1
|
Zhao L, Wu Q, Long Y, Qu Q, Qi F, Liu L, Zhang L, Ai K. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. J Drug Target 2024; 32:1-20. [PMID: 37982157 DOI: 10.1080/1061186x.2023.2284097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Vascular neogenesis, an early event in the development of rheumatoid arthritis (RA) inflammation, is critical for the formation of synovial vascular networks and plays a key role in the progression and persistence of chronic RA inflammation. microRNAs (miRNAs), a class of single-stranded, non-coding RNAs with approximately 21-23 nucleotides in length, regulate gene expression by binding to the 3' untranslated region (3'-UTR) of specific mRNAs. Increasing evidence suggests that miRNAs are differently expressed in diseases associated with vascular neogenesis and play a crucial role in disease-related vascular neogenesis. However, current studies are not sufficient and further experimental studies are needed to validate and establish the relationship between miRNAs and diseases associated with vascular neogenesis, and to determine the specific role of miRNAs in vascular development pathways. To better treat vascular neogenesis in diseases such as RA, we need additional studies on the role of miRNAs and their target genes in vascular development, and to provide more strategic references. In addition, future studies can use modern biotechnological methods such as proteomics and transcriptomics to investigate the expression and regulatory mechanisms of miRNAs, providing a more comprehensive and in-depth research basis for the treatment of related diseases such as RA.
Collapse
Affiliation(s)
- Lingyun Zhao
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Qingze Wu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Yiying Long
- Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Qirui Qu
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Fang Qi
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Li Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liang Zhang
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Buono F, Pugliese R, da Silveira W, Tirapelli D, dos Reis F, de Andrade J, Carrara H, Tiezzi D. Potential biomarkers as a predictive factor of response to primary chemotherapy in breast cancer patients. Braz J Med Biol Res 2024; 57:e13599. [PMID: 39383380 PMCID: PMC11463908 DOI: 10.1590/1414-431x2024e13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 08/06/2024] [Indexed: 10/11/2024] Open
Abstract
In this study, we identified miRNAs and their potential mRNA targets that are intricately linked to primary chemotherapy response in patients with invasive ductal carcinomas. A cohort of individuals diagnosed with advanced invasive breast ductal carcinoma who underwent primary chemotherapy served as the cornerstone of our study. We conducted a comparative analysis of microRNA expression among patients who either responded or did not respond to primary systemic therapy. To analyze the correlation between the expression of the whole transcriptome and the 24 differentially expressed (DE) miRNAs, we harnessed the extensive repository of The Cancer Genome Atlas (TCGA) database. We mapped molecular mechanisms associated with these miRNAs and their targets from TCGA breast carcinomas. The resultant expression profile of the 24 DE miRNAs emerged as a potent and promising predictive model, offering insights into the intricate dynamics of chemotherapy responsiveness of advanced breast tumors. The discriminative analysis based on the principal component analysis identified the most representative miRNAs across breast cancer samples (miR-210, miR-197, miR-328, miR-519a, and miR-628). Moreover, the consensus clustering generated four possible clusters of TCGA patients. Further studies should be conducted to advance these findings.
Collapse
Affiliation(s)
- F.O. Buono
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
- Laboratório de Ciência de Dados Translacionais, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - R.D.S. Pugliese
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - W.A. da Silveira
- Science Centre, Staffordshire University, Stoke-on-Trent, Staffordshire, England, UK
| | - D.P.C. Tirapelli
- Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - F.J.C. dos Reis
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J.M. de Andrade
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - H.H.A. Carrara
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - D.G. Tiezzi
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
- Laboratório de Ciência de Dados Translacionais, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
3
|
Heidarzadehpilehrood R, Pirhoushiaran M. Biomarker potential of competing endogenous RNA networks in Polycystic Ovary Syndrome (PCOS). Noncoding RNA Res 2024; 9:624-640. [PMID: 38571815 PMCID: PMC10988127 DOI: 10.1016/j.ncrna.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common condition affecting women of reproductive age globally. PCOS continues to be the largest contributing factor to female infertility despite significant progress in our knowledge of the molecular underpinnings and treatment of the condition. The fact that PCOS is a very diverse condition makes it one of the key reasons why we haven't been able to overcome it. Non-coding RNAs (ncRNAs) are implicated in the development of PCOS, according to growing evidence. However, it is unclear how the complex regulatory relationships between the many ncRNA types contribute to the growth of this malignancy. Competing endogenous RNA (ceRNA), a recently identified mechanism in the RNA world, suggests regulatory interactions between various RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). Recent studies on PCOS have shown that dysregulation of multiple ceRNA networks (ceRNETs) between these ncRNAs plays crucial roles in developing the defining characteristics of PCOS development. And it is believed that such a finding may open a new door for a deeper comprehension of PCOS's unexplored facets. In addition, it may be able to provide fresh biomarkers and effective therapy targets for PCOS. This review will go over the body of information that exists about the primary roles of ceRNETs before highlighting the developing involvement of several newly found ceRNETs in a number of PCOS characteristics.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
4
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
5
|
Jiang Y, Zheng G, Sun X. PRMT5 promotes retinoblastoma development. Hum Cell 2023; 36:329-341. [PMID: 36331723 DOI: 10.1007/s13577-022-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Epigenetic mechanism, including DNA methylation and histone modifications, contributes to alterations in the expression patterns of genes regulating malignant phenotype of cancer cells. However, the epigenetic modulation of vascular endothelial growth factor-A (VEGFA) in retinoblastoma (RB) has not been clearly established. We aimed to examine the epigenetic regulation of VEGFA by protein arginine methyltransferase 5 (PRMT5) in RB. Using the GEO database, we identified VEGFA as a pathogenic gene in RB. Silencing of VEGFA in SO-RB50 and Y79 cells inhibited cell proliferation, angiogenesis, and migration, promoted apoptosis, and suppressed tumor growth in mice. Mechanistically, PRMT5 promoted H3K4me3 modification of the VEGFA promoter, thereby activating VEGFA expression. VEGFA could regulate the expression of MMP1, MMP2, and MMP9. Further silencing of VEGFA in RB cells overexpressing PRMT5 constrained the expression of MMP1, MMP2 and MMP9, and suppressed the growth of tumors in mice. In conclusion, this study clarifies that the depletion of PRMT5 reduces H3K4me3-mediated VEGFA transcription and retards the carcinogenesis of RB by suppressing the expression of MMPs.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Zhengzhou, 450000, Henan, People's Republic of China
- Department of Ophthalmology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Zhengzhou, 450000, Henan, People's Republic of China.
| | - Xiantao Sun
- Department of Ophthalmology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| |
Collapse
|
6
|
Huang H, Xu Q, Zhang Y, Zhou Y, Ma K, Luo Y. miR-628-5p is a Potential Novel Prognosis Biomarker, Associated with Immune Infiltration in Bladder Urothelial Carcinoma. Curr Pharm Des 2023; 29:2477-2488. [PMID: 37916623 DOI: 10.2174/0113816128254621231017062923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/23/2023] [Accepted: 09/08/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND microRNA-628-5p (miR-628-5p) has a significant impact on certain types of cancer. The precise function of miR-628-5p in the context of bladder urothelial carcinoma (BLCA) remains ambiguous. OBJECTIVE We aimed to investigate the role of miR-628-5p in BLCA. METHODS The samples were collected from The Cancer Genome Atlas (TCGA). Statistics were employed to evaluate the correlation and predictive significance of miR-628-5p. We analyzed the target genes and regulatory network of miR-628-5p and the correlation between miR-628-5p and immune infiltration. The expression of miR-628-5p in BLCA cells was confirmed by quantitative reverse-transcription PCR (qRT-PCR). RESULTS miR-628-5p exhibited differential expression across various types of cancer. There was a significant association between high expression of miR-628-5p and primary therapy outcome (p < 0.05). High expression of miR-628-5p was observed to be associated with poorer overall survival (HR: 1.42; 95% CI: 1.06-1.90; p = 0.02), progress free survival (HR: 1.57; 95% CI: 1.17-2.11; p = 0.003), and disease specific survival (HR: 1.83; 95% CI: 1.28-2.62; p = 0.001) in BLCA. miR-628-5p was an independent prognostic factor in BLCA and may be involved in the development of the disease through various pathways, including focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathway, and MAPK signaling pathway, and among others. miR-628-5p expression was significantly correlated with immune infiltration in BLCA patients. Compared to normal bladder epithelial cells, BLCA cell lines exhibited a significant upregulation of miR-628-5p. CONCLUSION It is possible that miR-628-5p could serve as a hopeful therapeutic target and prognostic biomarker for individuals with BLCA.
Collapse
Affiliation(s)
- Hong Huang
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| | - Qingchun Xu
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| | - Yonghai Zhang
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| | - Yizhou Zhou
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| | - Kaiqun Ma
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| | - Yingxun Luo
- Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China
| |
Collapse
|
7
|
Liu J, Chen Y, Nie L, Liang X, Huang W, Li R. In silico analysis and preclinical findings uncover potential targets of anti-cervical carcinoma and COVID-19 in laminarin, a promising nutraceutical. Front Pharmacol 2022; 13:955482. [PMID: 36016559 PMCID: PMC9395986 DOI: 10.3389/fphar.2022.955482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
Until today, the coronavirus disease 2019 (COVID-19) pandemic has caused 6,043,094 deaths worldwide, and most of the mortality cases have been related to patients with long-term diseases, especially cancer. Autophagy is a cellular process for material degradation. Recently, studies demonstrated the association of autophagy with cancer development and immune disorder, suggesting autophagy as a possible target for cancer and immune therapy. Laminarin is a polysaccharide commonly found in brown algae and has been reported to have pharmaceutic roles in treating human diseases, including cancers. In the present report, we applied network pharmacology with systematic bioinformatic analysis, including gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, reactome pathway analysis, and molecular docking to determine the pharmaceutic targets of laminarin against COVID-19 and cervical cancer via the autophagic process. Our results showed that the laminarin would target ten genes: CASP8, CFTR, DNMT1, HPSE, KCNH2, PIK3CA, PIK3R1, SERPINE1, TLR4, and VEGFA. The enrichment analysis suggested their involvement in cell death, immune responses, apoptosis, and viral infection. In addition, molecular docking further demonstrated the direct binding of laminarin to its target proteins, VEGFA, TLR4, CASP8, and PIK3R1. The present findings provide evidence that laminarin could be used as a combined therapy for treating patients with COVID-19 and cervical cancer.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yudong Chen
- Department of Gynecology, Guigang City People’s Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Litao Nie
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiao Liang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Wenjun Huang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- *Correspondence: Wenjun Huang, ; Rong Li,
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
- *Correspondence: Wenjun Huang, ; Rong Li,
| |
Collapse
|
8
|
Elebiyo TC, Rotimi D, Evbuomwan IO, Maimako RF, Iyobhebhe M, Ojo OA, Oluba OM, Adeyemi OS. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Cancer Treat Res Commun 2022; 32:100620. [PMID: 35964475 DOI: 10.1016/j.ctarc.2022.100620] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/02/2022] [Accepted: 08/05/2022] [Indexed: 05/23/2023]
Abstract
Vascularization is fundamental to the growth and spread of tumor cells to distant sites. As a consequence, angiogenesis, the sprouting of new blood vessels from existing ones, is a characteristic trait of cancer. In 1971, Judah Folkman postulated that tumour growth is angiogenesis dependent and that by cutting off blood supply, a neoplastic lesion could be potentially starved into remission. Decades of research have been devoted to understanding the role that vascular endothelial growth factor (VEGF) plays in tumor angiogenesis, and it has been identified as a significant pro-angiogenic factor that is frequently overexpressed within a tumor mass. Today, anti-VEGF drugs such as Sunitinib, Sorafenib, Axitinib, Tanibirumab, and Ramucirumab have been approved for the treatment of advanced and metastatic cancers. However, anti-angiogenic therapy has turned out to be more complex than originally thought. The failure of this therapeutic option calls for a reevaluation of VEGF as the major target in anti-angiogenic cancer therapy. The call for reassessment is based on two rationales: first, tumour blood vessels are abnormal, disorganized, and leaky; this not only prevents optimal drug delivery but it also promotes hypoxia and metastasis; secondly, tumour growth or regrowth might be blood vessel dependent and not angiogenesis dependent as tumour cells can acquire blood vessels via non-angiogenic mechanisms. Therefore, a critical assessment of VEGF, VEGFRs, and their inhibitors could glean newer options such as repurposing anti-VEGF drugs as vascular normalizing agents to enhance drug delivery of immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Damilare Rotimi
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | | | | | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria..
| | | | | |
Collapse
|
9
|
Huang Q, Huang Y, He L, Zhao H, Lu Y, Jiang L. Bone Marrow Mesenchymal Stem Cell (BMSC) Downregulates Vascular Endothelial Growth Factor (VEGF) and Promotes the Apoptosis of Melanoma Cells. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study assessed BMSC’s effect on melanoma cells. The melanoma A375 cells were assigned into blank group, BMSC group, ERK agonist group, AKT agonist group, ERK + AKT agonist group and ERK + AKT repressor group followed by analysis of VEGF expression, cell apoptotic rate, and
the expression of MEK/ERK and PI3K/AKT signal proteins. ERK and AKT agonist group showed highest VEGF expression, lowest cell apoptosis and Bcl-2 and Bcl-2/Bax expression as well as highest MEK/ERK and PI3K/AKT signaling proteins followed by ERK agonist group and AKT agonist group. The apoptosis
of melanoma cells could be prompted by BMSC which might be through restraining the activity of MEK/ERK and PI3K/AKT signal pathway. In conclusion, the apoptosis of melanoma cells is prompted by BMSC through restraining the activity of MEK/ERK and PI3K/AKT signal pathway, indicating that BMSC
might be used as a novel approach for the treatment of melanoma.
Collapse
Affiliation(s)
- Qin Huang
- Department of Plastic and Cosmetic Surgery, YiChun People’s Hospital in Jiangxi Province, YiChun, Jiangxi, 336000, China
| | - Ying Huang
- Department of Plastic and Cosmetic Surgery, YiChun People’s Hospital in Jiangxi Province, YiChun, Jiangxi, 336000, China
| | - Lan He
- Department of Plastic and Cosmetic Surgery, YiChun People’s Hospital in Jiangxi Province, YiChun, Jiangxi, 336000, China
| | - Hongyan Zhao
- Central Hospital of Chongqing University, Chongqing, 400010, China
| | - Yang Lu
- Central Hospital of Chongqing University, Chongqing, 400010, China
| | - Ling Jiang
- Central Hospital of Chongqing University, Chongqing, 400010, China
| |
Collapse
|
10
|
Liu Y, Khan S, Li L, ten Hagen TL, Falahati M. Molecular mechanisms of thyroid cancer: A competing endogenous RNA (ceRNA) point of view. Biomed Pharmacother 2022; 146:112251. [DOI: 10.1016/j.biopha.2021.112251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/25/2022] Open
|
11
|
Dong Z, Liao Z, He Y, Wu C, Meng Z, Qin B, Xu G, Li Z, Sun T, Wen Y, Li G. Advances in the Biological Functions and Mechanisms of miRNAs in the Development of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221117386. [PMID: 35950243 PMCID: PMC9379803 DOI: 10.1177/15330338221117386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is one of the most common primary malignant bone tumors, mainly
occurring in children and adolescents, and is characterized by high morbidity
and poor prognosis. MicroRNAs, a class of noncoding RNAs consisting of 19 to 25
nucleotides, are involved in cell proliferation, invasion, metastasis, and
apoptosis to regulate the development and progression of osteosarcoma. Studies
have found that microRNAs are closely related to the diagnosis, treatment, and
prognosis of osteosarcoma patients and have an important role in improving drug
resistance in osteosarcoma. This paper reviews the role of microRNAs in the
pathogenesis of osteosarcoma and their clinical value, aiming to provide a new
research direction for diagnosing and treating osteosarcoma and achieving a
better prognosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zhipeng Liao
- The Second School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yonglin He
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Chengye Wu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zixiang Meng
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Baolong Qin
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Ge Xu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zeyang Li
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Tianxin Sun
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yuyan Wen
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
12
|
Sun L, Liu X, Zuo Z. Regulatory role of miRNA-23a in diabetic retinopathy. Exp Ther Med 2021; 22:1477. [PMID: 34765018 PMCID: PMC8576621 DOI: 10.3892/etm.2021.10912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/12/2021] [Indexed: 11/21/2022] Open
Abstract
The present study aimed to investigate the expression of microRNA (miRNA)-23a in blood and tear samples from diabetic retinopathy (DR) patients. Blood and tear samples were obtained from 33 patients with proliferative DR. Additionally, a rat model of DR was established. Reverse transcription-quantitative PCR was used to determine vascular endothelial growth factor (VEGF) mRNA and miRNA-23a expression levels, while ELISA and western blot analysis were performed to determine protein expression levels. Bioinformatics analysis and dual luciferase reporter assay were used to predict and validate the interaction between miRNA-23a and VEGF and cell proliferative ability was assessed with the MTT assay. In comparison to control patients VEGF mRNA and protein expression levels were significantly elevated in the blood and tear samples from patients with DR, while the expression level of miRNA-23a was significantly reduced. In blood and retinal tissues from a rat model of DR, the mRNA and protein expression levels of VEGF were significantly increased, while the miRNA-23a expression level was significantly decreased relative to controls. Dual luciferase reporter assay showed that miRNA-23a bound to the 3'-untranslated region (UTR) of VEGF. Moreover, over-expression of miRNA-23a significantly reduced the expression level of VEGF and the proliferative activity of human retinal microvascular endothelial cells. The elevated VEGF expression in the blood and tears of patients with DR may be related to the reduced miRNA-23a expression. miRNA-23a may regulate microvascular growth at the retina via VEGF and contribute to DR progression.
Collapse
Affiliation(s)
- Lihui Sun
- Department of Anatomy, Histology and Embryology, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,The Fifth Department of General Surgery, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xuezheng Liu
- Department of Anatomy, Histology and Embryology, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zhongfu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China.,Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|