1
|
Wang X, Song J, Yuan Y, Li L, Abu-Taha I, Heijman J, Sun L, Dobrev S, Kamler M, Xie L, Wehrens XH, Horrigan FT, Dobrev D, Li N. Downregulation of FKBP5 Promotes Atrial Arrhythmogenesis. Circ Res 2023; 133:e1-e16. [PMID: 37154033 PMCID: PMC10330339 DOI: 10.1161/circresaha.122.322213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Atrial fibrillation (AF), the most common arrhythmia, is associated with the downregulation of FKBP5 (encoding FKBP5 [FK506 binding protein 5]). However, the function of FKBP5 in the heart remains unknown. Here, we elucidate the consequences of cardiomyocyte-restricted loss of FKBP5 on cardiac function and AF development and study the underlying mechanisms. METHODS Right atrial samples from patients with AF were used to assess the protein levels of FKBP5. A cardiomyocyte-specific FKBP5 knockdown mouse model was established by crossbreeding Fkbp5flox/flox mice with Myh6MerCreMer/+ mice. Cardiac function and AF inducibility were assessed by echocardiography and programmed intracardiac stimulation. Histology, optical mapping, cellular electrophysiology, and biochemistry were employed to elucidate the proarrhythmic mechanisms due to loss of cardiomyocyte FKBP5. RESULTS FKBP5 protein levels were lower in the atrial lysates of patients with paroxysmal AF or long-lasting persistent (chronic) AF. Cardiomyocyte-specific knockdown mice exhibited increased AF inducibility and duration compared with control mice. Enhanced AF susceptibility in cardiomyocyte-specific knockdown mice was associated with the development of action potential alternans and spontaneous Ca2+ waves, and increased protein levels and activity of the NCX1 (Na+/Ca2+-exchanger 1), mimicking the cellular phenotype of chronic AF patients. FKBP5-deficiency enhanced transcription of Slc8a1 (encoding NCX1) via transcription factor hypoxia-inducible factor 1α. In vitro studies revealed that FKBP5 negatively modulated the protein levels of hypoxia-inducible factor 1α by competitively interacting with heat-shock protein 90. Injections of the heat-shock protein 90 inhibitor 17-AAG normalized protein levels of hypoxia-inducible factor 1α and NCX1 and reduced AF susceptibility in cardiomyocyte-specific knockdown mice. Furthermore, the atrial cardiomyocyte-selective knockdown of FKBP5 was sufficient to enhance AF arrhythmogenesis. CONCLUSIONS This is the first study to demonstrate a role for the FKBP5-deficiency in atrial arrhythmogenesis and to establish FKBP5 as a negative regulator of hypoxia-inducible factor 1α in cardiomyocytes. Our results identify a potential molecular mechanism for the proarrhythmic NCX1 upregulation in chronic AF patients.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Jia Song
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Yue Yuan
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Liang Sun
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Shokoufeh Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Liang Xie
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xander H.T. Wehrens
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Frank T. Horrigan
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Martins ILF, Almeida FVDS, Souza KPD, Brito FCFD, Rodrigues GD, Scaramello CBV. Reviewing Atrial Fibrillation Pathophysiology from a Network Medicine Perspective: The Relevance of Structural Remodeling, Inflammation, and the Immune System. Life (Basel) 2023; 13:1364. [PMID: 37374146 DOI: 10.3390/life13061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of sustained arrhythmia. The numerous gaps concerning the knowledge of its mechanism make improving clinical management difficult. As omics technologies allow more comprehensive insight into biology and disease at a molecular level, bioinformatics encompasses valuable tools for studying systems biology, as well as combining and modeling multi-omics data and networks. Network medicine is a subarea of network biology where disease traits are considered perturbations within the interactome. With this approach, potential disease drivers can be revealed, and the effect of drugs, novel or repurposed, used alone or in combination, may be studied. Thus, this work aims to review AF pathology from a network medicine perspective, helping researchers to comprehend the disease more deeply. Essential concepts involved in network medicine are highlighted, and specific research applying network medicine to study AF is discussed. Additionally, data integration through literature mining and bioinformatics tools, with network building, is exemplified. Together, all of the data show the substantial role of structural remodeling, the immune system, and inflammation in this disease etiology. Despite this, there are still gaps to be filled about AF.
Collapse
Affiliation(s)
- Ivis Levy Fernandes Martins
- Research Nucleus on Plasticity, Epidemiology and In-Silico Studies (NUPPEESI), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
| | - Flávia Valéria Dos Santos Almeida
- Research Nucleus on Plasticity, Epidemiology and In-Silico Studies (NUPPEESI), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
| | - Karyne Pollo de Souza
- Research Nucleus on Plasticity, Epidemiology and In-Silico Studies (NUPPEESI), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
| | | | - Gabriel Dias Rodrigues
- Experimental and Applied Physiology Lab (LAFEA), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
- Department of Clinical Sciences and Community Health, University of Milan, 20126 Milan, Milan, Italy
| | - Christianne Bretas Vieira Scaramello
- Research Nucleus on Plasticity, Epidemiology and In-Silico Studies (NUPPEESI), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
- Experimental Pharmacology Lab (LAFE), Fluminense Federal University, Niteroi 24020-141, Rio de Janeiro, Brazil
| |
Collapse
|