1
|
Deng Y, Nong Z, Wei M, Xu Y, Luo Y, Li X, Zhao R, Yang Z, Pan L. Characteristics and function of the gut microbiota in patients with IgA nephropathy via metagenomic sequencing technology. Ren Fail 2024; 46:2393754. [PMID: 39177227 PMCID: PMC11346320 DOI: 10.1080/0886022x.2024.2393754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the characteristics and related functional pathways of the gut microbiota in patients with IgA nephropathy (IgAN) through metagenomic sequencing technology. METHODS We enrolled individuals with primary IgAN, including patients with normal and abnormal renal function. Additionally, we recruited healthy volunteers as the healthy control group. Stool samples were collected, and species and functional annotation were performed through fecal metagenome sequencing. We employed linear discriminant analysis effect size (LEfSe) analysis to identify significantly different bacterial microbiota and functional pathways. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to annotate microbiota functions, and redundancy analysis (RDA) was performed to analyze the factors affecting the composition and distribution of the gut microbiota. RESULTS LEfSe analysis revealed differences in the gut microbiota between IgAN patients and healthy controls. The characteristic microorganisms in the IgAN group were classified as Escherichia coli, with a significantly greater abundance than that in the healthy control group (p < 0.05). The characteristic microorganisms in the IgAN group with abnormal renal function were identified as Enterococcaceae, Moraxella, Moraxella, and Acinetobacter. KEGG functional analysis demonstrated that the functional pathways of the microbiota that differed between IgAN patients and healthy controls were related primarily to bile acid metabolism. CONCLUSIONS The status of the gut microbiota is closely associated not only with the onset of IgAN but also with the renal function of IgAN patients. The characteristic gut microbiota may serve as a promising diagnostic biomarker and therapeutic target for IgAN.
Collapse
Affiliation(s)
- Yang Deng
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhiqiang Nong
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Meiju Wei
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanshan Xu
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuzhen Luo
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohua Li
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ruobei Zhao
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhenhua Yang
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Pan
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Yang J, Xiao H, Yao J, Zhang P, Yi B, Fang Z, Guo N, Guan Y, Zhang G. Integrated serum pharmacochemistry, 16S rDNA sequencing, and metabolomics to reveal the material basis and mechanism of Shouhui Tongbian capsule against diphenoxylate-induced slow transit constipation in rats. Chin Med 2024; 19:142. [PMID: 39394615 PMCID: PMC11468123 DOI: 10.1186/s13020-024-01015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Slow transit constipation (STC) is highly prevalent and has rising incidence. Shouhui Tongbian capsule (SHTB) is a traditional Chinese Medicine formula with extensive and highly efficacious usage in STC treatment, however, its mechanism of action, especially the regulation of microbiome and lipid metabolites, remains unclear. METHODS After quality control of SHTB using LC‒MS to obtain its material basis, we tried to elucidate the cohesive modulatory network of SHTB against STC using hyphenated methods from microbiomics, lipidomics, mass spectrometry imaging (MSI) and molecular methods. RESULTS SHTB could repair intestinal barrier damage, reduce systemic inflammation and increase intestinal motility in a diphenoxylate-induced STC rat model. Based on 16S rDNA sequencing results, SHTB rehabilitated the abnormal changes in Alloprevotella, Coprococcus, Marvinbryantia, etc., which were associated with STC symptoms. Meanwhile, microbial functional prediction showed that lipid metabolism was improved with SHTB administration. The differential lipids, including fatty acids, lysophosphatidylcholine, phosphatidylcholine, sphingomyelin triglyceride and ceramide, that are closely related to STC disease and SHTB efficacy. Furthermore, SHTB significantly reversed the abnormal expression of these key target enzymes in colon samples, including CTP-phosphocholine cytidylyltransferase, CTP-phosphoethanolamine cytidylyltransferase, phosphatidic acid phosphatase, acid sphingomyelinase etc. CONCLUSIONS: Combined analysis demonstrated that SHTB reducing lipid accumulation and recovery of intestinal microbial homeostasis was the critical mechanism by which SHTB treats STC.
Collapse
Affiliation(s)
- Jiaying Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - He Xiao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Shandong, 273400, Linyi, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Shandong, 273400, Linyi, China
| | - Pin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Bojiao Yi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Zhengyu Fang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yongxia Guan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Shandong, 273400, Linyi, China.
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Shandong, 273400, Linyi, China.
| |
Collapse
|
3
|
Song H, Liang GQ, Yu MS, Shan Y, Shi J, Jiang CB, Ni DL, Sheng MX. Shen-yan-yi-hao oral solution ameliorates IgA nephropathy via intestinal IL-17/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118335. [PMID: 38754644 DOI: 10.1016/j.jep.2024.118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis in the world, it is one of the most common causes of kidney disease and can lead to end-stage kidney disease, however, its pathogenesis is still complicated. The Shen-yan-yi-hao oral solution (SOLI) is an effective prescription for the clinical treatment of IgAN while its specific mechanism remains to be further elucidated. AIM OF THE STUDY This study investigates SOLI's effects on IgAN in rats, particularly on the intestinal mucosal barrier, and identifies potential therapeutic targets through network pharmacology and molecular docking, validated experimentally. MATERIALS AND METHODS Target genes for SOLI in IgAN were identified and analysed through molecular docking and KEGG pathway enrichment. An IgAN rat model examined SOLI's effect on renal biomarkers and cytokines involved in specific pathways, ileum mucosal lesions, and the intestinal immune system. The IL-17 pathway's role was studied in IEC-6 cells with SOLI in vitro. RESULT Rats developed increased proteinuria and kidney damage marked by IgA deposition and inflammation. SOLI treatment significantly ameliorated these symptoms, reduced galactose-deficient Ig A1 (Gd-IgA1), and decreased cytokines like IL-17, TNF-α, IL-6 and IL-1β etc. SOLI also normalized intestinal tight junction protein expression, ameliorated intestinal damage, and regulated intestinal immune response (focused on IL-17/NF-κB signal pathway). SOLI moderated the abnormally activated IL-17 pathway, which damages intestinal epithelial cells, suggesting IgAN treatment potential. CONCLUSION SOLI reduces proteinuria and enhances intestinal mucosal function in IgAN rats, kidney protection in the IgAN rat model may initiate from modulating the intestinal IL-17/NF-κB pathway and subsequent Gd-IgA1 accumulation.
Collapse
Affiliation(s)
- Huan Song
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China; Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Guo-Qiang Liang
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China; Suzhou Academy of Wumen Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Man-Shu Yu
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Yun Shan
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Jun Shi
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| | - Chun-Bo Jiang
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Dao-Lei Ni
- Nephropathy Department, The Suzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 18 Yangsu Road, Suzhou, 215000, China.
| | - Mei-Xiao Sheng
- Nephropathy Department, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, China.
| |
Collapse
|
4
|
Bai L, Yan X, Qi P, Lv J, Song X, Zhang L. Effect of Transarterial Chemotherapy on the Structure and Function of Gut Microbiota in New Zealand White Rabbits. BIOLOGY 2024; 13:230. [PMID: 38666842 PMCID: PMC11048629 DOI: 10.3390/biology13040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
The gut microbiota (GM) are closely related to hepatocellular carcinoma (HCC) occurrence and development. Furthermore, patients with HCC who have received transcatheter arterial chemoembolization (TACE) treatment often experience adverse gastrointestinal reactions, which may be related to changes in the GM caused by the chemotherapeutic drugs used in TACE. Therefore, we conducted animal experiments to investigate these changes. We analyzed changes in the GM of New Zealand white rabbits treated with hepatic arterial chemotherapy by measuring the levels of serological and colonic tissue markers. Simultaneously, we evaluated the correlation between the GM and these markers to explore the mechanism by which chemotherapy affects the GM. Following transarterial chemotherapy with epirubicin, the Firmicutes abundance decreased, whereas that of Proteobacteria increased. The relative abundance of beneficial bacteria, such as Muribaculaceae, Enterococcus, Ruminococcus, and Clostridia, decreased in the experimental group compared with those in the control group. However, the relative abundance of harmful bacteria, such as Bacteroides and Escherichia (Shigella), was higher in the experimental group than in the control group. Following chemotherapy, the GM of rabbits showed a dynamic change over time, first aggravating and then subsiding. The changes were most notable on the fourth day after surgery and recovered slightly on the seventh day. The changes in the host's GM before and after arterial chemotherapy are evident. Hepatic arterial chemotherapy induces dysbiosis of the intestinal microbiota, disrupts intestinal barrier function, damages the integrity of the intestinal mucosa, increases intestinal permeability, facilitates excessive passage of harmful substances through the gut-liver axis communication between the liver and intestine, and triggers activation of inflammatory pathways such as LPS-TLR-4-pSTAT3, ultimately leading to an inflammatory response. This study provides a theoretical basis for combining TACE with targeted GM intervention to treat HCC and reduce adverse gastrointestinal reactions.
Collapse
Affiliation(s)
- Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (L.B.); (X.Y.); (P.Q.); (J.L.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (L.B.); (X.Y.); (P.Q.); (J.L.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (L.B.); (X.Y.); (P.Q.); (J.L.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (L.B.); (X.Y.); (P.Q.); (J.L.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xiaojing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (L.B.); (X.Y.); (P.Q.); (J.L.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730030, China; (L.B.); (X.Y.); (P.Q.); (J.L.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
5
|
Yang M, Bi W, Zhang Z. Gut microbiota and risk of endocarditis: a bidirectional Mendelian randomization study. Front Microbiol 2024; 15:1320095. [PMID: 38298894 PMCID: PMC10827985 DOI: 10.3389/fmicb.2024.1320095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Background The associations between gut microbiota and cardiovascular disease have been reported in previous studies. However, the relationship between gut microbiota and endocarditis remains unclear. Methods A bidirectional Mendelian randomization (MR) study was performed to detect the association between gut microbiota and endocarditis. Inverse variance weighted (IVW) method was considered the main result. Simultaneously, heterogeneity and pleiotropy tests were conducted. Results Our study suggests that family Victivallaceae (p = 0.020), genus Eubacterium fissicatena group (p = 0.047), genus Escherichia Shigella (p = 0.024), genus Peptococcus (p = 0.028) and genus Sellimonas (p = 0.005) play protective roles in endocarditis. Two microbial taxa, including genus Blautia (p = 0.006) and genus Ruminococcus2 (p = 0.024) increase the risk of endocarditis. At the same time, endocarditis has a negative effect on genus Eubacterium fissicatena group (p = 0.048). Besides, no heterogeneity or pleiotropy was found in this study. Conclusion Our study emphasized the certain role of specific gut microbiota in patients with endocarditis and clarified the negative effect of endocarditis on gut microbiota.
Collapse
Affiliation(s)
- Mengyue Yang
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Wen Bi
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Zhijie Zhang
- Department of Cardiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
6
|
Huang R, Yao J, Zhou L, Li X, Zhu J, Hu Y, Liu J. Protective effect and mechanism insight of purified Antarctic kill phospholipids against mice ulcerative colitis combined with bioinformatics. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:11. [PMID: 37016023 PMCID: PMC10073399 DOI: 10.1007/s13659-023-00375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Antarctic krill oil is functional oil and has a complex phospholipids composition that poses difficulties in elucidating its effect mechanism on ulcerative colitis (UC). The mechanism of UC action was studied by bioinformatics, and the therapeutic effect of Antarctic krill phospholipids (APL) on dextran sulfate sodium (DSS)-induced colitis mice was verified. GO functional enrichment analysis uncovered an enrichment of these genes in the regulation of cell-cell adhesion, membrane region, signaling receptor activator activity, and cytokine activity. Meanwhile, the KEGG results revealed the genes were enriched in the TNF signaling pathway, pathogenic Escherichia coli infection, inflammatory bowel disease and tight junction. Animal experiments showed that APL treatment alleviated the UC symptoms and reduced inflammatory damage. Meanwhile, the expressions of the tight junction (TJ) proteins, ZO-1 and occludin, were restored, and the levels of IL-6 and TNF-α were reduced. Moreover, Firmicutes/Bacteroidetes ratio in the intestinal microbiota was regulated, and the contents of short-chain fatty acids metabolites were raised. These findings would provide an insight for the beneficial effects of APL and dietary therapy strategies for UC.
Collapse
Affiliation(s)
- Rong Huang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Xiang Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
7
|
Wang YL, Meng LL, Chen YL, OuYang L, Wu BF, Peng R, Lu SF, Liu Q, Zhang T, Li XX, Jing XY, Fu SP, Xu B. Electro-acupuncture treatment ameliorates intestinal inflammatory injury in cerebral ischemia-reperfusion rats via regulating the balance of Treg / γδ T cells. Brain Res 2023; 1803:148233. [PMID: 36623758 DOI: 10.1016/j.brainres.2023.148233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
Electro-acupuncture (EA) has an anti-inflammatory role in ischemic stroke, but whether the protective effect of EA involves the regulation of the intestine barrier and Treg/ γδ T cells is unclear. Cerebral ischemia-reperfusion (I/R) injury was induced by middle cerebral artery occlusion(MCAO) for 2 h followed by reperfusion for 24 h. The rats have treated with EA at the "Baihui" acupoint(GV20). Triphenyl tetrazolium chloride (TTC) staining and Longa neurologic score were performed to evaluate the outcomes after ischemic stroke. Inflammatory factor expression levels in the serum, ischemic hemisphere brain, and small intestine were detected by ELISA or RT-qPCR. Additionally, the morphology change of the small intestine was evaluated by analyzing villus height and smooth muscle thickness. Meanwhile, the expression of tight-junction proteins, including Zonula Occludens-1 (ZO-1), Occludin, and Claudin-1, were detected to evaluate the impact of EA on mucosal permeability in the small intestine. The percentages of regulatory T cells (Tregs) (CD45+CD4+Foxp3+) and γδ T cells (CD45+CD4-γδ T+) were measured to assess the effect of EA on intestinal T cells. EA decreased the brain infarction volume and intestine barrier injury in ischemic stroke rats. At the same time, it effectively suppressed the post-stroke inflammation in the brain and small intestine. More importantly, EA treatment increased the percentage of Tregs in the small intestine while reducing the rate of γδ T cells, and ultimately increased the ratio of Treg/ γδ T cells. These results demonstrated that EA ameliorated intestinal inflammation damage by regulating the Treg/ γδ T cell polarity shift and improving the intestine barrier integrity in rats with I/R injury. This may be one of the mechanisms underlying the anti-ischemic injury effects of acupuncture on stroke.
Collapse
Affiliation(s)
- Ya-Ling Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Ling-Ling Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Yong-Lin Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Ling OuYang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Bu-Fan Wu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Rou Peng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Sheng-Feng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Qing Liu
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Tao Zhang
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 215600 Zhangjiagang, China
| | - Xiao-Xiao Li
- Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xin-Yue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Shu-Ping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| |
Collapse
|
8
|
Bian CF, Wang Y, Yu A, Fu L, Zhang D, Zhu W, Lv W. Gut microbiota changes and biological mechanism in hepatocellular carcinoma after transarterial chemoembolization treatment. Front Oncol 2022; 12:1002589. [PMID: 36267958 PMCID: PMC9577458 DOI: 10.3389/fonc.2022.1002589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 12/01/2022] Open
Abstract
Background and aims Intestinal flora is closely associated with the occurrence and development of hepatocellular carcinoma (HCC). However, gut microbial changes and biological mechanisms in HCC after transarterial chemoembolization (TACE) treatment are rarely reported. Methods We evaluated changes in intestinal flora after TACE in rabbit HCC models and assessed the impact of these changes on the disease. Twenty-four rabbit VX2 HCC models were established and intestinal flora structures, intestinal barrier function, changes in blood lipopolysaccharide (LPS) levels, Toll-like receptor 4 (TLR4), Cyclooxygenase-2 (COX-2), and p-signal transducer and activator of transcription 3(p-STAT3) protein expression levels were studied after TACE treatment. Results Compared with healthy rabbits, the intestinal flora in HCC models exhibited structural changes; intestinal barrier function was decreased, and increased LPS levels entered the circulation. A short-term follow-up after TACE showed the procedure partially reversed the intestinal microflora disorder caused by the tumor: intestinal barrier and liver functions were improved, intestinal LPS levels in the blood were reduced, and liver metabolism toward LPS was enhanced. Correlation analyses of the first 75 significantly changed bacteria with clinical factors showed that harmful bacteria had decreased and beneficial bacteria increased. Blood LPS levels and downstream signaling molecule TLR4, COX-2, and p-STAT3 protein expression levels were reduced, which correlated with tumor drug resistance and invasion capabilities. Conclusions We first characterized gut microbiota changes and biological mechanisms in HCC after TACE treatment. Our data provide a theoretical research basis for TACE combined with an intestinal flora intervention and systemic chemotherapy.
Collapse
Affiliation(s)
- Chao-Fan Bian
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Ying Wang
- Department of Interventional Therapy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ao Yu
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Lulan Fu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ding Zhang
- Department of Medical, 3D Medicines Inc., Shanghai, China
| | - Wenzhi Zhu
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Weifu Lv
- Department of Radiology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
The Diagnostic and Predictive Significance of Immune-Related Genes and Immune Characteristics in the Occurrence and Progression of IgA Nephropathy. J Immunol Res 2022; 2022:9284204. [PMID: 35528619 PMCID: PMC9071862 DOI: 10.1155/2022/9284204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate the potential diagnostic and predictive significance of immune-related genes in IgA nephropathy (IgAN) and discover the abnormal glomerular inflammation in IgAN. Methods GSE116626 was used as a training set to identify different immune-related genes (DIRGs) and establish machine learning models for the diagnosis of IgAN; then, a nomogram model was generated based on GSE116626, and GSE115857 was used as a test set to evaluate its clinical value. Short Time-Series Expression Miner (STEM) analysis was also performed to explore the changing trend of DIRGs with the progression of IgAN lesions. GSE141344 was used with DIRGs to establish the ceRNA network associated with IgAN progression. Finally, ssGSEA analysis was performed on the GSE141295 dataset to discover the abnormal inflammation in IgAN. Results Machine learning (ML) performed excellently in diagnosing IgAN using six DIRGs. A nomogram model was constructed to predict IgAN based on the six DIRGs. Three trends related to IgAN lesions were identified using STEM analysis. A ceRNA network associated with IgAN progression which contained 8 miRNAs, 14 lncRNAs, and 3 mRNAs was established. A higher macrophage ratio and lower CD4+ T cell ratio in IgAN compared to controls were observed, and the correlation between macrophages and monocytes in the glomeruli of IgAN patients was inverse compared to controls. Conclusion This study reveals the diagnostic and predictive significance of DIRGs in IgAN and finds that the imbalance between macrophages and CD4+ immune cells may be an important pathomechanism of IgAN. These results provide potential directions for the treatment and prevention of IgAN.
Collapse
|
10
|
Chen Y, Kong Y, Juhasz A, Li H, Zhang R, Cui X. Influence of Dietary Lipid Type on the Bioavailability of DDT and Its Metabolites in Soil: Mechanisms and Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5102-5110. [PMID: 35384671 DOI: 10.1021/acs.est.2c00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The impact of dietary lipid type on DDTr (DDT and its metabolites) relative bioavailability (RBA) in soil was investigated using an in vivo mouse model and in vitro assays. Three different lipids were long chain triglycerides (LCT), medium chain triglycerides (MCT), and short chain triglycerides (SCT). DDTr-RBA markedly (p < 0.05) increased from 51.3 ± 10.8% (control) to 94.6 ± 15.9% (10% w/w LCT) and 112 ± 20.8% (20% LCT) in LCT amended treatments. A significant increase in DDTr-RBA (92.2 ± 9.84%, p < 0.05) was also observed when mice were administered diets containing 20% MCT; however, no influence on DDTr-RBA was observed for SCT amended diets. Mechanism exploration showed that LCT and MCT enhanced DDTr solubilization by a factor of 7.31-9.59 compared to controls as a consequence of micelle formation which promoted DDTr mobilization from soil. LCT significantly enhanced DDTr intestinal absorption via increasing synthesis and secretion of apolipoprotein B 48 (32.2 ± 2.08 mg/L), compared to MCT (22.1 ± 1.32 mg/L) and SCT (15.5 ± 2.03 mg/L) treated Caco-2 cells. Mouse gut microflora analysis highlighted that LCT and MCT may increase intestinal permeability by regulating abundance of Lactobacillus, which may influence the absorption of DDTr.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ruirui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Wu H, Tang D, Yun M, Liu H, Huang S, Yun C, Hocher B, Zhang X, Liu F, Yin L, Dai Y. Metabolic Dysfunctions of Intestinal Fatty Acids and Tryptophan Reveal Immuno-Inflammatory Response Activation in IgA Nephropathy. Front Med (Lausanne) 2022; 9:811526. [PMID: 35186998 PMCID: PMC8850467 DOI: 10.3389/fmed.2022.811526] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis. Although an important link between intestinal metabolites and immune activity is widely established, the metabolic profile of IgAN is still poorly understood, which severely limits the mechanistic studies and therapy of IgAN. METHODS The diversity of intestinal flora and relative abundance of metabolites in IgAN patients and healthy subjects were measured by 16s ribosomal RNA gene sequencing combined with liquid chromatography tandem-mass spectrometry. The levels of serum Gd-IgA1, IL-6, IL-10, IL-22, and TNF-a were tested by ELISA. We employed the tryptophan-targeted UHPLC-MRM-MS approach to assess the content of tryptophan metabolites quantitatively. RESULTS Intestinal fatty acid levels, mainly unsaturated fatty acids, were observed to be dramatically decreased in IgAN patients. Disorders in linoleic acid and arachidonic acid metabolism, metabolic imbalances of anti-/pro- inflammatory fatty acid metabolites, and intestinal AhR signaling deficiency might reflect the damage of the intestinal mucosal barrier in IgAN patients. In addition, we found that high levels of Gd-IgA1, IL-22, and TNF-α were associated with the activity of the tryptophan-kynurenine metabolic pathway, as well as lower levels of 3-indolepropionic acid. 3-indolepropionic acid, kynurenine, and indoleacrylic acid had synergistic effects on regulating immuno-inflammatory responses in IgAN patients. CONCLUSIONS The metabolic characteristic of fatty acids and tryptophan in the intestinal system is disturbed in IgAN patients, leading to active immune-inflammatory reactions.
Collapse
Affiliation(s)
- Hongwei Wu
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.,Department of Medicine Nephrology, University Medical Centre Mannheim, Heidelberg, Germany
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Manhua Yun
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Haiping Liu
- The Second People's Hospital of Lianping County, Guangdong, China
| | - Shaoxing Huang
- The Second People's Hospital of Lianping County, Guangdong, China
| | - Chen Yun
- Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Berthold Hocher
- Department of Medicine Nephrology, University Medical Centre Mannheim, Heidelberg, Germany.,Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Xinzhou Zhang
- Key Renal Laboratory of Shenzhen, Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Fanna Liu
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lianghong Yin
- Department of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
12
|
Selvaskandan H, Barratt J, Cheung CK. Immunological drivers of IgA nephropathy: Exploring the mucosa-kidney link. Int J Immunogenet 2021; 49:8-21. [PMID: 34821031 DOI: 10.1111/iji.12561] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/10/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
IgA nephropathy (IgAN) is the most common pattern of primary glomerular disease reported worldwide. Up to 40% of those with IgAN progress to end-stage kidney disease within 20 years of diagnosis, with no currently available disease-specific treatment. This is likely to change rapidly, with evolving insights into the mechanisms driving this disease. IgAN is an immune-complex-mediated disease, and its pathophysiology has been framed by the 'four-hit hypothesis', which necessitates four events to occur for clinically significant disease to develop. However, this hypothesis does not explain the wide variability observed in its presentation or clinical progression. Recently, there has been great interest in exploring the role of the mucosal immune system in IgAN, especially given the well-established link between mucosal infections and disease flares. Knowledge of antigen-mucosal interactions is now being successfully leveraged for therapeutic purposes; the gut-directed drug Nefecon (targeted release formulation-budesonide) is on track to become the first medication to be approved specifically for the treatment of IgAN. In this review, we examine established immunological paradigms in IgAN, explore how antigen-mucosal immune responses drive disease, and discuss how this knowledge is being used to develop new treatments.
Collapse
Affiliation(s)
- Haresh Selvaskandan
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Growing evidence show the importance of gut/kidney axis in renal diseases. Advances in gut microbiome sequencing, associated metabolites, detection of gut permeability and inflammation provide new therapeutic strategies targeting gut for kidney diseases and particularly for Immunoglobulin A (IgA) nephropathy (IgAN). RECENT FINDINGS The diversity and composition of gut flora have been recently deeply explored in kidney diseases. Modulation and depletion of microbiota in animal models allowed the understanding of molecular mechanisms involved in the crosstalk between gut, immune system and kidney. New clinical trials in order to positively modulate microbiota result in improvement of gastrointestinal disorders and inflammation in patients suffering with kidney diseases. SUMMARY The investigation of gut alterations in kidney diseases open new therapeutic strategies. In IgAN, targeted treatments for intestinal inflammation and modifications of gut microbiota seem promising.
Collapse
Affiliation(s)
- Renato C Monteiro
- INSERM UMR1149, Center of Research on Inflammation CRI, CNRS ERL8252
- Inflamex Laboratory of Excellence, Paris University
- Immunology Department, Bichat Hospital, AP-HP, DHU Apollo, Paris
| | - Laureline Berthelot
- Center of Research in Transplantation and Immunology CRTI, UMR1064, INSERM, Nantes University, Nantes, France
| |
Collapse
|
14
|
Huang H, Li K, Lee Y, Chen M. Preventive Effects of Lactobacillus Mixture against Chronic Kidney Disease Progression through Enhancement of Beneficial Bacteria and Downregulation of Gut-Derived Uremic Toxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7353-7366. [PMID: 34170659 DOI: 10.1021/acs.jafc.1c01547] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Gut dysbiosis is a major contributor to adverse chronic kidney disease (CKD) progression, and microbiota-based strategies could be considered as a novel therapeutic and preventative target. In this study, a probiotic screening platform based on gut-derived uremic toxin-reducing probiotics was developed and the underlying mechanism was further verified through a 0.2% adenine-induced CKD mouse model. Two strains (Lactobacillus paracasei and Lactobacillus plantarum) were selected due to their high clearance ability and named Lactobacillus mix (Lm). The results showed that Lm significantly improved the kidney function by reducing kidney injury and fibrotic-related proteins. Furthermore, Lm decreased oxidative stress and proinflammatory reactions and elevated immune responses in the kidney. Importantly, Lm reversed gut dysbiosis and restored the abundance of commensal bacteria, especially short-chain fatty acid producers, leading to improved intestinal barrier integrity via modulation of microbial composition and metabolite production. Taken together, these findings provided evidence that Lm could be a preventive approach against CKD.
Collapse
Affiliation(s)
- Hsiaowen Huang
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Section 3, Keelung Road, Taipei 10673, Taiwan
| | - Kuanyi Li
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Section 3, Keelung Road, Taipei 10673, Taiwan
| | - Yajane Lee
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Department of Internal Medicine, National Taiwan University Veterinary Hospital, No. 153, Section 3, Keelung Road, Taipei 10672, Taiwan
| | - Mingju Chen
- Department of Animal Science and Technology, National Taiwan University, No. 50, Lane 155, Section 3, Keelung Road, Taipei 10673, Taiwan
- Center for Biotechnology, National Taiwan University, No. 81, Changxing Street, Taipei 10672, Taiwan
| |
Collapse
|
15
|
Di Leo V, Gleeson PJ, Sallustio F, Bounaix C, Da Silva J, Loreto G, Ben Mkaddem S, Monteiro RC. Rifaximin as a Potential Treatment for IgA Nephropathy in a Humanized Mice Model. J Pers Med 2021; 11:309. [PMID: 33923466 PMCID: PMC8072762 DOI: 10.3390/jpm11040309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
IgA Nephropathy (IgAN) is the most common glomerulonephritis worldwide, characterized by the mesangial deposition of abnormally glycosylated IgA1 (Gd-IgA). The production of Gd-IgA occurs in mucose-associated lymphoid tissue (MALT). The microbiota plays a role in MALT modulation. Rifaximin (NORMIX®), a non-absorbable oral antibiotic, induces positive modulation of the gut microbiota, favoring the growth of bacteria beneficial to the host. Here, we evaluate the effect of rifaximin on a humanized mice model of IgAN (α1KI-CD89Tg). Methods: The α1KI-CD89Tg mice were treated by the vehicle (olive oil) or rifaximin (NORMIX®). Serum levels of hIgA, hIgA1-sCD89, and mIgG-hIgA1 immune complexes were determined. Glomerular hIgA1 deposit and CD11b+ cells recruitment were revealed using confocal microscopy. Furthermore, the mRNA of the B-Cell Activating Factor (BAFF), polymeric immunoglobulin receptor (pIgR), and Tumor Necrosing Factor-α (TNF-α) in gut samples were detected by qPCR. Results: Rifaximin treatment decreased the urinary protein-to-creatinine ratio, serum levels of hIgA1-sCD89 and mIgG-hIgA1 complexes, hIgA1 glomerular deposition, and CD11b+ cell infiltration. Moreover, rifaximin treatment decreased significantly BAFF, pIgR, and TNF-α mRNA expression. Conclusions: Rifaximin decreased the IgAN symptoms observed in α1KI-CD89Tg mice, suggesting a possible role for it in the treatment of the disease.
Collapse
Affiliation(s)
- Vincenzo Di Leo
- INSERM U1149, Centre de Recherche sur l’Inflammation, 75018 Paris, France; (V.D.L.); (P.J.G.); (C.B.); (J.D.S.)
- CNRS ERL8252, 75018 Paris, France
- Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, 75018 Paris, France
- Inflamex Laboratory of Excellence, 75018 Paris, France
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy;
| | - Patrick J. Gleeson
- INSERM U1149, Centre de Recherche sur l’Inflammation, 75018 Paris, France; (V.D.L.); (P.J.G.); (C.B.); (J.D.S.)
- CNRS ERL8252, 75018 Paris, France
- Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, 75018 Paris, France
- Inflamex Laboratory of Excellence, 75018 Paris, France
| | - Fabio Sallustio
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy;
| | - Carine Bounaix
- INSERM U1149, Centre de Recherche sur l’Inflammation, 75018 Paris, France; (V.D.L.); (P.J.G.); (C.B.); (J.D.S.)
- CNRS ERL8252, 75018 Paris, France
- Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, 75018 Paris, France
- Inflamex Laboratory of Excellence, 75018 Paris, France
| | - Jennifer Da Silva
- INSERM U1149, Centre de Recherche sur l’Inflammation, 75018 Paris, France; (V.D.L.); (P.J.G.); (C.B.); (J.D.S.)
- CNRS ERL8252, 75018 Paris, France
- Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, 75018 Paris, France
- Inflamex Laboratory of Excellence, 75018 Paris, France
| | - Gesualdo Loreto
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy;
| | - Sanae Ben Mkaddem
- INSERM U1149, Centre de Recherche sur l’Inflammation, 75018 Paris, France; (V.D.L.); (P.J.G.); (C.B.); (J.D.S.)
- CNRS ERL8252, 75018 Paris, France
- Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, 75018 Paris, France
- Inflamex Laboratory of Excellence, 75018 Paris, France
| | - Renato C. Monteiro
- INSERM U1149, Centre de Recherche sur l’Inflammation, 75018 Paris, France; (V.D.L.); (P.J.G.); (C.B.); (J.D.S.)
- CNRS ERL8252, 75018 Paris, France
- Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, 75018 Paris, France
- Inflamex Laboratory of Excellence, 75018 Paris, France
- Service d’Immunologie, DHU Fire, Assistance Publique de Paris, Hôpital Bichat-Claude Bernard, 75018 Paris, France
| |
Collapse
|
16
|
Yu J, Shen Y, Zhou N. Advances in the role and mechanism of zonulin pathway in kidney diseases. Int Urol Nephrol 2021; 53:2081-2088. [PMID: 33428167 DOI: 10.1007/s11255-020-02756-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
The intestinal barrier is the first line of defense against foreign antigens. Tight junctions play an important role in maintaining the function of the intestinal wall. Zonulin is the only physiological protein discovered in recent years that can reversibly regulate tight junctions in human body. It changes the permeability of intestinal epithelial cells by regulating the state of tight junctions. Increased intestinal permeability can lead to abnormal activation of intestinal mucosal immune and bacterial translocation, then inducing systemic inflammation. It has already been reported that zonulin plays an important pathogenic role in a variety of diseases by regulating tight junctions leading to an abnormal increase of intestinal permeability. However, the research on the pathogenic role and mechanism of zonulin pathway in kidney disease is still in its infancy. Therefore, we reviewed the progress on pathophysiological characteristics of zonulin as well as the pathogenesis of zonulin in kidney disease in this paper.
Collapse
Affiliation(s)
- Jie Yu
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health (Beijing), Beijing, China
| | - Ying Shen
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health (Beijing), Beijing, China.,Key Laboratory of Chronic Kidney Disease and Blood Purification in Childhood (Beijing), Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Nan Zhou
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, Beijing, China. .,National Center for Children's Health (Beijing), Beijing, China. .,Key Laboratory of Chronic Kidney Disease and Blood Purification in Childhood (Beijing), Beijing, China. .,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.
| |
Collapse
|
17
|
Pei S, Li Y. Huangkui Capsule in Combination with Leflunomide Improves Immunoglobulin A Nephropathy by Inhibiting the TGF-β1/Smad3 Signaling Pathway. Clinics (Sao Paulo) 2021; 76:e2904. [PMID: 34909911 PMCID: PMC8614623 DOI: 10.6061/clinics/2021/e2904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES To investigate the efficacy and potential molecular mechanism of Huangkui capsule in combination with leflunomide (HKL) for the treatment of immunoglobulin A nephropathy (IgAN). METHODS IgAN rat models were constructed by treating rats with bovine serum albumin, lipopolysaccharide, and tetrachloromethane. Th22 cells were isolated from the blood samples of patients with IgAN using a CD4+ T cell isolation kit. The expression levels of the components of the TGF-β1/Smad3 signaling pathway, namely, TGF-β1, Smad2, Smad3, Smad4, and Smad7, were detected using quantitative reverse transcription polymerase chain reaction. Cell proliferation was determined using the MTT assay, cell viability was determined using the WST 1 method, and the chemotaxis of Th22 cells was observed using the wound healing assay. Changes in the histology of the kidney tissues were analyzed using hematoxylin and eosin staining. RESULTS Compared with IgAN rats, the rats subjected to HKL treatment showed good improvement in kidney injuries, and the combined drug treatment performed much better than the single-drug treatment. In addition, following HKL treatment, the viability, proliferation, and chemotaxis of Th22 cells dramatically decreased (*p<0.05, **p<0.01, and ***p<0.001). In addition, CCL20, CCL22, and CCL27 levels decreased and the expression of the key components of the TGF-β1/Smad3 signaling pathway was downregulated in IgAN rats and Th22 cells (*p<0.05, ***p<0.001). CONCLUSIONS By targeting the TGF-β1/Smad3 signaling pathway, HKL treatment can improve kidney injury in IgAN rats as well as the excessive proliferation and metastasis of Th22 cells.
Collapse
Affiliation(s)
- Shuwen Pei
- Department of Nephrology, Harbin First Hospital, Harbin, Heilongjiang 15000, China
- Corresponding author. E-mail:
| | - Yan Li
- Intensive Care Unit, Harbin First Hospital, Harbin, Heilongjiang 15000, China
| |
Collapse
|