced a second acute myocardial infarction and it occurred immediately after a bee sting. Angiography revealed stent thrombosis so thrombus aspiration was performed. Subsequently, the blood flow in the stent was unobstructed. Follow-up coronary angiography 1 year later revealed no signs of restenosis within the stent. Hymenoptera venoms contains thrombogenic substances that might lead to acute stent thrombosis.
Collapse
Affiliation(s)
- Fei Wang
- Department of Cardiology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Zhiyi Lv
- Department of Traditional Chinese Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| |
Collapse
|
2
|
Bemanian MH, Shokouhi Shoormasti R, Arshi S, Jafari M, Shokri S, Fallahpour M, Nabavi M, Zaremehrjardi F. The role of molecular diagnosis in anaphylactic patients with dual or triple-sensitization to Hymenoptera venoms. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:22. [PMID: 38521942 PMCID: PMC10960983 DOI: 10.1186/s13223-024-00885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/29/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The poly-sensitization to Hymenoptera venom makes it difficult to select genuine allergens for immunotherapy and increases patients' costs. The objective of this study was to determine the culprit allergen in dual or triple-sensitized patients to three Hymenoptera venoms through molecular diagnosis and evaluating the results of incorporating the molecular diagnosis with skin tests. METHODS Thirty-two patients with anaphylactic reactions and dual or triple-sensitization to Hymenoptera venoms in skin tests entered this study. IgE-sensitization to whole extracts and molecules of Apis mellifera (Api m), Vespula vulgaris (Ves v), and Polistes dominulus (Pol d) was evaluated utilizing ALEX or ImmunoCAP. RESULTS Twenty-nine patients (90.6%) were male. IgE-sensitization to at least one of the allergenic molecules related to Apis mellifera, Vespula vulgaris, and Polistes dominulus was seen in 59.4, 53.1, and 21.9%, respectively. Among 32 patients, 14 (43.8) and 8 (25%), were mono-sensitized to Api m and Ves v components in ALEX, respectively. Double sensitization to Hymenoptera was identified in 18.8% of patients in ALEX. Api m 1+/Api m 2-/Api m 10- and Ves v 1+/Ves v 5+ demonstrated the most prevalent sensitizations patterns in our patients. CONCLUSIONS The molecular diagnosis of IgE-sensitization to Hymenoptera venoms can be valuable, especially in patients who show dual or triple-sensitization in skin tests, as the ALEX results revealed mono and double-sensitization to Hymenoptera venoms in 22 and 6 patients, respectively. Regarding the high cost and adverse reactions of venom immunotherapy, especially for two or three venoms, incorporating the molecular diagnosis alongside skin tests for accurate diagnosis of the culprit venom could help decrease costs for patients.
Collapse
Affiliation(s)
- Mohammad Hassan Bemanian
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Raheleh Shokouhi Shoormasti
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Arshi
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Jafari
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Shokri
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zaremehrjardi
- Department of Allergy and Clinical Immunology, Rasool-E-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Nagy AL, Ardelean S, Chapuis RJJ, Bouillon J, Pivariu D, De Felice B, Bertazzo M, Fossati P, Spicer LJ, Dreanca AI, Caloni F. Zootoxins and Domestic Animals: A European View. Toxins (Basel) 2024; 16:48. [PMID: 38251264 PMCID: PMC10818608 DOI: 10.3390/toxins16010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024] Open
Abstract
Zootoxins are produced by venomous and poisonous species and are an important cause of poisoning in companion animals and livestock in Europe. Little information about the incidence of zootoxin poisoning is available in Europe, with only a few case reports and review papers being published. This review presents the most important zootoxins produced by European venomous and poisonous animal species responsible for poisoning episodes in companion animals and livestock. The main zootoxin-producing animal species, components of the toxins/venoms and their clinical effects are presented. The most common zootoxicoses involve terrestrial zootoxins excreted by the common toad, the fire salamander, the pine processionary caterpillar, and vipers. The lack of a centralized reporting/poison control system in Europe makes the evaluation of the epidemiology of zootoxin-induced poisonings extremely difficult. Even if there are many anecdotal reports in the veterinary community about the exposure of domestic animals to terrestrial and marine zootoxins, the number of published papers regarding these toxicoses is low. Climate change and its consequences regarding species distribution and human-mediated transportation are responsible for the emerging nature of some intoxications in which zootoxins are involved. Although new venomous or poisonous animal species have emerged in regions where they were previously unreported, zootoxins produced by native species remain the main concern in Europe. The diversity of poisonous and venomous animal species and the emerging nature of certain poisonings warrant the continuous update to such knowledge by veterinary professionals and animal owners. This review offers an overview about zootoxin-related poisonings in domestic animals in Europe and also provides important information from a health perspective.
Collapse
Affiliation(s)
- Andras-Laszlo Nagy
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (A.-L.N.); (R.J.J.C.)
| | - Sabrina Ardelean
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (S.A.); (J.B.)
| | - Ronan J. J. Chapuis
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (A.-L.N.); (R.J.J.C.)
| | - Juliette Bouillon
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (S.A.); (J.B.)
| | - Dalma Pivariu
- Department of Toxicology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania; (D.P.); (A.I.D.)
| | - Beatrice De Felice
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (B.D.F.); (M.B.); (P.F.)
| | - Mirko Bertazzo
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (B.D.F.); (M.B.); (P.F.)
| | - Paola Fossati
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (B.D.F.); (M.B.); (P.F.)
| | - Leon J. Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Alexandra Iulia Dreanca
- Department of Toxicology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania; (D.P.); (A.I.D.)
| | - Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (B.D.F.); (M.B.); (P.F.)
| |
Collapse
|
4
|
Yu X, Jia S, Yu S, Chen Y, Zhang C, Chen H, Dai Y. Recent advances in melittin-based nanoparticles for antitumor treatment: from mechanisms to targeted delivery strategies. J Nanobiotechnology 2023; 21:454. [PMID: 38017537 PMCID: PMC10685715 DOI: 10.1186/s12951-023-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
As a naturally occurring cytolytic peptide, melittin (MLT) not only exhibits a potent direct tumor cell-killing effect but also possesses various immunomodulatory functions. MLT shows minimal chances for developing resistance and has been recognized as a promising broad-spectrum antitumor drug because of this unique dual mechanism of action. However, MLT still displays obvious toxic side effects during treatment, such as nonspecific cytolytic activity, hemolytic toxicity, coagulation disorders, and allergic reactions, seriously hampering its broad clinical applications. With thorough research on antitumor mechanisms and the rapid development of nanotechnology, significant effort has been devoted to shielding against toxicity and achieving tumor-directed drug delivery to improve the therapeutic efficacy of MLT. Herein, we mainly summarize the potential antitumor mechanisms of MLT and recent progress in the targeted delivery strategies for tumor therapy, such as passive targeting, active targeting and stimulus-responsive targeting. Additionally, we also highlight the prospects and challenges of realizing the full potential of MLT in the field of tumor therapy. By exploring the antitumor molecular mechanisms and delivery strategies of MLT, this comprehensive review may inspire new ideas for tumor multimechanism synergistic therapy.
Collapse
Affiliation(s)
- Xiang Yu
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China.
| | - Siyu Jia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Shi Yu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yaohui Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Chengwei Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Haidan Chen
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China.
| | - Yanfeng Dai
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China.
| |
Collapse
|
5
|
Yang Y, Zeng X, Fu C, Tan L, Yang N, Liu Y, Shen Q, Wei J, Yu C, Lu C. Paper-based microfluidics and tailored gold nanoparticles for visual colorimetric detection of multiplex allergens. Anal Chim Acta 2023; 1272:341497. [PMID: 37355331 DOI: 10.1016/j.aca.2023.341497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
The highly efficient and accurate recognition of targeted allergens is an essential element in the diagnosis of allergic diseases and follow-up desensitization treatment in clinic. The current clinical methods widely used to detect sIgE are high cost, time-consuming procedures, and bulky equipment. Herein, a multiplex microfluidic paper-based device (multi-μPAD) was developed that combined with tailored gold nanoparticles for simultaneously visual, colorimetric detection of different allergens in serum. This device could be used as quantitative detection of sIgE with LOD as low as 0.246 KUA/L in colorimetric method. In vitro results also showed that this device possessed good repeatability, high accuracy and incredible stability in different pH (6.0-7.4) and temperature (24-37 °C), as well as long-term storage within 90-day. Finally, this method was successfully utilized for assessing clinical multi-sample screening in 35 allergic patients. After the addition of the samples from allergic patients, the agreement rate of clinical results with commercial enzyme-linked immunosorbent assay (ELISA) kit reached more than 97%, which further indicated that this device had the advantages of efficient, accurate and sensitive to screen various allergens in real clinical serum samples. Therefore, by simply altering antigens and antibodies, this device can also be used for high-throughput detection of other allergens, making it considerable potential for clinical diagnosis of allergic diseases.
Collapse
Affiliation(s)
- Yuxing Yang
- Precision Medicine Center, The First Clinical Medical College of Gannan Medical University, Ganzhou, 341001, China
| | - Xiaofei Zeng
- Precision Medicine Center, The First Clinical Medical College of Gannan Medical University, Ganzhou, 341001, China
| | - Chan Fu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Lingxiao Tan
- Respiratory Department, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yongxin Liu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jifu Wei
- Department of Pharmacy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China; Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China.
| | - Chen Lu
- Precision Medicine Center, The First Clinical Medical College of Gannan Medical University, Ganzhou, 341001, China.
| |
Collapse
|
6
|
Ruiz-Leon B, Serrano P, Vidal C, Moreno-Aguilar C. Management of Double Sensitization to Vespids in Europe. Toxins (Basel) 2022; 14:toxins14020126. [PMID: 35202153 PMCID: PMC8880449 DOI: 10.3390/toxins14020126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 12/10/2022] Open
Abstract
Wasp allergy with a diagnostic profile of double sensitizations to vespid venom is a frequent clinical problem in areas where different genera of wasps are present. Identification of the insect responsible for serious reactions poses a diagnostic challenge as the only effective treatment to date is immunotherapy based on the specific venom. In southern Europe, the double sensitization to Vespula and Polistes venoms is highly frequent. It has been shown that the major allergenic proteins (Phospholipase A1 and Antigen 5) share sequences across the different genera and species, which would be the cause of cross-reactivity. Additionally, the minor allergens (Dipeptidyl-peptidases, Vitellogenins) have been found to share partial sequence identity. Furthermore, venom contains other homologous proteins whose allergenic nature still remains to be clarified. The traditional diagnostic tools available are insufficient to discriminate between allergy to Vespula and Polistes in a high number of cases. IgE inhibition is the technique that best identifies the cross-reactivity. When a double sensitization has indeed been shown to exist or great uncertainty surrounds the primary sensitization, therapy with two venoms is advisable to guarantee the safety of the patient. In this case, a strategy involving alternate administration that combines effectiveness with efficiency is possible.
Collapse
Affiliation(s)
- Berta Ruiz-Leon
- Allergy Section of University Hospital Reina Sofia-IMIBIC, ARADyAL Network, National Institute of Health Carlos III, 14005 Cordoba, Spain; (B.R.-L.); (C.M.-A.)
| | - Pilar Serrano
- Allergy Section of University Hospital Reina Sofia-IMIBIC, ARADyAL Network, National Institute of Health Carlos III, 14005 Cordoba, Spain; (B.R.-L.); (C.M.-A.)
- Correspondence:
| | - Carmen Vidal
- Allergy Department of Complejo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Carmen Moreno-Aguilar
- Allergy Section of University Hospital Reina Sofia-IMIBIC, ARADyAL Network, National Institute of Health Carlos III, 14005 Cordoba, Spain; (B.R.-L.); (C.M.-A.)
| |
Collapse
|
7
|
Cao M, Liu Y, Lu C, Guo M, Li L, Yu C, Wei JF. Ultrasensitive detection of specific IgE based on nanomagnetic capture and separation with a AuNP-anti-IgE nanobioprobe for signal amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2478-2484. [PMID: 33998609 DOI: 10.1039/d1ay00372k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The accurate detection of allergen specific IgE (sIgE) is fundamental in the diagnosis of allergic diseases. The present commercial platforms fail to meet the need for personalized diagnosis, due to the unsuitable allergen-fixation model and large amounts of serum consumption. In this work, we developed a nano-capturer Fe3O4@SiO2-NTA with an enhanced signal by taking advantage of a AuNP-anti-IgE nanobioprobe for precise and highly sensitive quantification detection of sIgE in serum of allergic patients. The recombinant allergen was immobilized on Fe3O4@SiO2-NTA through the interaction between its His-tag and Ni-NTA, which is more consistent with the real binding mode of allergens with sIgE in vivo than the present clinically used allergen-fixation methods. Numerous horseradish peroxidase (HRP)-labeled anti-IgE were modified onto one AuNP to detect the sIgE probed by Fe3O4@SiO2-NTA@rCanf1. Once one anti-IgE binds to sIgE, other HRP-labeled anti-IgE modified on the same AuNP would all create signals, resulting in a significantly amplified chemiluminescence (CL) signal. Our results showed that this immunosensor could realize fast, accurate, low-cost and highly sensitive sIgE detection in serum samples. In vitro experiments demonstrated a 0.02 ng mL-1 detection limit, which was lower than that of any standard analyzer used for allergy immunoassays. Furthermore, our method was utilized for the diagnosis of clinical samples. The results were in good agreement with those obtained by the clinical gold standard ImmunoCAP, with 1000 times less serum consumption than ImmunoCAP. Therefore, the presented immunosensor holds great promise to improve clinical sIgE quantitative detection and constitutes a potentially useful tool for clinical diagnosis and subsequent individual treatment of allergic diseases.
Collapse
Affiliation(s)
- Mengda Cao
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
New Biomarkers of Hymenoptera Venom Allergy in a Group of Inflammation Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084011. [PMID: 33920429 PMCID: PMC8069624 DOI: 10.3390/ijerph18084011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Hymenoptera venom allergy significantly affects the quality of life. Due to the divergences in the results of the available test and clinical symptoms of patients, the current widely applied diagnostic methods are often insufficient to classify patients for venom immunotherapy (VIT). Therefore it is still needed to search for new, more precise, and accurate diagnostic methods. Hence, this research aimed to discover new biomarkers of Hymenoptera venom allergy in a group of inflammation factors using set of multi-marker Bioplex panel. The adoption of a novel methodology based on Luminex/xMAP enabled simultaneous determination of serum levels of 37 different inflammatory proteins in one experiment. The study involved 21 patients allergic to wasp and/or honey bee venom and 42 healthy participants. According to univariate and multivariate statistics, soluble CD30/tumor necrosis factor receptor superfamily, member 8 (sCD30/TNFRSF8), and the soluble tumor necrosis factor receptor 1 (sTNF-R1) may be considered as effective prognostic factors, their circulating levels were significantly decreased in the allergy group (p-value < 0.05; the Area Under the Curve (AUC) ~0.7; Variable Importance in Projection (VIP) scores >1.2). The obtained results shed new light on the allergic inflammatory response and may contribute to modification and improvement of the diagnostic and monitoring methods. Further, large-scale studies are still needed to explain mechanisms of action of studied compounds and to definitively prove their usefulness in clinical practice.
Collapse
|
9
|
Antolín-Amérigo D, Ruiz-León B, Vega-Castro A, de la Hoz Caballer B. Natural history of systemic reactions and risk factors in children and adults with Hymenoptera venom allergy. ALLERGO JOURNAL 2020. [DOI: 10.1007/s15007-020-0745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Monsalve RI, Gutiérrez R, Hoof I, Lombardero M. Purification and molecular characterization of phospholipase, antigen 5 and hyaluronidases from the venom of the Asian hornet (Vespa velutina). PLoS One 2020; 15:e0225672. [PMID: 31923175 PMCID: PMC6953831 DOI: 10.1371/journal.pone.0225672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/08/2019] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to purify potential allergenic components of Vespa velutina venom, the yellow legged Asian Hornet, and perform a preliminary characterization of the purified proteins. Starting from the whole venom of V.velutina, several chromatographic steps allowed to purify the phospholipase (named Vesp v 1), as well as the antigen 5 (Vesp v 5, the only allergenic component described as such so far). The two hyaluronidase isoforms found (Vesp v 2A and Vesp v 2B) cannot be separated from each other, but they are partially purified and characterized. Purity of the isolated proteins in shown by SDSPAGE, as well as by the results of the N-terminal sequencing. This characterization and nLC-MS/MS data provide most of the sequence for Vesp v 1 and Vesp v 5 (72 and 84% coverage, respectively), confirming that the whole sequences of the isolated natural components match with the data available in public transcriptomic databases. It is of particular interest that Vesp v 1 is a glycosylated phospholipase, a fact that had only described so far for the corresponding allergen components of Dolichovespula maculata and Solenopsis invicta. The availability of the complete sequences of Vespa velutina components permits comparison with homologous sequences from other Hymenoptera. These data demonstrate the higher similarity among the species of the genera Vespa and Vespula, in comparison to Polistes species, as it is especially observed with the hyaluronidases isoforms: the isoform Vesp v 2A only exists in the former genera, and not in Polistes; in addition, the most abundant isoform (Vesp v 2B) exhibits 93% sequence identity with the Ves v 2 isoform of Vespula vulgaris. Finally, the isolated components might be useful for improving the diagnosis of patients that could be allergic to stings of this invasive Asian hornet, as it has been the case of an improved diagnosis and treatment of other Hymenoptera-sensitized patients.
Collapse
Affiliation(s)
| | - Ruth Gutiérrez
- CMC Research and Development, ALK-Abelló S.A., Madrid, Spain
| | - Ilka Hoof
- Global Research, ALK-Abelló A/S, Hørsholm, Denmark
| | | |
Collapse
|
11
|
An overview of the bioactive compounds, therapeutic properties and toxic effects of apitoxin. Food Chem Toxicol 2019; 134:110864. [PMID: 31574265 DOI: 10.1016/j.fct.2019.110864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
|
12
|
The Use of Molecular Allergy Diagnosis in Anaphylaxis: a Literature Review. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-00204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Schiener M, Hilger C, Eberlein B, Pascal M, Kuehn A, Revets D, Planchon S, Pietsch G, Serrano P, Moreno-Aguilar C, de la Roca F, Biedermann T, Darsow U, Schmidt-Weber CB, Ollert M, Blank S. The high molecular weight dipeptidyl peptidase IV Pol d 3 is a major allergen of Polistes dominula venom. Sci Rep 2018; 8:1318. [PMID: 29358620 PMCID: PMC5778000 DOI: 10.1038/s41598-018-19666-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/04/2018] [Indexed: 12/04/2022] Open
Abstract
Hymenoptera venom allergy can cause severe anaphylaxis in untreated patients. Polistes dominula is an important elicitor of venom allergy in Southern Europe as well as in the United States. Due to its increased spreading to more moderate climate zones, Polistes venom allergy is likely to gain importance also in these areas. So far, only few allergens of Polistes dominula venom were identified as basis for component-resolved diagnostics. Therefore, this study aimed to broaden the available panel of important Polistes venom allergens. The 100 kDa allergen Pol d 3 was identified by mass spectrometry and found to be a dipeptidyl peptidase IV. Recombinantly produced Pol d 3 exhibited sIgE-reactivity with approximately 66% of Polistes venom-sensitized patients. Moreover, its clinical relevance was supported by the potent activation of basophils from allergic patients. Cross-reactivity with the dipeptidyl peptidases IV from honeybee and yellow jacket venom suggests the presence of exclusive as well as conserved IgE epitopes. The obtained data suggest a pivotal role of Pol d 3 as sensitizing component of Polistes venom, thus supporting its status as a major allergen of clinical relevance. Therefore, Pol d 3 might become a key element for proper diagnosis of Polistes venom allergy.
Collapse
Affiliation(s)
- Maximilian Schiener
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Mariona Pascal
- Immunology Department, CDB Hospital Clinic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Dominique Revets
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Sébastien Planchon
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Gunilla Pietsch
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Pilar Serrano
- Maimonides Institute for Research in Biomedicine (IMIBIC), Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Carmen Moreno-Aguilar
- Maimonides Institute for Research in Biomedicine (IMIBIC), Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Federico de la Roca
- Allergy Unit, Pneumology Department, ICR, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Ulf Darsow
- Department of Dermatology and Allergy Biederstein, Technical University of Munich, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany.
| |
Collapse
|
14
|
Mast Cell Activation Syndromes and Environmental Exposures. CURRENT TREATMENT OPTIONS IN ALLERGY 2018. [DOI: 10.1007/s40521-018-0151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|