1
|
Karlsberg RP, Cho GW, Aldana-Bitar J. A Promising Pathway Toward Mitigation and Eradication of Coronary Artery Disease. Cardiol Res 2024; 15:415-424. [PMID: 39698012 PMCID: PMC11650573 DOI: 10.14740/cr1721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024] Open
Abstract
Cardiovascular disease remains the leading cause of death in the United States and globally. Significant advances have been made throughout the history of cardiology and the treatment of this disease; however, these efforts have not halted the alarming statistics. Emerging approaches, such as artificial intelligence applied to cardiac imaging, genetic testing, and genetic silencing, may offer essential additional steps in treating the disease. Moreover, new pathways of the disease are being identified, which differ from traditional risk factors and offer a fresh, innovative approach. This paper focuses on a novel strategy that includes identifying and treating multiple pathways of the disease using both new and traditional interventions. These interventions include plaque-directed therapy rather than surrogate therapy, with the potential to mitigate consequences and possibly eradicate the disease through personalized, multi-approach treatments similar to those used in cancer treatment.
Collapse
Affiliation(s)
- Ronald P. Karlsberg
- Cedars Sinai Heart Institute, Los Angeles, CA, USA
- University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
- Cardiovascular Research Foundation of Southern California, Beverly Hills, CA, USA
| | - Geoffrey W. Cho
- University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
- Cardiovascular Research Foundation of Southern California, Beverly Hills, CA, USA
| | - Jairo Aldana-Bitar
- Cardiovascular Research Foundation of Southern California, Beverly Hills, CA, USA
- The Lundquist Institute at Harbor-UCLA, Torrance, CA, USA
| |
Collapse
|
2
|
Wang Z, Yang S, Tong L, Li X, Mao W, Yuan H, Chen Y, Zhang S, Zhang H, Chen R. eIF6 deficiency regulates gut microbiota, decreases systemic inflammation, and alleviates atherosclerosis. mSystems 2024; 9:e0059524. [PMID: 39225466 PMCID: PMC11494895 DOI: 10.1128/msystems.00595-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
Altered composition of the gut microbiota affects immunity and metabolism. This study previously found that eIF6 gene knockdown changes the composition of the intestinal flora in the eIF6 gene knockdown mouse model. Lactobacillus acidophilus is significantly increased in the model. This study was designed to investigate the role of L. acidophilus in the pathogenesis of atherosclerosis. Transcriptomic data from 117 patients with coronary artery disease (CAD) and 79 healthy individuals were obtained. ApoE-/- and ApoE-/-/eIF6+/- mice on normal chow diet or a high-fat diet were treated for 16 weeks; eIF6 deficiency was evaluated atherosclerosis. ApoE-/- mice on normal chow diet or a high-fat diet were treated with L. acidophilus by daily oral gavage for 16 weeks. Moreover, one group was treated with lipopolysaccharide at 12 weeks. The levels of eIF6, RNASE3, and RSAD2 were notably higher in the patients with CAD than in the healthy individuals. eIF6 deficiency altered the composition of gut microbiota. eIF6 deficiency reduced the atherosclerotic lesion formation in ApoE-/-/eIF6+/- mice compared with the ApoE-/- mice. The microbial sequencing and metabolomics analysis demonstrated some beneficial bacterial (L. acidophilus, Ileibacterium, and Bifidobacterium) and metabolic levels significantly had deference in ApoE-/-/eIF6+/- mice compared with the ApoE-/- mice. Correlational studies indicated that L. acidophilus had close correlations with low-density lipoprotein cholesterol, lesion area, and necrotic area. L. acidophilus inhibited high-fat diet-induced inflammation and atherosclerotic lesion, increasing the expression of tight junction proteins (ZO-1 and claudin-1) and reducing the gut permeability. However, lipopolysaccharide reversed the protective effect of L. acidophilus against atherosclerosis. eIF6 deficiency protected against atherosclerosis by regulating the composition of gut microbiota and metabolites. L. acidophilus attenuated atherosclerotic lesions by reducing inflammation and increasing gut permeability.IMPORTANCEeIF6 deficiency modulates the gut microbiota and multiple metabolites in atherosclerotic ApoE-/- mice. L. acidophilus was reduced in the gut of atherosclerotic ApoE-/- mice, but administration of Lactobacillus acidophilus reversed intestinal barrier dysfunction and vascular inflammation. Our findings suggest that targeting individual species is a beneficial therapeutic strategy to prevent inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Shuai Yang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Linglin Tong
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Li
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weiyi Mao
- School of Basic Medical Sciences, Nanjing Medical University, Jiangsu, China
| | - Honghua Yuan
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shenyang Zhang
- Department of Neurology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - He Zhang
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renjin Chen
- College of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Lorenzatti D, Filtz A, Latib A, DeRose J, Dey D, Berman DS, Garcia MJ, Slipczuk L. Rapidly progressive coronary atherosclerosis in a young male: a retrospective advanced CCT phenotype analysis. Int J Cardiovasc Imaging 2024; 40:2221-2225. [PMID: 39138786 PMCID: PMC11499402 DOI: 10.1007/s10554-024-03216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
We present a real-life case of a very young man with multiple risk factors who progressed rapidly from minimally obstructive non-calcified plaque on computed tomography angiography (CCTA) to severe three-vessel coronary disease presenting with STEMI. It questions the reliability of zero coronary calcium in high-risk subgroups like familial hypercholesterolemia, high Lp(a), and the young. While CCTA can accurately visualize non-calcified plaque, its interpretation requires expertise and clinical judgment should consider both imaging and clinical risk factors for management. Advanced plaque quantification, peri-coronary (PCAT), and epicardial (EAT) adipose tissue could help better-stratified patients but the evidence-based clinical application remains unknown.
Collapse
Affiliation(s)
- Daniel Lorenzatti
- Cardiology Division, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210st Bronx, Bronx, NY, 10467, USA
| | - Annalisa Filtz
- Cardiology Division, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210st Bronx, Bronx, NY, 10467, USA
- IRCCS Ospedale Ca' Granda Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Azeem Latib
- Cardiology Division, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210st Bronx, Bronx, NY, 10467, USA
| | - Joseph DeRose
- IRCCS Ospedale Ca' Granda Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Damini Dey
- Department of Cardiovascular and Thoracic Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel S Berman
- Department of Cardiovascular and Thoracic Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mario J Garcia
- Cardiology Division, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210st Bronx, Bronx, NY, 10467, USA
| | - Leandro Slipczuk
- Cardiology Division, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210st Bronx, Bronx, NY, 10467, USA.
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Nurmohamed NS, Min JK, Anthopolos R, Reynolds HR, Earls JP, Crabtree T, Mancini GBJ, Leipsic J, Budoff MJ, Hague CJ, O'Brien SM, Stone GW, Berger JS, Donnino R, Sidhu MS, Newman JD, Boden WE, Chaitman BR, Stone PH, Bangalore S, Spertus JA, Mark DB, Shaw LJ, Hochman JS, Maron DJ. Atherosclerosis quantification and cardiovascular risk: the ISCHEMIA trial. Eur Heart J 2024; 45:3735-3747. [PMID: 39101625 PMCID: PMC11439108 DOI: 10.1093/eurheartj/ehae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 07/06/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND AND AIMS The aim of this study was to determine the prognostic value of coronary computed tomography angiography (CCTA)-derived atherosclerotic plaque analysis in ISCHEMIA. METHODS Atherosclerosis imaging quantitative computed tomography (AI-QCT) was performed on all available baseline CCTAs to quantify plaque volume, composition, and distribution. Multivariable Cox regression was used to examine the association between baseline risk factors (age, sex, smoking, diabetes, hypertension, ejection fraction, prior coronary disease, estimated glomerular filtration rate, and statin use), number of diseased vessels, atherosclerotic plaque characteristics determined by AI-QCT, and a composite primary outcome of cardiovascular death or myocardial infarction over a median follow-up of 3.3 (interquartile range 2.2-4.4) years. The predictive value of plaque quantification over risk factors was compared in an area under the curve (AUC) analysis. RESULTS Analysable CCTA data were available from 3711 participants (mean age 64 years, 21% female, 79% multivessel coronary artery disease). Amongst the AI-QCT variables, total plaque volume was most strongly associated with the primary outcome (adjusted hazard ratio 1.56, 95% confidence interval 1.25-1.97 per interquartile range increase [559 mm3]; P = .001). The addition of AI-QCT plaque quantification and characterization to baseline risk factors improved the model's predictive value for the primary outcome at 6 months (AUC 0.688 vs. 0.637; P = .006), at 2 years (AUC 0.660 vs. 0.617; P = .003), and at 4 years of follow-up (AUC 0.654 vs. 0.608; P = .002). The findings were similar for the other reported outcomes. CONCLUSIONS In ISCHEMIA, total plaque volume was associated with cardiovascular death or myocardial infarction. In this highly diseased, high-risk population, enhanced assessment of atherosclerotic burden using AI-QCT-derived measures of plaque volume and composition modestly improved event prediction.
Collapse
Affiliation(s)
- Nick S Nurmohamed
- Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Division of Cardiology, The George Washington University School of Medicine, 2150 Pennsylvania Avenue NW, Washington, DC 20037, USA
| | | | | | | | - James P Earls
- Cleerly, Inc, Denver, CO, USA
- Department of Radiology, The George Washington University School of Medicine, Washington, DC, USA
| | | | - G B John Mancini
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathon Leipsic
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Cameron J Hague
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Gregg W Stone
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey S Berger
- New York University Grossman School of Medicine, New York, NY, USA
| | - Robert Donnino
- New York University Grossman School of Medicine, New York, NY, USA
| | | | | | - William E Boden
- VA New England Healthcare System, Boston University School of Medicine, Boston, MA, USA
| | - Bernard R Chaitman
- St Louis University School of Medicine Center for Comprehensive Cardiovascular Care, St Louis, MO, USA
| | | | - Sripal Bangalore
- New York University Grossman School of Medicine, New York, NY, USA
| | - John A Spertus
- University of Missouri—Kansas City’s Healthcare Institute for Innovations in Quality and Saint Luke’s Mid America Heart Institute, Kansas City, MO, USA
| | | | - Leslee J Shaw
- Bronfman Department of Medicine (Cardiology), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judith S Hochman
- New York University Grossman School of Medicine, New York, NY, USA
| | - David J Maron
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Salvas JP, Ramchandani J, Patel P, Aridi T, Vora K, Smolensky O, Olsen K, Dharmakumar R, Raman SV. Lipoprotein(a) and coronary artery disease burden in patients with diabetes. J Cardiovasc Comput Tomogr 2024:S1934-5925(24)00389-7. [PMID: 38991888 DOI: 10.1016/j.jcct.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Affiliation(s)
- John P Salvas
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Purva Patel
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek Aridi
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Keyur Vora
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Rohan Dharmakumar
- Indiana University School of Medicine, Indianapolis, IN, USA; Krannert Cardiovascular Research Center, Indiana University, Indianapolis, IN, USA
| | | |
Collapse
|
6
|
Wu L, Liu H, Xu X, Huang C, Li Y, Xiao X, Zhan Y, Gao C. Serum N-glycomic profiling identifies candidate biomarker panels for assessing coronary artery stenosis severity. Heliyon 2024; 10:e29443. [PMID: 38633623 PMCID: PMC11021961 DOI: 10.1016/j.heliyon.2024.e29443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Stenosis severity may escalate over the course of coronary artery disease (CAD), increasing the risk of death for the patient. Conventionally, the assessment of stenosis degree relies on invasive coronary angiography (ICA), an invasive examination unsuitable for patients in poor physical condition or those with contrast allergies and one that imposes a psychological burden on patients. Although abnormal serum N-glycan profiles have exhibited robust associations with various cardiovascular diseases, including CAD, their potential in diagnosing CAD stenosis remains to be determined. In this study, we performed a comprehensive analysis of serum N-glycome from 132 patients who underwent ICA and 27 healthy controls using MALDI-TOF-mass spectrometry. The patients who underwent ICA examination were categorized into four groups based on stenosis severity: no/mild/moderate/severe stenosis. Twenty-seven N-glycans were directly quantified, and 47 derived glycan traits were obtained. Notably, among these 74 glycan features, 18 exhibited variations across the study groups. Using a combination of least absolute shrinkage and selection operator and logistic regression analyses, we developed five diagnostic models for recognizing stenosis degree. Our results suggested that alterations in serum N-glycosylation modifications might be valuable for identifying stenosis degree and monitoring disease progression in individuals with CAD. It is expected to offer a noninvasive alternative for those who could not undergo ICA because of various reasons. However, the diagnostic potential of serum N-glycan panels as biomarkers requires multicenter, large cohort validation in the future.
Collapse
Affiliation(s)
- Linlin Wu
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Haoqi Liu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Xuewen Xu
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Chenjun Huang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Yueyue Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, China
| | - Xiao Xiao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Yueping Zhan
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| | - Chunfang Gao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China
| |
Collapse
|
7
|
Nurmohamed NS, Bom MJ, Jukema RA, de Groot RJ, Driessen RS, van Diemen PA, de Winter RW, Gaillard EL, Sprengers RW, Stroes ESG, Min JK, Earls JP, Cardoso R, Blankstein R, Danad I, Choi AD, Knaapen P. AI-Guided Quantitative Plaque Staging Predicts Long-Term Cardiovascular Outcomes in Patients at Risk for Atherosclerotic CVD. JACC Cardiovasc Imaging 2024; 17:269-280. [PMID: 37480907 DOI: 10.1016/j.jcmg.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND The recent development of artificial intelligence-guided quantitative coronary computed tomography angiography analysis (AI-QCT) has enabled rapid analysis of atherosclerotic plaque burden and characteristics. OBJECTIVES This study set out to investigate the 10-year prognostic value of atherosclerotic burden derived from AI-QCT and to compare the spectrum of plaque to manually assessed coronary computed tomography angiography (CCTA), coronary artery calcium scoring (CACS), and clinical risk characteristics. METHODS This was a long-term follow-up study of 536 patients referred for suspected coronary artery disease. CCTA scans were analyzed with AI-QCT and plaque burden was classified with a plaque staging system (stage 0: 0% percentage atheroma volume [PAV]; stage 1: >0%-5% PAV; stage 2: >5%-15% PAV; stage 3: >15% PAV). The primary major adverse cardiac event (MACE) outcome was a composite of nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, and all-cause mortality. RESULTS The mean age at baseline was 58.6 years and 297 patients (55%) were male. During a median follow-up of 10.3 years (IQR: 8.6-11.5 years), 114 patients (21%) experienced the primary outcome. Compared to stages 0 and 1, patients with stage 3 PAV and percentage of noncalcified plaque volume of >7.5% had a more than 3-fold (adjusted HR: 3.57; 95% CI 2.12-6.00; P < 0.001) and 4-fold (adjusted HR: 4.37; 95% CI: 2.51-7.62; P < 0.001) increased risk of MACE, respectively. Addition of AI-QCT improved a model with clinical risk factors and CACS at different time points during follow-up (10-year AUC: 0.82 [95% CI: 0.78-0.87] vs 0.73 [95% CI: 0.68-0.79]; P < 0.001; net reclassification improvement: 0.21 [95% CI: 0.09-0.38]). Furthermore, AI-QCT achieved an improved area under the curve compared to Coronary Artery Disease Reporting and Data System 2.0 (10-year AUC: 0.78; 95% CI: 0.73-0.83; P = 0.023) and manual QCT (10-year AUC: 0.78; 95% CI: 0.73-0.83; P = 0.040), although net reclassification improvement was modest (0.09 [95% CI: -0.02 to 0.29] and 0.04 [95% CI: -0.05 to 0.27], respectively). CONCLUSIONS Through 10-year follow-up, AI-QCT plaque staging showed important prognostic value for MACE and showed additional discriminatory value over clinical risk factors, CACS, and manual guideline-recommended CCTA assessment.
Collapse
Affiliation(s)
- Nick S Nurmohamed
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands; Division of Cardiology, The George Washington University School of Medicine, Washington, DC, USA. https://twitter.com/NickNurmohamed
| | - Michiel J Bom
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ruurt A Jukema
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robin J de Groot
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Roel S Driessen
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Pepijn A van Diemen
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ruben W de Winter
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Emilie L Gaillard
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Ralf W Sprengers
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - James P Earls
- Division of Cardiology, The George Washington University School of Medicine, Washington, DC, USA; Cleerly Inc, Denver, Colorado, USA
| | - Rhanderson Cardoso
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ron Blankstein
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ibrahim Danad
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Andrew D Choi
- Division of Cardiology, The George Washington University School of Medicine, Washington, DC, USA.
| | - Paul Knaapen
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Rinehart S, Raible SJ, Ng N, Mullen S, Huey W, Rogers C, Pursnani A. Utility of Artificial Intelligence Plaque Quantification: Results of the DECODE Study. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2024; 3:101296. [PMID: 39131216 PMCID: PMC11308844 DOI: 10.1016/j.jscai.2024.101296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 08/13/2024]
Abstract
Background Artificial Intelligence Plaque Analysis (AI-QCPA, HeartFlow) provides, from a CCTA, quantitative plaque burden information including total plaque and plaque subtype volumes. We sought to evaluate the clinical utility of AI-QCPA in clinical decision making. Methods One hundred cases were reviewed by 3 highly experienced practicing cardiologists who are SCCT level 3 CCTA readers. Patients had varying levels of calcium (median CACS: 99.5) and CAD-RADS scores. Initial management plan for each case was a majority decision based upon patient demographics, clinical history, and CCTA report. AI-QCPA was then provided for each patient, and the plan was reconsidered. The primary endpoint was the reclassification rate (RR). In a secondary analysis of 40 cases, the above process was repeated but the initial plan was based upon review of the actual CCTA images. Results RR following AI-QCPA review was 66% (66/100) of cases (95% CI, 56.72%-75.28%). RR ranged from 47% in cases with CACS 0 to 96% in cases with CACS >400, and from 40% in CAD-RADS 1 cases to 94% in CAD-RADS 4 cases. RR was higher in cases with coronary stenoses ≥50% (89.5%) vs cases with stenoses <50% (51.6%). RR was 39% in cases with LDL <70 mg/dL vs 70% in LDL ≥70 mg/dL. Following review of the CCTA images rather than the CCTA report, the RR was 50% (95% CI of 34.51% - 65.49%). The primary reclassification effect was to intensify preventative medical therapy. Conclusions Adding AI-QCPA to CCTA alone leads to a change in clinical care in two-thirds of patients.
Collapse
Affiliation(s)
- Sarah Rinehart
- Charleston Area Medical Center (CAMC), Charleston, West Virginia
| | | | | | | | | | | | - Amit Pursnani
- Department of Medicine, Division of Cardiology, NorthShore University Health System, Evanston, Illinois
| |
Collapse
|
9
|
Van Spall HGC, Bastien A, Gersh B, Greenberg B, Mohebi R, Min J, Strauss K, Thirstrup S, Zannad F. The role of early-phase trials and real-world evidence in drug development. NATURE CARDIOVASCULAR RESEARCH 2024; 3:110-117. [PMID: 39196202 DOI: 10.1038/s44161-024-00420-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/22/2023] [Indexed: 08/29/2024]
Abstract
Phase 3 randomized controlled trials (RCTs), while the gold standard for treatment efficacy and safety, are not always feasible, are expensive, can be prolonged and can be limited in generalizability. Other under-recognized sources of evidence can also help advance drug development. Basic science, proof-of-concept studies and early-phase RCTs can provide evidence regarding the potential for clinical benefit. Real-world evidence generated from registries or observational datasets can provide insights into the treatment of rare diseases that often pose a challenge for trial recruitment. Pragmatic trials embedded in healthcare systems can assess the treatment effects in clinical settings among patient populations sometimes excluded from trials. This Perspective discusses potential sources of evidence that may be used to complement explanatory phase 3 RCTs and to speed the development of new cardiovascular medications. Content is derived from the 19th Global Cardiovascular Clinical Trialists meeting (December 2022), involving clinical trialists, patients, clinicians, regulators, funders and industry representatives.
Collapse
Affiliation(s)
- Harriette G C Van Spall
- Department of Medicine, Department of Health Research Methods, Evidence, and Impact; Research Institute of St. Joseph's, McMaster University, Hamilton, Ontario, Canada
- Baim Institute for Clinical Research, Boston, MA, USA
| | | | - Bernard Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Barry Greenberg
- Division of Cardiology, UC San Diego Health, San Diego, CA, USA
| | - Reza Mohebi
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Faiez Zannad
- Université de Lorraine, Inserm Clinical Investigation Center at Institut Lorrain du Coeur et des Vaisseaux, University Hospital of Nancy, Nancy, France.
| |
Collapse
|
10
|
Lozano-Velasco E, Inácio JM, Sousa I, Guimarães AR, Franco D, Moura G, Belo JA. miRNAs in Heart Development and Disease. Int J Mol Sci 2024; 25:1673. [PMID: 38338950 PMCID: PMC10855082 DOI: 10.3390/ijms25031673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cardiovascular diseases (CVD) are a group of disorders that affect the heart and blood vessels. They include conditions such as myocardial infarction, coronary artery disease, heart failure, arrhythmia, and congenital heart defects. CVDs are the leading cause of death worldwide. Therefore, new medical interventions that aim to prevent, treat, or manage CVDs are of prime importance. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the posttranscriptional level and play important roles in various biological processes, including cardiac development, function, and disease. Moreover, miRNAs can also act as biomarkers and therapeutic targets. In order to identify and characterize miRNAs and their target genes, scientists take advantage of computational tools such as bioinformatic algorithms, which can also assist in analyzing miRNA expression profiles, functions, and interactions in different cardiac conditions. Indeed, the combination of miRNA research and bioinformatic algorithms has opened new avenues for understanding and treating CVDs. In this review, we summarize the current knowledge on the roles of miRNAs in cardiac development and CVDs, discuss the challenges and opportunities, and provide some examples of recent bioinformatics for miRNA research in cardiovascular biology and medicine.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (D.F.)
| | - José Manuel Inácio
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| | - Inês Sousa
- Genome Medicine Lab, Department of Medical Sciences, Institute for Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (I.S.); (A.R.G.); (G.M.)
| | - Ana Rita Guimarães
- Genome Medicine Lab, Department of Medical Sciences, Institute for Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (I.S.); (A.R.G.); (G.M.)
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (D.F.)
| | - Gabriela Moura
- Genome Medicine Lab, Department of Medical Sciences, Institute for Biomedicine–iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (I.S.); (A.R.G.); (G.M.)
| | - José António Belo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| |
Collapse
|
11
|
Heusch G. Myocardial ischemia/reperfusion: Translational pathophysiology of ischemic heart disease. MED 2024; 5:10-31. [PMID: 38218174 DOI: 10.1016/j.medj.2023.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Ischemic heart disease is the greatest health burden and most frequent cause of death worldwide. Myocardial ischemia/reperfusion is the pathophysiological substrate of ischemic heart disease. Improvements in prevention and treatment of ischemic heart disease have reduced mortality in developed countries over the last decades, but further progress is now stagnant, and morbidity and mortality from ischemic heart disease in developing countries are increasing. Significant problems remain to be resolved and require a better pathophysiological understanding. The present review attempts to briefly summarize the state of the art in myocardial ischemia/reperfusion research, with a view on both its coronary vascular and myocardial aspects, and to define the cutting edges where further mechanistic knowledge is needed to facilitate translation to clinical practice.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
12
|
Petry N, Forest K, Wilke RA. The expanding role of HLA gene tests for predicting drug side effects. Am J Med Sci 2024; 367:14-20. [PMID: 37838157 DOI: 10.1016/j.amjms.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Adverse drug reactions can be either dose-dependent (Type A) or idiosyncratic (Type B). Type B adverse drug reactions tend to be extremely rare and difficult to predict. They are usually immune-mediated. Examples include severe skin reactions and drug-induced liver injury. For many commonly prescribed drugs (such as antibiotics), the risk of developing an idiosyncratic adverse drug reaction is influenced by variability in the human leukocyte antigen (HLA) genes. Because these HLA-mediated adverse drug reactions can be lethal, there is growing interest in defining which specific drug-gene relationships might benefit from pre-emptive HLA genotyping and automated clinical decision support. This review summarizes the literature for HLA-mediated adverse reactions linked to common drugs.
Collapse
Affiliation(s)
- Natasha Petry
- School of Pharmacy, North Dakota State University, Fargo, ND 58102, USA
| | - Kennedy Forest
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Russell A Wilke
- Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
13
|
Omori H, Matsuo H, Fujimoto S, Sobue Y, Nozaki Y, Nakazawa G, Takahashi K, Osawa K, Okubo R, Kaneko U, Sato H, Kajiya T, Miyoshi T, Ichikawa K, Abe M, Kitagawa T, Ikenaga H, Saji M, Iguchi N, Ijichi T, Mikamo H, Kurata A, Moroi M, Iijima R, Malkasian S, Crabtree T, Min JK, Earls JP, Nakanishi R. Determination of lipid-rich plaques by artificial intelligence-enabled quantitative computed tomography using near-infrared spectroscopy as reference. Atherosclerosis 2023; 386:117363. [PMID: 37944269 DOI: 10.1016/j.atherosclerosis.2023.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Artificial intelligence quantitative CT (AI-QCT) determines coronary plaque morphology with high efficiency and accuracy. Yet, its performance to quantify lipid-rich plaque remains unclear. This study investigated the performance of AI-QCT for the detection of low-density noncalcified plaque (LD-NCP) using near-infrared spectroscopy-intravascular ultrasound (NIRS-IVUS). METHODS The INVICTUS Registry is a multi-center registry enrolling patients undergoing clinically indicated coronary CT angiography and IVUS, NIRS-IVUS, or optical coherence tomography. We assessed the performance of various Hounsfield unit (HU) and volume thresholds of LD-NCP using maxLCBI4mm ≥ 400 as the reference standard and the correlation of the vessel area, lumen area, plaque burden, and lesion length between AI-QCT and IVUS. RESULTS This study included 133 atherosclerotic plaques from 47 patients who underwent coronary CT angiography and NIRS-IVUS The area under the curve of LD-NCP<30HU was 0.97 (95% confidence interval [CI]: 0.93-1.00] with an optimal volume threshold of 2.30 mm3. Accuracy, sensitivity, and specificity were 94% (95% CI: 88-96%], 93% (95% CI: 76-98%), and 94% (95% CI: 88-98%), respectively, using <30 HU and 2.3 mm3, versus 42%, 100%, and 27% using <30 HU and >0 mm3 volume of LD-NCP (p < 0.001 for accuracy and specificity). AI-QCT strongly correlated with IVUS measurements; vessel area (r2 = 0.87), lumen area (r2 = 0.87), plaque burden (r2 = 0.78) and lesion length (r2 = 0.88), respectively. CONCLUSIONS AI-QCT demonstrated excellent diagnostic performance in detecting significant LD-NCP using maxLCBI4mm ≥ 400 as the reference standard. Additionally, vessel area, lumen area, plaque burden, and lesion length derived from AI-QCT strongly correlated with respective IVUS measurements.
Collapse
Affiliation(s)
- Hiroyuki Omori
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Shinichiro Fujimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Yoshihiro Sobue
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Yui Nozaki
- Department of Cardiovascular Biology and Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Gaku Nakazawa
- Department of Cardiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kuniaki Takahashi
- Department of Cardiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuhiro Osawa
- Department of General Internal Medicine 3, Kawasaki Medical School General Medical Center, Okayama Red-Cross Hospital, Okayama, Japan
| | - Ryo Okubo
- Toho University Omori Medical Center, Tokyo, Japan
| | | | - Hideyuki Sato
- Edogawa Hospital Tokyo, Japan; Department of Radiological Technology, Juntendo University Hospital, Tokyo, Japan
| | | | - Toru Miyoshi
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keishi Ichikawa
- Department of Cardiovascular Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | | | - Toshiro Kitagawa
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroki Ikenaga
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mike Saji
- Toho University Omori Medical Center, Tokyo, Japan; Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Nobuo Iguchi
- Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Takeshi Ijichi
- Department of Cardiology, Tokai University, School of Medicine, Kanagawa, Japan
| | - Hiroshi Mikamo
- Department of Cardiology, Toho University Sakura Medical Center, Chiba, Japan
| | - Akira Kurata
- Department of Cardiology, Shikoku Cancer Center, Department of Radiology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Raisuke Iijima
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | | | | | | | - James P Earls
- Cleerly Inc., CO, USA; George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | |
Collapse
|
14
|
Almassabi RF, Mir R, Javid J, AbuDuhier FM, Almotairi R, Alhelali MH, Algehainy N, Alsaedi BSO, Albalawi SO, Elfaki I. Differential Expression of Serum Proinflammatory Cytokine TNF-α and Genetic Determinants of TNF-α, CYP2C19*17, miR-423 Genes and Their Effect on Coronary Artery Disease Predisposition and Progression. Life (Basel) 2023; 13:2142. [PMID: 38004282 PMCID: PMC10672292 DOI: 10.3390/life13112142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death and hospitalization worldwide and represents a problem for public health systems everywhere. In Saudi Arabia, the prevalence of CAD is estimated to be 5.5%. Risk factors for CAD include older age, male gender, obesity, high blood pressure, smoking, diabetes, hyperlipidemia, and genetic factors. Reducing the risk factors in susceptible individuals will decrease the prevalence of CAD. Genome wide association studies have helped to reveal the association of many loci with diseases like CAD. In this study, we examined the link between single nucleotide variations (SNVs) of TNF-α-rs1800629 G>A, CYP2C19*17 (rs12248560) C>T, and miR-423 rs6505162 C>A and the expression of TNF-α with CAD. We used the mutation specific PCR, ARMS-PCR, and ELISA. The results showed that the A allele of the TNF-α rs1800629 G>A SNP is linked to CAD with odd ratio (OR) (95% CI) = 2.10, p-value = 0.0013. The T allele of the CYP2C19*17 (rs12248560) C>T is linked to CAD with OR (95% CI) = 2.02, p-value = 0.003. In addition, the A allele of the miR-423 rs6505162 C>A SNV is linked to CAD with OR (95% CI) = 1.49, p-value = 0.036. The ELISA results indicated that the TNF-α serum levels are significantly increased in CAD patients compared to healthy controls. We conclude the TNF-α rs1800629 G>A, CYP2C19*17, and miR-423 rs6505162 C>A are potential genetic loci for CAD in the Saudi population. These findings require further verification in future studies. After being verified, our results might be utilized in genetic testing to identify individuals that are susceptible to CAD and, therefore, for whom reducing modifiable risk factors (e.g., poor diet, diabetes, obesity, and smoking) would result in prevention or delay of CAD.
Collapse
Affiliation(s)
- Rehab F. Almassabi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rashid Mir
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Jamsheed Javid
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Faisel M. AbuDuhier
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Reema Almotairi
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Marwan H. Alhelali
- Department of Statistics, University of Tabuk, Tabuk 47512, Saudi Arabia; (M.H.A.); (B.S.O.A.)
| | - Naseh Algehainy
- Department of Medical Lab Technology, Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (J.J.); (F.M.A.); (R.A.); (N.A.)
| | - Basim S. O. Alsaedi
- Department of Statistics, University of Tabuk, Tabuk 47512, Saudi Arabia; (M.H.A.); (B.S.O.A.)
| | - Salem Owaid Albalawi
- Department of Cardiology, King Fahd Specialist Hospital, Tabuk 71491, Saudi Arabia;
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
15
|
Muneeb M, Nuzhat N, Khan Niazi A, Khan AH, Chatha Z, Kazmi T, Farhat S. Assessment of the Dimensions of Coronary Arteries for the Manifestation of Coronary Artery Disease. Cureus 2023; 15:e46606. [PMID: 37937019 PMCID: PMC10625989 DOI: 10.7759/cureus.46606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
INTRODUCTION The size of the coronary artery influences the effective outcome of therapeutic measures like coronary artery bypass graft (CABG) surgery, percutaneous coronary interventions (PCI), and diagnosis of coronary artery disease. Patients' age, gender, BMI, anatomical variations, and increased left ventricular size all have an effect on coronary artery parameters. OBJECTIVE This study aims to compare the average size of the coronary arteries of the Pakistani population in both sexes for manifestation of coronary artery disease. METHODOLOGY For the analysis of the coronary arteries, 100 patients of both sexes, male and female, were taken. X-ray angiography was performed for two-dimensional images of coronary arteries. For diameter measurement, images were visualized on quantitative coronary angiography (QCA) in different views (caudal and cranial views). The diameters of the left main coronary artery (left main stem/LMS), left anterior descending (LAD), left circumflex (LCx), and right coronary artery (RCA) were measured on angiograms. Data about the dimensions of the coronary artery was gathered through quantitative angiography. Data analysis was done through SPSS version 26 (IBM Corp., Armonk, NY). RESULTS There is a notable distinction in the average diameters among the proximal LAD (3.12), mid-LAD (2.40), and distal LAD (1.29). A statistically significant difference is evident among mid-LCx, distal LCx, and proximal LCx (p-value < 0.001). Likewise, the average diameter of the distal RCA (1.89) was smaller when compared to the mid-RCA (3.19) and proximal RCA (3.78). However, there was no significant difference in the average diameter among mid-LMS, distal LMS, and proximal LMS (p-value = 0.09). CONCLUSION The average diameter of distal RCA was smaller when compared to mid-RCA and proximal RCA. The average size of proximal LAD and proximal LCx was comparatively larger than mid- and distal LAD and LCx. The findings of current research will be beneficial for the diagnosis and management of coronary artery disease patients.
Collapse
Affiliation(s)
- Muhammad Muneeb
- Interventional Cardiology, Shalamar Medical and Dental College, Lahore, PAK
| | - Nasia Nuzhat
- Applied Physics, University of Engineering and Technology, Lahore, PAK
| | | | - Ammar H Khan
- Cardiovascular Surgery, Imran Idrees Hospital, Sialkot, PAK
| | - Zanib Chatha
- Interventional Cardiology, Shalamar Medical and Dental College, Lahore, PAK
| | - Tahseen Kazmi
- Community Medicine, Central Park Medical College, Lahore, PAK
| | - Saira Farhat
- Community Medicine, Central Park Medical College, Lahore, PAK
| |
Collapse
|
16
|
Toska E, Mayrovitz HN. Opioid Impacts on Cardiovascular Health. Cureus 2023; 15:e46224. [PMID: 37905258 PMCID: PMC10613512 DOI: 10.7759/cureus.46224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
The prevalence of opioid use in the current opioid epidemic era has led to a public health emergency due to the ties to mortality and morbidity. Studies have investigated opioids' impacts on different aspects of cardiovascular health, although there seems to be a lack of a current concise review. Therefore, the aim of this literature review is to provide a summary of the most recent studies from the past decade that postulate a connection between opioids and their impact on cardiovascular health while highlighting conflicting areas among published research. For this literature review, three databases, PubMed (NLM), EMBASE, and Web of Science (Core Collection), were searched for full peer-reviewed articles written in English about human subjects and published between 2013 and 2023 inclusive. The following initial approach was to search for terms in the title of articles: "opioid AND ("vascular" OR "artery" OR "vein" OR "heart rate" OR "infarct" OR "stroke" OR "aortic" OR "cardiovascular disease"). After assessing for duplicate articles from the three databases, the remaining articles were assessed for inclusion eligibility. In the present review, a brief description of the overall role of opioid receptors is provided followed by the literature findings. These findings indicate potentially important negative impacts of opioid use on cardiovascular health in a number of areas. These include opioid-associated increases in the following: (1) vascular aging based on demonstrated increases in arterial stiffness, (2) opioid-related reductions in heart rate variability (HRV) and its implications on morbidity and mortality, (3) opioid's impacts on coronary artery and coronary heart disease (CHD), (4) opioids as a risk factor for atrial fibrillation (AF) and (5) opioid use as a risk factor for vascular occlusion processes. In addition to these broad cardiovascular effects, other aspects of concern are related to the potential impacts of withdrawal from opioid use, which, when done rapidly, are associated with increases in blood pressure and a decrease in HRV.
Collapse
Affiliation(s)
- Erjola Toska
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Harvey N Mayrovitz
- Medical Education, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|