1
|
Liu C, Xiong J, Yi X, Song S, Yang H, Tan W, Yang X, Zheng L, Yu J, Xu C. Decreased plasma ELABELA level as a novel screening indicator for heart failure: a cohort and observational study. Sci Rep 2024; 14:11333. [PMID: 38760403 PMCID: PMC11101417 DOI: 10.1038/s41598-024-61480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
The predictive power of B-type natriuretic peptide (BNP) and left ventricular ejection fraction (LVEF) is limited by its low specificity in patients with heart failure (HF). Discovery of more novel biomarkers for HF better diagnosis is necessary and urgent. ELABELA, an early endogenous ligand for the G protein-coupled receptor APJ (Apelin peptide jejunum, Apelin receptor), exhibits cardioprotective actions. However, the relationship between plasma ELABELA and cardiac function in HF patients is unclear. To evaluate plasma ELABELA level and its diagnostic value in HF patients, a total of 335 patients with or without HF were recruited for our monocentric observational study. Plasma ELABELA and Apelin levels were detected by immunoassay in all patients. Spearman correlation analysis was used to analyze the correlation between plasma ELABELA or Apelin levels and study variables. The receiver operating characteristic curves were used to access the predictive power of plasma ELABELA or Apelin levels. Plasma ELABELA levels were lower, while plasma Apelin levels were higher in HF patients than in non-HF patients. Plasma ELABELA levels were gradually decreased with increasing New York Heart Association grade or decreasing LVEF. Plasma ELABELA levels were negatively correlated with BNP, left atrial diameter, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and left ventricular posterior wall thickness and positively correlated with LVEF in HF patients. In contrast, the correlation between plasma Apelin levels and these parameters is utterly opposite to ELABELA. The diagnostic value of ELABELA, Apelin, and LVEF for all HF patients was 0.835, 0.673, and 0.612; the sensitivity was 62.52, 66.20, and 32.97%; and the specificity was 95.92, 67.23, and 87.49%, respectively. All these parameters in HF patients with preserved ejection fraction were comparable to those in total HF patients. Overall, plasma ELABELA levels were significantly reduced and negatively correlated with cardiac function in HF patients. Decreased plasma ELABELA levels may function as a novel screening biomarker for HF. A combined assessment of BNP and ELABELA may be a good choice to increase the accuracy of the diagnosis of HF.
Collapse
Affiliation(s)
- Chunju Liu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Jianhua Xiong
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shanshan Song
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiru Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Wenting Tan
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiaojun Yang
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Lixiang Zheng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
2
|
Relaxin-2 plasma levels in atrial fibrillation are linked to inflammation and oxidative stress markers. Sci Rep 2022; 12:22287. [PMID: 36566255 PMCID: PMC9789945 DOI: 10.1038/s41598-022-26836-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Relaxin-2 exerts many favourable cardiovascular effects in pathological circumstances such as atrial fibrillation (AF) and heart failure, but the mechanisms underlying its actions are not completely understood. Since inflammation and fibrosis are pivotal processes in the pathogenesis of AF, our aim was to study the relationship between relaxin-2 plasma levels in left atrium (LA) and peripheral vein with molecules implicated in fibrosis, inflammation and oxidative stress in AF patients, and to evaluate the anti-fibrotic ability of relaxin-2 in normal human atrial cardiac fibroblasts (NHCF-A). Peripheral vein relaxin-2 plasma levels were higher than LA relaxin-2 plasma levels in men while, in women, peripheral vein relaxin-2 levels were increased compared to men. AF patients with higher levels of relaxin-2 exhibited a reduction in H2O2 plasma levels and in mRNA levels of alpha-defensin 3 (DEFA3) and IL-6 in leucocytes from LA plasma. Relaxin-2-in-vitro treatment inhibited NHCF-A migration and decreased mRNA and protein levels of the pro-fibrotic molecule transforming growth factor-β1 (TGF-β1). Our results support an association between relaxin-2 and molecules involved in fibrosis, inflammation and oxidative stress in AF patients, and reinforce an anti-fibrotic protective role of this hormone in NHCF-A; strengthening the relevance of relaxin-2 in AF physiopathology, diagnosis and treatment.
Collapse
|
3
|
Relaxin-2 as a Potential Biomarker in Cardiovascular Diseases. J Pers Med 2022; 12:jpm12071021. [PMID: 35887517 PMCID: PMC9317583 DOI: 10.3390/jpm12071021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
The pleiotropic hormone relaxin-2 plays a pivotal role in the physiology and pathology of the cardiovascular system. Relaxin-2 exerts relevant regulatory functions in cardiovascular tissues through the specific receptor relaxin family peptide receptor 1 (RXFP1) in the regulation of cardiac metabolism; the induction of vasodilatation; the reversion of fibrosis and hypertrophy; the reduction of inflammation, oxidative stress, and apoptosis; and the stimulation of angiogenesis, with inotropic and chronotropic effects as well. Recent preclinical and clinical outcomes have encouraged the potential use of relaxin-2 (or its recombinant form, known as serelaxin) as a therapeutic strategy during cardiac injury and/or in patients suffering from different cardiovascular disarrangements, especially heart failure. Furthermore, relaxin-2 has been proposed as a promising biomarker of cardiovascular health and disease. In this review, we emphasize the relevance of the endogenous hormone relaxin-2 as a useful diagnostic biomarker in different backgrounds of cardiovascular pathology, such as heart failure, atrial fibrillation, myocardial infarction, ischemic heart disease, aortic valve disease, hypertension, and atherosclerosis, which could be relevant in daily clinical practice and could contribute to comprehending the specific role of relaxin-2 in cardiovascular diseases.
Collapse
|
4
|
Increased plasma level of apelin with NYHA grade II and III but not IV. Amino Acids 2020; 52:823-829. [PMID: 32388793 DOI: 10.1007/s00726-020-02855-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
|
5
|
Chen TY, Li X, Hung CH, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease. Mol Genet Genomic Med 2020; 8:e1194. [PMID: 32100955 PMCID: PMC7196478 DOI: 10.1002/mgg3.1194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Relaxin/relaxin family peptide receptor 1 (RXFP1) signaling is important for both normal physiology and disease. Strong preclinical evidence supports relaxin as a potent antifibrotic molecule. However, relaxin‐based therapy failed in clinical trial in patients with systemic sclerosis. We and others have discovered that aberrant expression of RXFP1 may contribute to the abnormal relaxin/RXFP1 signaling in different diseases. Reduced RXFP1 expression and alternative splicing transcripts with potential functional consequences have been observed in fibrotic tissues. A relative decrease in RXFP1 expression in fibrotic tissues—specifically lung and skin—may explain a potential insensitivity to relaxin. In addition, receptor dimerization also plays important roles in relaxin/RXFP1 signaling. Methods This review describes the tissue specific expression, characteristics of the splicing variants, and homo/heterodimerization of RXFP1 in both normal physiological function and human diseases. We discuss the potential implications of these molecular features for developing therapeutics to restore relaxin/RXFP1 signaling and to harness relaxin's potential antifibrotic effects. Results Relaxin/RXFP1 signaling is important in both normal physiology and in human diseases. Reduced expression of RXFP1 in fibrotic lung and skin tissues surrenders both relaxin/RXFP1 signaling and their responsiveness to exogenous relaxin treatments. Alternative splicing and receptor dimerization are also important in regulating relaxin/RXFP1 signaling. Conclusions Understanding the molecular mechanisms that drive aberrant expression of RXFP1 in disease and the functional roles of alternative splicing and receptor dimerization will provide insight into therapeutic targets that may restore the relaxin responsiveness of fibrotic tissues.
Collapse
Affiliation(s)
- Ting-Yun Chen
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ching-Hsia Hung
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Harinath Bahudhanapati
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiangning Tan
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Kass
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Stewart DR. Commercial immunoassays for human relaxin-2. Mol Cell Endocrinol 2019; 487:94-97. [PMID: 30633956 DOI: 10.1016/j.mce.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
Several different immunoassays have been used in the commercial pharmaceutical development of serelaxin. These assays have been well validated for submission of GLP preclinical and clinical studies to the FDA and EU regulatory bodies. The requirements for these assays exceed that of most research assays commonly developed in academic research but have been and are currently available to academic researchers. Additionally, many human relaxin immunoassays are commercially available from a variety of vendors. Validation procedures for immunoassays are well understood and documented, however validation of these assays is often lacking or completely absent. The data derived from these assays must be questioned if the investigator does not supply information on the validation of the assay used, either from the supplier or through their own efforts. Many recent papers on determination of serum relaxin in clinical settings have recently been published. The assay used for this determination varies but generally is one of two commercially available. These manuscripts and the assay used is discussed. Direct comparisons of assays are lacking but some general conclusions can be drawn by comparing results from similar studies using different assays. There is disagreement among the results of the concentrations of serum relaxin from the use of different assays that raise questions on assay reliability. The differences in the quality of immunoassays used for detection of serum relaxin should be part of the decisions making process in choosing an assay. While the end user bears the ultimate responsibility to demonstrate the assay is valid for the stated claims, reviewers and editors also share responsibility for quality of published results.
Collapse
Affiliation(s)
- Dennis R Stewart
- Molecular Medicine Research Institute, 428 Oakmead Pkwy, Sunnyvale, CA, 94085, USA.
| |
Collapse
|
7
|
Abstract
The hormone relaxin has long been recognized for its involvement in maternal adaptation during pregnancy. However, discoveries during the past two decades on the mechanism of action of relaxin, its family of receptors, and newly described roles in attenuating ischemia/reperfusion (I/R) injury, inflammation, and arrhythmias have prompted vast interest in exploring its therapeutic potential in cardiovascular disease. These observations inspired recently concluded clinical trials in patients with acute heart failure. This review discusses our current understanding of the protective signaling pathways elicited by relaxin in the heart, and highlights important new breakthroughs about relaxin signaling that may pave the way to more carefully designed future trials.
Collapse
Affiliation(s)
- Teja Devarakonda
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA.
| |
Collapse
|