1
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
2
|
Niazi SK, Mariam Z. Computer-Aided Drug Design and Drug Discovery: A Prospective Analysis. Pharmaceuticals (Basel) 2023; 17:22. [PMID: 38256856 PMCID: PMC10819513 DOI: 10.3390/ph17010022] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
In the dynamic landscape of drug discovery, Computer-Aided Drug Design (CADD) emerges as a transformative force, bridging the realms of biology and technology. This paper overviews CADDs historical evolution, categorization into structure-based and ligand-based approaches, and its crucial role in rationalizing and expediting drug discovery. As CADD advances, incorporating diverse biological data and ensuring data privacy become paramount. Challenges persist, demanding the optimization of algorithms and robust ethical frameworks. Integrating Machine Learning and Artificial Intelligence amplifies CADDs predictive capabilities, yet ethical considerations and scalability challenges linger. Collaborative efforts and global initiatives, exemplified by platforms like Open-Source Malaria, underscore the democratization of drug discovery. The convergence of CADD with personalized medicine offers tailored therapeutic solutions, though ethical dilemmas and accessibility concerns must be navigated. Emerging technologies like quantum computing, immersive technologies, and green chemistry promise to redefine the future of CADD. The trajectory of CADD, marked by rapid advancements, anticipates challenges in ensuring accuracy, addressing biases in AI, and incorporating sustainability metrics. This paper concludes by highlighting the need for proactive measures in navigating the ethical, technological, and educational frontiers of CADD to shape a healthier, brighter future in drug discovery.
Collapse
Affiliation(s)
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry City CV1 5FB, UK
| |
Collapse
|
3
|
Kumar M, Rani I, Mujwar S, Narang R, Devgun M, Khokra SL. In-Silico Design, Synthesis, and Pharmacological Evaluation of Oxadiazole-Based Selective Cyclo-oxygenase-2 Inhibitors. Assay Drug Dev Technol 2023; 21:166-179. [PMID: 37318837 DOI: 10.1089/adt.2022.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
A series of oxadiazole-based five-membered heterocyclic derivatives was designed and synthesized with the intent of exclusive cyclo-oxygenase-2 (COX-2) inhibition to acquire anti-inflammatory activity without the presence of gastric toxicity. Oxadiazole-based novel analogs were designed by using bioisosteric substitutions and were screened against the macromolecular target by using docking-based virtual screening to identify their potential inhibitors. These selective COX-2 inhibitors were further evaluated for their stability within the binding cavity of macromolecular complex by performing molecular dynamic simulation for 100 ns. Selected compounds were synthesized by using Naphthalene-2-yl-acetic acid as a starting material based on the fundamental structure of naphthalene. The naphthalene ring and methylene bridge of naphthalene-2-yl-acetic acid were retained in the rational molecular design by replacing the carboxyl group with biologically significant groups like 1,3,4-oxadiazoles, with the goal of obtaining a novel, superior, and relatively safe anti-inflammatory molecule with better efficacy and optimized pharmacokinetics. Anti-inflammatory as well as analgesic properties of the compounds were evaluated experimentally for their pharmacological efficiency.
Collapse
Affiliation(s)
- Manish Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Isha Rani
- Spurthy College of Pharmacy, Bengaluru, Karnataka, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Manish Devgun
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Sukhbir Lal Khokra
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
4
|
Singh H, Raja A, Prakash A, Medhi B. Gmx_qk: An Automated Protein/Protein-Ligand Complex Simulation Workflow Bridged to MM/PBSA, Based on Gromacs and Zenity-Dependent GUI for Beginners in MD Simulation Study. J Chem Inf Model 2023; 63:2603-2608. [PMID: 37079775 DOI: 10.1021/acs.jcim.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Open-source MD simulation tools provide academics and low-income countries with the ability to compete in drug discovery advancements. Gromacs is a well-known and established MD simulation tool, among others. Although command-line tools offer full flexibility to users, they require expertise and familiarity with the UNIX operating system. In this context, we have developed an automated bash workflow that enables users with minimal knowledge of UNIX or command-line tools to run protein/protein-ligand complex simulations bridged to MM/PBSA calculations. The workflow provides information to the user using Zenity widgets and requires minimal intervention, such as energy minimization, simulation duration, and output file naming. It initiates MD simulations within a few seconds (energy minimization, NVT, NPT, and MD) after taking input files and parameters, which takes 20-30 min in a command-line-based protocol. The single workflow also helps users to produce reproducible research results with fewer errors. The workflow is available at the GitHub repository: https://github.com/harry-maan/gmx_qk.
Collapse
Affiliation(s)
- Harvinder Singh
- Department of Pharmacology, PGIMER, Chandigarh 160012, India
| | - Anupam Raja
- Department of Pharmacology, PGIMER, Chandigarh 160012, India
| | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh 160012, India
| |
Collapse
|
5
|
Ahmed SI, Jamil S, Ismatullah H, Hussain R, Bibi S, Khandaker MU, Naveed A, Idris AM, Emran TB. A comprehensive perspective of traditional Arabic or Islamic medicinal plants as an adjuvant therapy against COVID-19. Saudi J Biol Sci 2023; 30:103561. [PMID: 36684115 PMCID: PMC9838045 DOI: 10.1016/j.sjbs.2023.103561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/09/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
COVID-19 is a pulmonary disease caused by SARS-CoV-2. More than 200 million individuals are infected by this globally. Pyrexia, coughing, shortness of breath, headaches, diarrhoea, sore throats, and body aches are among the typical symptoms of COVID-19. The virus enters into the host body by interacting with the ACE2 receptor. Despite many SARS-CoV-2 vaccines manufactured by distinct strategies but any evidence-based particular medication to combat COVID-19 is not available yet. However, further research is required to determine the safety and effectiveness profile of the present therapeutic approaches. In this study, we provide a summary of Traditional Arabic or Islamic medicinal (TAIM) plants' historical use and their present role as adjuvant therapy for COVID-19. Herein, six medicinal plants Aloe barbadensis Miller, Olea europaea, Trigonella foenum-graecum, Nigella sativa, Cassia angustifolia, and Ficus carica have been studied based upon their pharmacological activities against viral infections. These plants include phytochemicals that have antiviral, immunomodulatory, antiasthmatic, antipyretic, and antitussive properties. These bioactive substances could be employed to control symptoms and enhance the development of a possible COVID-19 medicinal synthesis. To determine whether or if these TAIMs may be used as adjuvant therapy and are appropriate, a detailed evaluation is advised.
Collapse
Affiliation(s)
- Shabina Ishtiaq Ahmed
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan,The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Sehrish Jamil
- The Standard College for Girls, 3/530 Paris Road, Sialkot Pakistan
| | - Humaira Ismatullah
- School of Interdisciplinary Engineering & Sciences (SINES), National University of Sciences and Technology (NUST), 44000 Islamabad, Pakistan
| | - Rashid Hussain
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan,Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Mayeen Uddin Khandaker
- Center for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Aisha Naveed
- Caribbean Medical University, Willemastad, Curacao-Caribbean Island, Curaçao
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia,Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh,Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh,Corresponding author. Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
6
|
Khan MS, Khan IM, Ahmad SU, Rahman I, Khan MZ, Khan MSZ, Abbas Z, Noreen S, Liu Y. Immunoinformatics design of B and T-cell epitope-based SARS-CoV-2 peptide vaccination. Front Immunol 2023; 13:1001430. [PMID: 36685569 PMCID: PMC9846236 DOI: 10.3389/fimmu.2022.1001430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
SARS-COV-2 is a virulent respiratory virus, first identified in China (Wuhan) at the end of 2019. Scientists and researchers are trying to find any possible solution to this deadly viral disease. Different drug source agents have been identified, including western medicine, natural products, and traditional Chinese medicine. They have the potential to counteract COVID-19. This virus immediately affects the liver and causes a decrease in oxygen levels. In this study, multiple vacciome approaches were employed for designing a multi-epitope subunit vaccine for battling against SARS-COV-2. Vaccine designing, immunogenicity, allergenic, and physico-chemical assessment were performed by using the vacciome approach. The vaccine design is likely to be antigenic and produce potent interactions with ACE2 and NSP3 receptors. The developed vaccine has also been given to in-silico cloning models and immune response predictions. A total number of 12 CTL and 12 HTL antigenic epitopes were predicted from three selected covid-19 virulent proteins (spike protein, nucleocapsid protein, and membrane proteins, respectively) based on C-terminal cleavage and MHC binding scores. These predicted epitopes were amalgamated by AYY and GPGPG linkers, and a β-defensins adjuvant was inserted into the N-terminus of this vaccine. This analysis shows that the recommended vaccine can produce immune responses against SARS-COV-2. Designing and developing of the mentioned vaccine will require further experimental validation.
Collapse
Affiliation(s)
- Muhammad Shehzad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
- Department of Physics, College of Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Syed Umair Ahmad
- Department of Bioinformatics Hazara University Mansehra, Mansehra, Pakistan
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Muhammad Zahoor Khan
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Shah Zeb Khan
- Department of Biotechnology, University of Science and Technology of Bannu, Bannu, Pakistan
- School of Biomedical Science and Biomedical Engineering, Southeast University, Nanjing, China
| | - Zain Abbas
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Shumaila Noreen
- Department of Zoology, Hazara University, Mansehra, Pakistan
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| |
Collapse
|
7
|
Kciuk M, Mujwar S, Rani I, Munjal K, Gielecińska A, Kontek R, Shah K. Computational Bioprospecting Guggulsterone against ADP Ribose Phosphatase of SARS-CoV-2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238287. [PMID: 36500379 PMCID: PMC9739500 DOI: 10.3390/molecules27238287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Coronavirus Disease-2019 (COVID-19) is a highly contagious disease caused by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). The World Health Organization (WHO) classified the disease a as global public health hazard on 11 March 2020. Currently, there are no adequate measures to combat viral infections, including COVID-19, and the medication guidelines for the management of COVID-19 are dependent on previous findings from SARS-CoV and MERS-CoV research. Natural products have achieved widespread acceptance around the world as a means of enhancing healthcare and disease prevention. Plants are a potential source of antiviral factors such as flavonoids, phenolic acids, terpenoids, and others. Some of these agents exhibit a broad spectrum of antiviral activity. This study aimed to screen herbal leads for possible inhibitors of the SARS-CoV-2 ADP Ribose Phosphatase enzyme (ARP). Guggulsterone was found to be highly stabilized within the active site of the viral ARP enzyme by molecular dynamic simulation with very little fluctuation throughout the simulation timeframe of 100 ns. Thus, guggulsterone can be further used to develop a safe and competent medication for evolving therapy against SARS-CoV-2 in post-preclinical and clinical trials.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
- Correspondence:
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh 140401, Punjab, India
| | - Isha Rani
- Spurthy College of Pharmacy, Marasur Gate, Bengaluru 562106, Karnataka, India
| | - Kavita Munjal
- Department of Pharmacognosy, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University) Mullana, Ambala 133207, Haryana, India
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India
| |
Collapse
|
8
|
Rani I, Goyal A, Sharma M. Computational Design of Phosphatidylinositol 3-Kinase Inhibitors. Assay Drug Dev Technol 2022; 20:317-337. [PMID: 36269231 DOI: 10.1089/adt.2022.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
One of the most sought-after therapeutic targets for treating human cancers is the phosphoinositide 3-kinase; PI3k is an integral part of the PI3K/protein kinase B signaling arcade. This pathway is frequently activated in malignancies. Drug resistance and dose-limiting adverse effects are currently associated challenges with the existing anticancer chemotherapy. Therefore, in this research, a series of pyrimidine derivatives were designed and evaluated against human PI3K by using molecular docking analysis. The docking results were further verified by molecular dynamic simulation, which analyzed the strength of the macromolecular complex with respect to time. Compounds IV and XIV were found to be the most potent inhibitors of the human PI3K receptor with a high degree of stability within the active site of the target receptor for a timeframe of 50 ns. Thus, both of these compounds could be important drug candidates for the development of PI3K inhibitors as a prospective anticancer agent.
Collapse
Affiliation(s)
- Isha Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Department of Pharmaceutical Chemistry, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Anju Goyal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - M Sharma
- Institute of Advanced Research (IAR), Gandhinagar, India
| |
Collapse
|