1
|
Zhang Z, Peng W, Sun S, Ma J, Sun Y, Zhang F. Predicting the onset of overweight in Chinese high school students: a machine-learning approach in a one-year prospective cohort study. Endocrine 2024; 86:600-611. [PMID: 38856840 DOI: 10.1007/s12020-024-03902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE This study aimed to develop and evaluate machine-learning models for predicting the onset of overweight in adolescents aged 14‒17, utilizing easily collectible personal information. METHODS This study was a one-year prospective cohort study. Baseline data were collected through anthropometric measurements and questionnaires, and the incidence of overweight was calculated one year later via anthropometric measurements. Predictive factors were selected through univariate analysis. Six machine-learning models were developed for predicting the onset of overweight. The SHapley Additive exPlanations (SHAP) was used for global and local interpretation of the models. RESULTS Out of 1,241 adolescents, 204 (16.4%) were identified as overweight after one year. Nineteen features were associated with the overweight incidence in univariable analysis. Participants were randomly divided into a training group and a testing group in a 7:3 ratio. The Light Gradient Boosting Machine (LGBM) algorithm achieved outperformed other models, achieving the following metrics: Accuracy (0.956), Recall (0.812), Specificity (0.983), F1-score (0.855), AUC (0.961). Importance ranking revealed that the top 11 minimal feature set can maintain the stability of model performance. CONCLUSIONS The onset of overweight in adolescents was accurately predicted using easily collectible personal information. The LGBM-based model exhibited superior performance. Oversampling technique notably improved model performance. The model interpretation technique provided innovative strategies for managing adolescent overweight/obesity.
Collapse
Affiliation(s)
- Zikang Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Wei Peng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- CAS Hefei Institute of Technology Innovation, Hefei, 230088, PR China
| | - Shaoming Sun
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
- CAS Hefei Institute of Technology Innovation, Hefei, 230088, PR China.
| | - Jianguo Ma
- College of Physical Education, Chuzhou University, Chuzhou, 239000, PR China.
| | - Yining Sun
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Fangwen Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
2
|
Delpino FM, Costa ÂK, César do Nascimento M, Dias Moura HS, Geremias Dos Santos H, Wichmann RM, Porto Chiavegatto Filho AD, Arcêncio RA, Nunes BP. Does machine learning have a high performance to predict obesity among adults and older adults? A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2024; 34:2034-2045. [PMID: 39004592 DOI: 10.1016/j.numecd.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
AIM Machine learning may be a tool with the potential for obesity prediction. This study aims to review the literature on the performance of machine learning models in predicting obesity and to quantify the pooled results through a meta-analysis. DATA SYNTHESIS A systematic review and meta-analysis were conducted, including studies that used machine learning to predict obesity. Searches were conducted in October 2023 across databases including LILACS, Web of Science, Scopus, Embase, and CINAHL. We included studies that utilized classification models and reported results in the Area Under the ROC Curve (AUC) (PROSPERO registration: CRD42022306940), without imposing restrictions on the year of publication. The risk of bias was assessed using an adapted version of the Transparent Reporting of a multivariable prediction model for individual Prognosis or Diagnosis (TRIPOD). Meta-analysis was conducted using MedCalc software. A total of 14 studies were included, with the majority demonstrating satisfactory performance for obesity prediction, with AUCs exceeding 0.70. The random forest algorithm emerged as the top performer in obesity prediction, achieving an AUC of 0.86 (95%CI: 0.76-0.96; I2: 99.8%), closely followed by logistic regression with an AUC of 0.85 (95%CI: 0.75-0.95; I2: 99.6%). The least effective model was gradient boosting, with an AUC of 0.77 (95%CI: 0.71-0.82; I2: 98.1%). CONCLUSION Machine learning models demonstrated satisfactory predictive performance for obesity. However, future research should utilize more comparable data, larger databases, and a broader range of machine learning models.
Collapse
Affiliation(s)
- Felipe Mendes Delpino
- Postgraduate Program in Nursing, Federal University of Pelotas. Pelotas, Rio Grande do Sul, Brazil; Postgraduate Program in Public Health Nursing, University of São Paulo, Ribeirão Preto, Brazil.
| | - Ândria Krolow Costa
- Postgraduate Program in Nursing, Federal University of Pelotas. Pelotas, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | - Bruno Pereira Nunes
- Postgraduate Program in Nursing, Federal University of Pelotas. Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Gou H, Song H, Tian Z, Liu Y. Prediction models for children/adolescents with obesity/overweight: A systematic review and meta-analysis. Prev Med 2024; 179:107823. [PMID: 38103795 DOI: 10.1016/j.ypmed.2023.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/12/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The incidence of obesity and overweight in children and adolescents is increasing worldwide and becomes a global health concern. This study aims to evaluate the accuracy of available prediction models in early identification of obesity and overweight in general children or adolescents and identify predictive factors for the models, thus provide a reference for subsequent development of risk prediction tools for obesity and overweight in children or adolescents. Related publications were obtained from several databases such as PubMed, Embase, Cochrane Library, and Web of Science from their inception to September 18th, 2022. The novel Prediction Model Risk of Bias Assessment Tool (PROBAST) was employed to assess the bias risk of the included studies. R4.2.0 and Stata15.1 softwares were used to conduct meta-analysis. This study involved 45 cross-sectional and/or prospective studies with 126 models. Meta-analyses showed that the overall pooled index of concordance (c-index) of prediction models for children/adolescents with obesity and overweight in the training set was 0.769 (95% CI 0.754-0.785) and 0.835(95% CI 0.792-0.879), respectively. Additionally, a large number of predictors were found to be related to children's lifestyles, such as sleep duration, sleep quality, and eating speed. In conclusions, prediction models can be employed to predict obesity/overweight in children and adolescents. Most predictors are controllable factors and are associated with lifestyle. Therefore, the prediction model serves as an excellent tool to formulate effective strategies for combating obesity/overweight in pediatric patients.
Collapse
Affiliation(s)
- Hao Gou
- Department of Pediatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Huiling Song
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhiqing Tian
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Liu
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Mondal PK, Foysal KH, Norman BA, Gittner LS. Predicting Childhood Obesity Based on Single and Multiple Well-Child Visit Data Using Machine Learning Classifiers. SENSORS (BASEL, SWITZERLAND) 2023; 23:759. [PMID: 36679555 PMCID: PMC9865403 DOI: 10.3390/s23020759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Childhood obesity is a public health concern in the United States. Consequences of childhood obesity include metabolic disease and heart, lung, kidney, and other health-related comorbidities. Therefore, the early determination of obesity risk is needed and predicting the trend of a child's body mass index (BMI) at an early age is crucial. Early identification of obesity can lead to early prevention. Multiple methods have been tested and evaluated to assess obesity trends in children. Available growth charts help determine a child's current obesity level but do not predict future obesity risk. The present methods of predicting obesity include regression analysis and machine learning-based classifications and risk factor (threshold)-based categorizations based on specific criteria. All the present techniques, especially current machine learning-based methods, require longitudinal data and information on a large number of variables related to a child's growth (e.g., socioeconomic, family-related factors) in order to predict future obesity-risk. In this paper, we propose three different techniques for three different scenarios to predict childhood obesity based on machine learning approaches and apply them to real data. Our proposed methods predict obesity for children at five years of age using the following three data sets: (1) a single well-child visit, (2) multiple well-child visits under the age of two, and (3) multiple random well-child visits under the age of five. Our models are especially important for situations where only the current patient information is available rather than having multiple data points from regular spaced well-child visits. Our models predict obesity using basic information such as birth BMI, gestational age, BMI measures from well-child visits, and gender. Our models can predict a child's obesity category (normal, overweight, or obese) at five years of age with an accuracy of 89%, 77%, and 89%, for the three application scenarios, respectively. Therefore, our proposed models can assist healthcare professionals by acting as a decision support tool to aid in predicting childhood obesity early in order to reduce obesity-related complications, and in turn, improve healthcare.
Collapse
Affiliation(s)
- Pritom Kumar Mondal
- Department of Industrial, Manufacturing & Systems Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Kamrul H. Foysal
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Bryan A. Norman
- Department of Industrial, Manufacturing & Systems Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Lisaann S. Gittner
- Department of Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
5
|
An R, Shen J, Xiao Y. Applications of Artificial Intelligence to Obesity Research: Scoping Review of Methodologies. J Med Internet Res 2022; 24:e40589. [PMID: 36476515 PMCID: PMC9856437 DOI: 10.2196/40589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/05/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Obesity is a leading cause of preventable death worldwide. Artificial intelligence (AI), characterized by machine learning (ML) and deep learning (DL), has become an indispensable tool in obesity research. OBJECTIVE This scoping review aimed to provide researchers and practitioners with an overview of the AI applications to obesity research, familiarize them with popular ML and DL models, and facilitate the adoption of AI applications. METHODS We conducted a scoping review in PubMed and Web of Science on the applications of AI to measure, predict, and treat obesity. We summarized and categorized the AI methodologies used in the hope of identifying synergies, patterns, and trends to inform future investigations. We also provided a high-level, beginner-friendly introduction to the core methodologies to facilitate the dissemination and adoption of various AI techniques. RESULTS We identified 46 studies that used diverse ML and DL models to assess obesity-related outcomes. The studies found AI models helpful in detecting clinically meaningful patterns of obesity or relationships between specific covariates and weight outcomes. The majority (18/22, 82%) of the studies comparing AI models with conventional statistical approaches found that the AI models achieved higher prediction accuracy on test data. Some (5/46, 11%) of the studies comparing the performances of different AI models revealed mixed results, indicating the high contingency of model performance on the data set and task it was applied to. An accelerating trend of adopting state-of-the-art DL models over standard ML models was observed to address challenging computer vision and natural language processing tasks. We concisely introduced the popular ML and DL models and summarized their specific applications in the studies included in the review. CONCLUSIONS This study reviewed AI-related methodologies adopted in the obesity literature, particularly ML and DL models applied to tabular, image, and text data. The review also discussed emerging trends such as multimodal or multitask AI models, synthetic data generation, and human-in-the-loop that may witness increasing applications in obesity research.
Collapse
Affiliation(s)
- Ruopeng An
- Brown School, Washington University in St. Louis, St. Louis, MO, United States
| | - Jing Shen
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Yunyu Xiao
- Weill Cornell Medical College, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Awan MJ, Mohd Rahim MS, Salim N, Rehman A, Nobanee H. Machine Learning-Based Performance Comparison to Diagnose Anterior Cruciate Ligament Tears. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2550120. [PMID: 35444781 PMCID: PMC9015864 DOI: 10.1155/2022/2550120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/02/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
In recent times, knee joint pains have become severe enough to make daily tasks difficult. Knee osteoarthritis is a type of arthritis and a leading cause of disability worldwide. The middle of the knee contains a vital portion, the anterior cruciate ligament (ACL). It is necessary to diagnose the ACL ruptured tears early to avoid surgery. The study aimed to perform a comparative analysis of machine learning models to identify the condition of three ACL tears. In contrast to previous studies, this study also considers imbalanced data distributions as machine learning techniques struggle to deal with this problem. The paper applied and analyzed four machine learning classification models, namely, random forest (RF), categorical boosting (Cat Boost), light gradient boosting machines (LGBM), and highly randomized classifier (ETC) on the balanced, structured dataset of ACL. After oversampling a hyperparameter adjustment, the above four models have achieved an average accuracy of 95.72%, 94.98%, 94.98%, and 98.26%. There are 2070 observations and eight features in the collection of three diagnosis ACL classes after oversampling. The area under curve value was approximately 0.998, respectively. Experiments were performed using twelve machine learning algorithms with imbalanced and balanced datasets. However, the accuracy of the imbalanced dataset has remained under 76% for all twelve models. After oversampling, the proposed model may contribute to the investigation of ACL tears on magnetic resonance imaging and other knee ligaments efficiently and automatically without involving radiologists.
Collapse
Affiliation(s)
- Mazhar Javed Awan
- School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
- Department of Software Engineering, University of Management and Technology, Lahore 54770, Pakistan
| | - Mohd Shafry Mohd Rahim
- School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
| | - Naomie Salim
- School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
| | - Amjad Rehman
- Artificial Intelligence and Data Analytics Laboratory, College of Computer and Information Sciences (CCIS), Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Haitham Nobanee
- College of Business, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, UAE
- Oxford Centre for Islamic Studies, University of Oxford, Oxford OX1 2J, UK
- School of Histories Languages and Cultures, The University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|