1
|
Rosca EC, Heneghan C, Spencer EA, Plüddemann A, Maltoni S, Gandini S, Onakpoya IJ, Evans D, Conly JM, Jefferson T. Coinfection with Strongyloides and SARS-CoV-2: A Systematic Review. Trop Med Infect Dis 2023; 8:tropicalmed8050248. [PMID: 37235296 DOI: 10.3390/tropicalmed8050248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Treatments for COVID-19, including steroids, might exacerbate Strongyloides disease in patients with coinfection. We aimed to systematically review clinical and laboratory features of SARS-CoV-2 and Strongyloides coinfection, investigate possible interventions, assess outcomes, and identify research gaps requiring further attention. METHODS We searched two electronic databases, LitCOVID and WHO, up to August 2022, including SARS-CoV-2 and Strongyloides coinfection studies. We adapted the World Health Organization-Uppsala Monitoring Centre (WHO-UMC) system for standardized case causality assessment to evaluate if using corticosteroids or other immunosuppressive drugs in COVID-19 patients determined acute manifestations of strongyloidiasis. RESULTS We included 16 studies reporting 25 cases of Strongyloides and SARS-CoV-2 coinfection: 4 with hyperinfection syndrome; 2 with disseminated strongyloidiasis; 3 with cutaneous reactivation of strongyloidiasis; 3 with isolated digestive symptoms; and 2 with solely eosinophilia, without clinical manifestations. Eleven patients were asymptomatic regarding strongyloidiasis. Eosinopenia or normal eosinophil count was reported in 58.3% of patients with Strongyloides reactivation. Steroids were given to 18/21 (85.7%) cases. A total of 4 patients (19.1%) received tocilizumab and/or Anakirna in addition to steroids. Moreover, 2 patients (9.5%) did not receive any COVID-19 treatment. The causal relationship between Strongyloides reactivation and COVID-19 treatments was considered certain (4% of cases), probable (20% of patients), and possible (20% of patients). For 8% of cases, it was considered unlikely that COVID-19 treatment was associated with strongyloidiasis reactivations; the relationship between the Strongyloides infection and administration of COVID-19 treatment was unassessable/unclassifiable in 48% of cases. Of 13 assessable cases, 11 (84.6%) were considered to be causally associated with Strongyloides, ranging from certain to possible. CONCLUSIONS Further research is needed to assess the frequency and risk of Strongyloides reactivation in SARS-CoV-2 infection. Our limited data using causality assessment supports recommendations that clinicians should screen and treat for Strongyloides infection in patients with coinfection who receive immunosuppressive COVID-19 therapies. In addition, the male gender and older age (over 50 years) may be predisposing factors for Strongyloides reactivation. Standardized guidelines should be developed for reporting future research.
Collapse
Affiliation(s)
- Elena C Rosca
- Department of Neurology, Victor Babes University of Medicine and Pharmacy, Piata Eftimie Murgu 2, 300041 Timisoara, Romania
| | - Carl Heneghan
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Elizabeth A Spencer
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Annette Plüddemann
- Centre for Evidence Based Medicine, Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Susanna Maltoni
- Division of Research and Innovation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sara Gandini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Igho J Onakpoya
- Department of Continuing Education, University of Oxford, Rewley House, 1 Wellington Square, Oxford OX1 2JA, UK
| | - David Evans
- Li Ka Shing Institute of Virology and Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - John M Conly
- Departments of Medicine, Microbiology, Immunology & Infectious Diseases, and Pathology & Laboratory Medicine, Synder Institute for Chronic Diseases and O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB T2N 1N4, Canada
| | - Tom Jefferson
- Department of Continuing Education, University of Oxford, Rewley House, 1 Wellington Square, Oxford OX1 2JA, UK
| |
Collapse
|
2
|
Baral PK, Aziz MA, Islam MS. Comparative risk assessment of COVID-19 associated mucormycosis and aspergillosis: A systematic review. Health Sci Rep 2022; 5:e789. [PMID: 36000078 PMCID: PMC9387898 DOI: 10.1002/hsr2.789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is not only limited to a defined array but also has expanded with several secondary infections. Two uncommon opportunistic fungal infections, COVID-19 associated mucormycosis (CAM) and aspergillosis (CAA), have recently been highly acquainted by many worldwide cases. Two immune response deteriorating factors are considered to be responsible for immunosuppression: comorbidities and medication. Due to unlike infection sites and patterns, CAM and CAA-associated factors deflect a few degrees of proximity, and the present study is for its assessment. The study evaluated 351 CAM cases and 191 CAA cases retrieved from 65 and 53 articles based on inclusion criteria, respectively. Most of the CAM reported from India and CAA were from four South-European and West-European neighbor countries. The mean ages of CAM and CAA were 52.72 ± 13.74 and 64.81 ± 11.14, correspondingly. Mortality of CAA (56.28%) was two times greater than CAM (26.02%). Nevertheless, the count of diabetes cases was very high in CAM compared to CAA. The main comorbidities of CAM were diabetes (nearly 80%) and hypertension (more than 38%). All noticeable complications were higher in CAA except diabetes, and these were diabetes (34.55%), hypertension (45.03%), and obesity (18.32%). Moreover, pre-existing respiratory complications like asthma and chronic obstructive pulmonary disease are visible in CAA. The uses of steroids in CAM and CAA were nearly 70% and 66%, respectively. Almost one-fourth of CAA cases were reported using immunosuppressant monoclonal antibodies, whereas only 7.69% were for CAM. The overall finding highlights diabetes, hypertension, and steroids as the risk factors for CAM, whereas obesity, chronic pulmonary disease, and immunosuppressants for CAA.
Collapse
Affiliation(s)
- Prodip Kumar Baral
- Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Abdul Aziz
- Department of PharmacyState University of BangladeshDhakaBangladesh
| | - Mohammad Safiqul Islam
- Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
- Laboratory of Pharmacogenomics and Molecular BiologyNoakhali Science and Technology UniversityNoakhaliBangladesh
| |
Collapse
|
3
|
COVID-19-Associated Mucormycosis: A Matter of Concern Amid the SARS-CoV-2 Pandemic. Vaccines (Basel) 2022; 10:vaccines10081266. [PMID: 36016154 PMCID: PMC9415927 DOI: 10.3390/vaccines10081266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 12/16/2022] Open
Abstract
Mucormycosis is an invasive fungal infection caused by fungi belonging to order Mucorales. Recently, with the increase in COVID-19 infections, mucormycosis infections have become a matter of concern globally, because of the high morbidity and mortality rates associated with them. Due to the association of mucormycosis with COVID-19 disease, it has been termed COVID-19-associated mucormycosis (CAM). In the present review, we focus on mucormycosis incidence, pathophysiology, risk factors, immune dysfunction, interactions of Mucorales with endothelial cells, and the possible role of iron in Mucorales growth. We review the limitations associated with current diagnostic procedures and the requirement for more specific, cost-effective, convenient, and sensitive assays, such as PCR-based assays and monoclonal antibody-based assays for the effective diagnosis of mucormycosis. We discuss the current treatment options involving antifungal drug therapies, adjunctive therapy, surgical treatment, and their limitations. We also review the importance of nutraceuticals-based therapy for the prevention as well as treatment of mucormycosis. Our review also highlights the need to explore the potential of novel immunotherapeutics, which include antibody-based therapy, cytokine-based therapy, and combination/synergistic antifungal therapy, as treatment options for mucormycosis. In summary, this review provides a complete overview of COVID-19-associated mucormycosis, addressing the current research gaps and future developments required in the field.
Collapse
|