1
|
Robin AY, Brochier-Armanet C, Bertrand Q, Barette C, Girard E, Madern D. Deciphering Evolutionary Trajectories of Lactate Dehydrogenases Provides New Insights into Allostery. Mol Biol Evol 2023; 40:msad223. [PMID: 37797308 PMCID: PMC10583557 DOI: 10.1093/molbev/msad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC.1.1.127) is an important enzyme engaged in the anaerobic metabolism of cells, catalyzing the conversion of pyruvate to lactate and NADH to NAD+. LDH is a relevant enzyme to investigate structure-function relationships. The present work provides the missing link in our understanding of the evolution of LDHs. This allows to explain (i) the various evolutionary origins of LDHs in eukaryotic cells and their further diversification and (ii) subtle phenotypic modifications with respect to their regulation capacity. We identified a group of cyanobacterial LDHs displaying eukaryotic-like LDH sequence features. The biochemical and structural characterization of Cyanobacterium aponinum LDH, taken as representative, unexpectedly revealed that it displays homotropic and heterotropic activation, typical of an allosteric enzyme, whereas it harbors a long N-terminal extension, a structural feature considered responsible for the lack of allosteric capacity in eukaryotic LDHs. Its crystallographic structure was solved in 2 different configurations typical of the R-active and T-inactive states encountered in allosteric LDHs. Structural comparisons coupled with our evolutionary analyses helped to identify 2 amino acid positions that could have had a major role in the attenuation and extinction of the allosteric activation in eukaryotic LDHs rather than the presence of the N-terminal extension. We tested this hypothesis by site-directed mutagenesis. The resulting C. aponinum LDH mutants displayed reduced allosteric capacity mimicking those encountered in plants and human LDHs. This study provides a new evolutionary scenario of LDHs that unifies descriptions of regulatory properties with structural and mutational patterns of these important enzymes.
Collapse
Affiliation(s)
- Adeline Y Robin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, CNRS, UMR5558, Villeurbanne F-69622, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Caroline Barette
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble 38000, France
| | - Eric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Dominique Madern
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
2
|
Delgado-Diaz DJ, Jesaveluk B, Hayward JA, Tyssen D, Alisoltani A, Potgieter M, Bell L, Ross E, Iranzadeh A, Allali I, Dabee S, Barnabas S, Gamieldien H, Blackburn JM, Mulder N, Smith SB, Edwards VL, Burgener AD, Bekker LG, Ravel J, Passmore JAS, Masson L, Hearps AC, Tachedjian G. Lactic acid from vaginal microbiota enhances cervicovaginal epithelial barrier integrity by promoting tight junction protein expression. MICROBIOME 2022; 10:141. [PMID: 36045402 PMCID: PMC9429363 DOI: 10.1186/s40168-022-01337-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Women with a cervicovaginal microbiota dominated by Lactobacillus spp. are at reduced risk of acquiring sexually transmitted infections including HIV, but the biological mechanisms involved remain poorly defined. Here, we performed metaproteomics on vaginal swab samples from young South African women (n = 113) and transcriptomics analysis of cervicovaginal epithelial cell cultures to examine the ability of lactic acid, a metabolite produced by cervicovaginal lactobacilli, to modulate genital epithelial barrier function. RESULTS Compared to women with Lactobacillus-depleted microbiota, women dominated by vaginal lactobacilli exhibit higher abundance of bacterial lactate dehydrogenase, a key enzyme responsible for lactic acid production, which is independently associated with an increased abundance of epithelial barrier proteins. Physiological concentrations of lactic acid enhance epithelial cell culture barrier integrity and increase intercellular junctional molecule expression. CONCLUSIONS These findings reveal a novel ability of vaginal lactic acid to enhance genital epithelial barrier integrity that may help prevent invasion by sexually transmitted pathogens. Video abstract.
Collapse
Affiliation(s)
- David Jose Delgado-Diaz
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Microbiology, Monash University, Clayton, VIC, 3168, Australia
| | - Brianna Jesaveluk
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Microbiology, Monash University, Clayton, VIC, 3168, Australia
| | - Joshua A Hayward
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Microbiology, Monash University, Clayton, VIC, 3168, Australia
| | - David Tyssen
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Arghavan Alisoltani
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, 92521, USA
| | - Matthys Potgieter
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Cape Town, 7925, South Africa
| | - Elizabeth Ross
- Centre for Proteomic and Genomic Research, Cape Town, 7925, South Africa
| | - Arash Iranzadeh
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Imane Allali
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 1014, Rabat, Morocco
| | - Smritee Dabee
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Shaun Barnabas
- Family Centre for Research with Ubuntu, Stellenbosch University, Cape Town, 7505, South Africa
| | - Hoyam Gamieldien
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
| | - Jonathan M Blackburn
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Centre for Infectious Diseases Research (CIDRI) in Africa Wellcome Trust Centre, University of Cape Town, Cape Town, 7925, South Africa
| | - Steven B Smith
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vonetta L Edwards
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Adam D Burgener
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, Canada
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, 7925, South Africa
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jo-Ann S Passmore
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, 4013, South Africa
- National Health Laboratory Service, Cape Town, 7925, South Africa
| | - Lindi Masson
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, 4013, South Africa
- Central Clinical School, Monash University, Melbourne, 3004, Australia
| | - Anna C Hearps
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Central Clinical School, Monash University, Melbourne, 3004, Australia
| | - Gilda Tachedjian
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC, 3168, Australia.
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
3
|
Deepika G, Subbarayadu S, Chaudhary A, Sarma PVGK. Dibenzyl (benzo [d] thiazol-2-yl (hydroxy) methyl) phosphonate (DBTMP) showing anti-S. aureus and anti-biofilm properties by elevating activities of serine protease (SspA) and cysteine protease staphopain B (SspB). Arch Microbiol 2022; 204:397. [PMID: 35708833 DOI: 10.1007/s00203-022-02974-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Staphylococcus aureus biofilms are the pathogenic factor in the spread of infection and are more pronounced in multidrug-resistant strains of S. aureus, where high expression of proteases is observed. Among various proteases, Serine protease (SspA) and cysteine protease Staphopain B (SspB) are known to play a key role in the biofilm formation and removal of biofilms. In earlier studies, we have reported Dibenzyl (benzo [d] thiazol-2-yl (hydroxy) methyl) phosphonate (DBTMP) exhibits anti-S. aureus and anti-biofilm properties by elevating the expression of the protease. In this study, the effect of DBTMP on the activities of SspA, and SspB of S. aureus was evaluated. The SspA and SspB genes of S. aureus ATCC12600 were sequenced (Genbank accession numbers: MZ456982 and MW574006). In S. aureus active SspA is formed by proteolytic cleavage of immature SspA, to get this mature SspA (mSspA), we have PCR amplified the mSspA sequence from the SspA gene. The mSspA and SspB genes were cloned, expressed, and characterized. The pure recombinant proteins rSspB and rmSspA exhibited a single band in SDS-PAGE with a molecular weight of 40 and 30 KD, respectively. The activities of rmSspA and rSspB are 32.33 and 35.45 Units/mL correspondingly. DBTMP elevated the activities of rmSspA and rSspB by docking with respective enzymes. This compound disrupted the biofilms formed by the multidrug-resistant strains of S. aureus and further prevented biofilm formation. These findings explain that DBTMP possesses anti-S. aureus and anti-biofilm features.
Collapse
Affiliation(s)
- G Deepika
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - S Subbarayadu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India
| | - Abhijit Chaudhary
- Department of Microbiology, Sri Padmavati Medical College (Women), SVIMS, Tirupati, Andhra Pradesh, 517507, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
4
|
Yuan Z, Wang J, Che R, God’spower BO, Zhou Y, Dong C, Li L, Chen M, Eliphaz N, Liu X, Li Y. Relationship between L-lactate dehydrogenase and multidrug resistance in Staphylococcus xylosus. Arch Microbiol 2021; 204:91. [DOI: 10.1007/s00203-021-02625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
|
5
|
Xu JJ, Sun JZ, Si KL, Guo CF. 3-Phenyllactic acid production by Lactobacillus crustorum strains isolated from naturally fermented vegetables. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Tian L, Zhou J, Lv Q, Liu F, Yang T, Zhang X, Xu M, Rao Z. Rational engineering of the Plasmodium falciparuml-lactate dehydrogenase loop involved in catalytic proton transfer to improve chiral 2-hydroxybutyric acid production. Int J Biol Macromol 2021; 179:71-79. [PMID: 33631263 DOI: 10.1016/j.ijbiomac.2021.02.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/29/2022]
Abstract
l-lactate dehydrogenases (LDHs) has been widely studied for their ability to reduce 2-keto acids for the production of 2-hydroxy acids, whereby 2-hydroxybutyric acids (2-HBA) is among the most important fundamental building blocks for synthesizing pharmaceuticals and biodegradable materials. However, LDHs usually show low activity towards 2-keto acids with longer side chain such as 2-oxobutyric acid (2-OBA). Here rational engineering of the Plasmodium falciparum LDH loop with residue involved in the catalytic proton transfer was initially studied. By combining homology alignment and structure-based design approach, we found that changing the charge characteristics or hydrogen bond network interactions of this loop could improve enzymatic catalytic activities and stabilities towards 2-OBA. Compared with wild type, variant N197Dldh showed 1.15 times higher activity and 2.73 times higher Kcat/Km. The half-life of variant N197Dldh at 40 °C increased to 77.9 h compared with 50.4 h of wild type. Furthermore, asymmetric synthesis of (S)-2-HBA with coenzyme regeneration revealed 95.8 g/L production titer within 12 h for variant N197Dldh, 2.05 times higher than using wild type. Our study indicated the importance of loop with residues involved in the catalytic proton transfer process, and the engineered LDH would be more suitable for (S)-2-HBA production.
Collapse
Affiliation(s)
- Lingzhi Tian
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Junping Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Qinglan Lv
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Fei Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
7
|
Vudhya Gowrisankar Y, Manne Mudhu S, Pasupuleti SK, Suthi S, Chaudhury A, Sarma PVGK. Staphylococcus aureus grown in anaerobic conditions exhibits elevated glutamine biosynthesis and biofilm units. Can J Microbiol 2020; 67:323-331. [PMID: 33136443 DOI: 10.1139/cjm-2020-0434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enormous spread of Staphylococcus aureus infections through biofilms is a major concern in hospital-acquired infections. Biofilm formation by S. aureus on any surface is facilitated by adjusting its redox status. This organism is a facultative anaerobe shift more towards reductive conditions by enhancing nitrogen metabolism where glutamine synthesis plays a key role. Glutamine is synthesized by glutamine synthetase (GS) encoded by the glnA gene. The gene was amplified by PCR from the chromosomal DNA of S. aureus, sequenced (HQ329146.1), and cloned. The pure recombinant GS exhibited Km of 11.06 ± 0.05 mmol·L-1 for glutamate and 2.4 ± 0.03 mmol·L-1 for ATP. The glnA gene sequence showed a high degree of variability with its human counterpart, while it was highly conserved in bacteria. Structural analysis revealed that the GS structure of S. aureus showed close homology with other Gram-positive bacteria and exhibited a high degree of variation with Escherichia coli GS. In the present study, we observed the increased presence of GS activity in multidrug-resistant strains of S. aureus with elevated biofilm units, grown in brain heart infusion broth; among them methicillin-resistant strains S. aureus LMV 3, 4, and 5 showed higher biofilm units. All these results explain the important role of glutamine biosynthesis with elevated biofilm units in the pathogenesis of S. aureus.
Collapse
Affiliation(s)
- Yugandhar Vudhya Gowrisankar
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India.,Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 40402, Taiwan (Republic of China)
| | - Sunitha Manne Mudhu
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India
| | - Santhosh Kumar Pasupuleti
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India.,Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202, USA
| | - Subbarayudu Suthi
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India
| | - Abhijit Chaudhury
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517507, Andhra Pradesh, India
| | | |
Collapse
|
8
|
Masukagami Y, Tivendale KA, Browning GF, Sansom FM. Analysis of the Mycoplasma bovis lactate dehydrogenase reveals typical enzymatic activity despite the presence of an atypical catalytic site motif. MICROBIOLOGY-SGM 2019; 164:186-193. [PMID: 29393016 DOI: 10.1099/mic.0.000600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The lactate dehydrogenase (LDH) of Mycoplasma genitalium has been predicted to also act as a malate dehydrogenase (MDH), but there has been no experimental validation of this hypothesized dual function for any mollicute. Our analysis of the metabolite profile of Mycoplasma bovis using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) detected malate, suggesting that there may be MDH activity in M. bovis. To investigate whether the putative l-LDH enzyme of M. bovis has a dual function (MDH and LDH), we performed bioinformatic and functional biochemical analyses. Although the amino acid sequence and predicted structural analysis of M. bovisl-LDH revealed unusual residues within the catalytic site, suggesting that it may have the flexibility to possess a dual function, our biochemical studies using recombinant M. bovis -LDH did not detect any MDH activity. However, we did show that the enzyme has typical LDH activity that could be inhibited by both MDH substrates oxaloacetate (OAA) and malate, suggesting that these substrates may be able to bind to M. bovis LDH. Inhibition of the conversion of pyruvate to lactate by OAA may be one method the mycoplasma cell uses to reduce the potential for accumulation of intracellular lactate.
Collapse
Affiliation(s)
- Yumiko Masukagami
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Kelly Anne Tivendale
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Glenn Francis Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Fiona Margaret Sansom
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
9
|
Capnophilic Lactic Fermentation from Thermotoga neapolitana: A Resourceful Pathway to Obtain Almost Enantiopure L-lactic Acid. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The industrial production of lactic acid (LA) is mainly based on bacterial fermentation. This process can result in enantiopure or racemic mixture according to the producing organism. Between the enantiomers, L-lactic acid shows superior market value. Recently, we reported a novel anaplerotic pathway called capnophilic lactic fermentation (CLF) that produces a high concentration of LA by fermentation of sugar in the anaerobic thermophilic bacterium Thermotoga neapolitana. The aim of this work was the identification of the enantiomeric characterization of the LA produced by T. neapolitana and identification of the lactate dehydrogenase in T. neapolitana (TnLDH) and related bacteria of the order Thermotogales. Chemical derivatization and GC/MS analysis were applied to define the stereochemistry of LA from T. neapolitana. A bioinformatics study on TnLDH was carried out for the characterization of the enzyme. Chemical analysis showed a 95.2% enantiomeric excess of L-LA produced by T. neapolitana. A phylogenetic approach clearly clustered the TnLDH together with the L-LDH from lactic acid bacteria. We report for the first time that T. neapolitana is able to produce almost enantiopure L-lactic acid. The result was confirmed by bioinformatics analysis on TnLDH, which is a member of the L-LDH sub-family.
Collapse
|
10
|
Identification of a l -Lactate dehydrogenase with 3,4-dihydroxyphenylpyruvic reduction activity for l -Danshensu production. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Nadeem MS, Al-Ghamdi MA, Khan JA, Sadath S, Al-Malki A. Recombinant production and biochemical and in silico characterization of lactate dehydrogenase from Geobacillus thermodenitrificans DSM-465. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
12
|
Swarupa V, Chaudhury A, Sarma PVGK. Iron enhances the peptidyl deformylase activity and biofilm formation in Staphylococcus aureus. 3 Biotech 2018; 8:32. [PMID: 29291145 DOI: 10.1007/s13205-017-1050-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 12/17/2017] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus plays a major role in persistent infections and many of these species form structured biofilms on different surfaces which is accompanied by changes in gene expression profiles. Further, iron supplementation plays a critical role in the regulation of several protein(s)/enzyme function, which all aid in the development of active bacterial biofilms. It is well known that for each protein, deformylation is the most crucial step in biosynthesis and is catalyzed by peptidyl deformylase (PDF). Thus, the aim of the current study is to understand the role of iron in biofilm formation and deformylase activity of PDF. Hence, the PDF gene of S. aureus ATCC12600 was PCR amplified using specific primers and sequenced, followed by cloning and expression in Escherichia coli DH5α. The deformylase activity of the purified recombinant PDF was measured in culture supplemented with/without iron where the purified rPDF showed Km of 1.3 mM and Vmax of 0.035 mM/mg/min, which was close to the native PDF (Km = 1.4 mM, Vmax = 0.030 mM/mg/min). Interestingly, the Km decreased and PDF activity increased when the culture was supplemented with iron, corroborating with qPCR results showing 100- to 150-fold more expression compared to control in S. aureus and its drug-resistant strains. Further biofilm-forming units (BU) showed an incredible increase (0.42 ± 0.005 to 6.3 ± 0.05 BU), i.e., almost 15-fold elevation in anaerobic conditions, indicating the significance of iron in S. aureus biofilms.
Collapse
Affiliation(s)
- Vimjam Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517507 AP India
| | - Abhijit Chaudhury
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517507 India
| | | |
Collapse
|
13
|
Anti-microbial and Anti-biofilm activity of a novel Dibenzyl (benzo[d] thiazol-2-yl (hydroxy) methyl) phosphonate by inducing protease expression in Staphylococcus aureus. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2102-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Prasad UV, Vasu D, Gowtham RR, Pradeep CK, Swarupa V, Yeswanth S, Choudhary A, Sarma PVGK. Cloning, Expression and Characterization of NAD Kinase from Staphylococcus aureus Involved in the Formation of NADP (H): A Key Molecule in the Maintaining of Redox Status and Biofilm Formation. Adv Biomed Res 2017; 6:97. [PMID: 28828348 PMCID: PMC5549544 DOI: 10.4103/2277-9175.211833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Staphylococcus aureus has the ability to form biofilms on any niches, a key pathogenic factor of this organism and this phenomenon is directly related to the concentration of NADPH. The formation of NADP is catalyzed by NAD kinase (NADK) and this gene of S. aureus ATCC 12600 was cloned, sequenced, expressed and characterized. MATERIALS AND METHODS The NADK gene was polymerase chain reaction amplified from the chromosomal DNA of S. aureus ATCC 12600 and cloned in pQE 30 vector, sequenced and expressed in Escherichia coli DH5α. The pure protein was obtained by passing through nickel metal chelate agarose column. The enzyme kinetics of the enzyme and biofilm assay of the S. aureus was carried out in both aerobic and anaerobic conditions. The kinetics was further confirmed by the ability of the substrates to dock to the NADK structure. RESULTS The recombinant NADK exhibited single band with a molecular weight of 31kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the gene sequence (GenBank: JN645814) revealed presence of only one kind of NADK in all S. aureus strains. The enzyme exhibited very high affinity for NAD compared to adenosine triphosphate concurring with the docking results. A root-mean-square deviation value 14.039Å observed when NADK structure was superimposed with its human counterpart suggesting very low homology. In anaerobic conditions, higher biofilm units were found with decreased NADK activity. CONCLUSION The results of this study suggest increased NADPH concentration in S. aureus plays a vital role in the biofilm formation and survival of this pathogen in any environmental conditions.
Collapse
Affiliation(s)
- U Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - D Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - R Rishi Gowtham
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Ch Krishna Pradeep
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - V Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - S Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - Abhijit Choudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| |
Collapse
|
15
|
Quantitative Expression Analysis of SpA, FnbA and Rsp Genes in Staphylococcus aureus: Actively Associated in the Formation of Biofilms. Curr Microbiol 2017; 74:1394-1403. [DOI: 10.1007/s00284-017-1331-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
|
16
|
Huang Y, You C, Liu Z. Cloning of D-lactate dehydrogenase genes of Lactobacillus delbrueckii subsp. bulgaricus and their roles in D-lactic acid production. 3 Biotech 2017; 7:194. [PMID: 28664378 DOI: 10.1007/s13205-017-0822-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/18/2017] [Indexed: 12/01/2022] Open
Abstract
Lactobacillus delbrueckii subsp. bulgaricus is a heterogenous lactic acid bacterium that converts pyruvate mainly to D-lactic acid using D-lactate dehydrogenases (D-LDHs), whose functional properties remain poorly characterized. Here, the D-LDHs genes (ldb0101, ldb0813, ldb1010, ldb1147 and ldb2021) were cloned and overexpressed in Escherichia coli JM109 from an inducible pUC18 vector, respectively, and the resulting strains were compared in terms of D-lactic acid production. The strain expressing ldb0101 and ldb1010 gene individually produced more D-lactate than other three strains. Further study revealed that Ldb0101 activity was down-regulated by the oxygen and, therefore, achieved a highest titer of D-lactate (1.94 g/L) under anaerobic condition, and introduction of ldb1010 gene enhanced D-lactate formation (0.94 and 0.85 g/L, respectively) both in aerobic and anaerobic conditions due to a relatively stable q d-lactate. Our results suggested that the enzyme Ldb0101 and Ldb1010 played a role of more importance in D-lactate formation. To the best of our knowledge, we demonstrate for the first time the roles of different D-LDH homologs from L. bulgaricus in D-lactic acid production.
Collapse
Affiliation(s)
- Yanna Huang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co., Ltd., Synergetic Innovation Center of Food Safety and Nutrition, Shanghai, 200436, China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co., Ltd., Synergetic Innovation Center of Food Safety and Nutrition, Shanghai, 200436, China.
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy and Food Co., Ltd., Synergetic Innovation Center of Food Safety and Nutrition, Shanghai, 200436, China.
| |
Collapse
|
17
|
Swarupa V, Chaudhury A, Krishna Sarma PVG. Effect of 4-methoxy 1-methyl 2-oxopyridine 3-carbamide on Staphylococcus aureus by inhibiting UDP-MurNAc-pentapeptide, peptidyl deformylase and uridine monophosphate kinase. J Appl Microbiol 2017; 122:663-675. [PMID: 27987382 DOI: 10.1111/jam.13378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 02/01/2023]
Abstract
AIMS The present study aimed to investigate the anti-Staphylococcus aureus and anti-biofilm properties of 4-methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC) on S. aureus UDP-MurNAc-pentapeptide (MurF), peptidyl deformylase (PDF) and uridine monophosphate kinase (UMPK). METHODS AND RESULTS The in vitro efficacy of MMOXC was evaluated using quantitative polymerase chain reaction, in vitro assays and broth microdilution methods. Further, the minimum inhibitory concentration (MIC), IC50 and zone of inhibition were recorded in addition to the anti-biofilm property. MMOXC inhibited pure recombinant UMPK and PDF enzymes with a Ki of 0·37 and 0·49 μmol l-1 . However Ki was altered for MurF with varying substrates. The MurF Ki for UMT, d-Ala-d-Ala and ATP as substrates was 0·3, 0·25 and 1·4 μmol l-1 , respectively. Real-time PCR analysis showed a significant reduction in PDF and MurF expression which correlated with the MIC90 at 100 μmol l-1 and IC50 in the range 42 ± 1·5 to 50 ± 1 μmol l-1 against all strains tested. At 5 μmol l-1 MMOXC was able completely to remove preformed biofilms of S. aureus and other drug resistant strains. CONCLUSIONS MMOXC was able to kill S. aureus and drug resistant strains tested by inhibiting MurF, UMPK and PDF enzymes and completely obliterated preformed biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY Growth reduction and biofilm removal are prerequisites for controlling S. aureus infections. In this study MMOXC exhibited prominent anti-S. aureus and anti-biofilm properties by blocking cell wall formation, RNA biosynthesis and protein maturation.
Collapse
Affiliation(s)
- V Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - A Chaudhury
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - P V G Krishna Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| |
Collapse
|
18
|
Elmasri WA, Zhu R, Peng W, Al-Hariri M, Kobeissy F, Tran P, Hamood AN, Hegazy MF, Paré PW, Mechref Y. Multitargeted Flavonoid Inhibition of the Pathogenic Bacterium Staphylococcus aureus: A Proteomic Characterization. J Proteome Res 2017; 16:2579-2586. [PMID: 28541047 DOI: 10.1021/acs.jproteome.7b00137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Growth inhibition of the pathogen Staphylococcus aureus with currently available antibiotics is problematic in part due to bacterial biofilm protection. Although recently characterized natural products, including 3',4',5-trihydroxy-6,7-dimethoxy-flavone [1], 3',4',5,6,7-pentahydroxy-flavone [2], and 5-hydroxy-4',7-dimethoxy-flavone [3], exhibit both antibiotic and biofilm inhibitory activities, the mode of action of such hydroxylated flavonoids with respect to S. aureus inhibition is yet to be characterized. Enzymatic digestion and high-resolution MS analysis of differentially expressed proteins from S. aureus with and without exposure to antibiotic flavonoids (1-3) allowed for the characterization of global protein alterations induced by metabolite treatment. A total of 56, 92, and 110 proteins were differentially expressed with bacterial exposure to 1, 2, or 3, respectively. The connectivity of the identified proteins was characterized using a search tool for the retrieval of interacting genes/proteins (STRING) with multitargeted S. aureus inhibition of energy metabolism and biosynthesis by the assayed flavonoids. Identifying the mode of action of natural products as antibacterial agents is expected to provide insight into the potential use of flavonoids alone or in combination with known therapeutic agents to effectively control S. aureus infection.
Collapse
Affiliation(s)
- Wael A Elmasri
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Rui Zhu
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Wenjing Peng
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Moustafa Al-Hariri
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut , Beirut 1107 2020, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut , Beirut 1107 2020, Lebanon
| | | | | | - Mohamed F Hegazy
- Department of Phytochemistry, National Research Centre , Giza 12311, Egypt
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
19
|
Vasu D, Kumar PS, Prasad UV, Swarupa V, Yeswanth S, Srikanth L, Sunitha MM, Choudhary A, Sarma PVGK. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation. IRANIAN BIOMEDICAL JOURNAL 2016; 21:94-105. [PMID: 27695030 PMCID: PMC5274716 DOI: 10.18869/acadpub.ibj.21.2.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureusglkA and biofilm formation. Methods: Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK, and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Results: Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. Conclusion: The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and the progress of infection.
Collapse
Affiliation(s)
- Dudipeta Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Pasupuleti Santhosh Kumar
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Uppu Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Vimjam Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Sthanikam Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Lokanathan Srikanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Manne Mudhu Sunitha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | - Abhijith Choudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati 517 507, Andhra Pradesh, India
| | | |
Collapse
|
20
|
Vasu D, Sunitha MM, Srikanth L, Swarupa V, Prasad UV, Sireesha K, Yeswanth S, Kumar PS, Venkatesh K, Chaudhary A, Sarma PVGK. In Staphylococcus aureus the regulation of pyruvate kinase activity by serine/threonine protein kinase favors biofilm formation. 3 Biotech 2015; 5:505-512. [PMID: 28324552 PMCID: PMC4522715 DOI: 10.1007/s13205-014-0248-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus, a natural
inhabitant of nasopharyngeal tract, survives mainly as biofilms. Previously we have observed that S. aureus ATCC 12600 grown under anaerobic conditions exhibited high rate of biofilm formation and l-lactate dehydrogenase activity. Thus, the concentration of pyruvate plays a critical role in S. aureus, which is primarily catalyzed by pyruvate kinase (PK). Analyses of the PK gene sequence (JN645815) revealed presence of PknB site in PK gene indicating that phosphorylation may be influencing the functioning of PK. To establish this hypothesis the pure enzymes of S. aureus ATCC 12600 were obtained by expressing these genes in PK 1 and PV 1 (JN695616) clones and passing the cytosolic fractions through nickel metal chelate column. The molecular weights of pure recombinant PK and PknB are 63 and 73 kDa, respectively. The enzyme kinetics of pure PK showed KM of 0.69 ± 0.02 µM, while the KM of PknB for stpks (stpks = NLCNIPCSALLSSDITASVNCAK) substrate was 0.720 ± 0.08 mM and 0.380 ± 0.07 mM for autophosphorylation. The phosphorylated PK exhibited 40 % reduced activity (PK = 0.2 ± 0.015 μM NADH/min/ml to P-PK = 0.12 ± 0.01 μM NADH/min/ml). Elevated synthesis of pyruvate kinase was observed in S. aureus ATCC 12600 grown in anaerobic conditions suggesting that the formed pyruvate is more utilized in the synthesis phase, supporting increased rate of biofilm formation.
Collapse
Affiliation(s)
- D Vasu
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - M M Sunitha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - L Srikanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - V Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - U Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - K Sireesha
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - S Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - P Santhosh Kumar
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - K Venkatesh
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - Abhijit Chaudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India
| | - P V G K Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, 517507, India.
| |
Collapse
|
21
|
Venkateswara Prasad U, Vasu D, Yeswanth S, Swarupa V, Sunitha MM, Choudhary A, Sarma PVGK. Phosphorylation controls the functioning ofStaphylococcus aureusisocitrate dehydrogenase – favours biofilm formation. J Enzyme Inhib Med Chem 2015; 30:655-61. [DOI: 10.3109/14756366.2014.959945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Prasad UV, Swarupa V, Yeswanth S, Kumar PS, Kumar ES, Reddy KMK, Kumar YN, Rani VJ, Chaudhary A, Sarma PVGK. Structural and Functional analysis of Staphylococcus aureus NADP-dependent IDH and its comparison with Bacterial and Human NADPdependent IDH. Bioinformation 2014; 10:81-6. [PMID: 24616559 PMCID: PMC3937580 DOI: 10.6026/97320630010081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/31/2014] [Indexed: 01/14/2023] Open
Abstract
Staphylococcus aureus a natural inhabitant of nasopharyngeal tract mainly survives as biofilms and possess complete Krebs cycle which plays major role in its pathogenesis. This TCA cycle is regulated by Isocitrate dehydrogenase (IDH) we have earlier cloned, sequenced (HM067707), expressed and characterized this enzyme from S. aureus ATCC12600. We have observed only one type of IDH in all the strains of S. aureus which dictates the flow of carbon thereby controlling the virulence and biofilm formation, this phenomenon is variable among bacteria. Therefore in the present study comparative structural and functional analysis of IDH was undertaken. As the crystal structure of S. aureus IDH was not available therefore using the deduced amino sequence of complete gene the 3D structure of IDH was built in Modeller 9v8. The PROCHECK and ProSAweb analysis showed the built structure was close to the crystal structure of Bacillus subtilis. This structure when superimposed with other bacterial IDH structures exhibited extensive structural variations as evidenced from the RMSD values correlating with extensive sequential variations. Only 24% sequence identity was observed with both human NADP dependent IDHs (PDB: 1T09 and 1T0L) and the structural comparative studies indicated extensive structural variations with an RMSD values of 14.284Å and 10.073Å respectively. Docking of isocitrate to both human IDHs and S. aureus IDH structures showed docking scores of -11.6169 and -10.973 respectively clearly indicating higher binding affinity of isocitrate to human IDH.
Collapse
Affiliation(s)
- Uppu Venkateswara Prasad
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, India, 517507
| | - Vimjam Swarupa
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, India, 517507
| | - Sthanikam Yeswanth
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, India, 517507
| | - Pasupuleti Santhosh Kumar
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, India, 517507
| | - Easambadi Siva Kumar
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP, India, 517507
| | | | - Yellapu Nanda Kumar
- Department of Zoology, Sri Venkateswara University, Tirupati, AP, India, 517502
| | | | - Abhijit Chaudhary
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati - 517 507
| | | |
Collapse
|