1
|
Jiang Y, Ma Y, Liu Q, Li T, Li Y, Guo K, Zhang Y. Tracing Clostridium perfringens strains from beef processing of slaughter house by pulsed-field gel electrophoresis, and the distribution and toxinotype of isolates in Shaanxi province, China. Food Microbiol 2021; 101:103887. [PMID: 34579847 DOI: 10.1016/j.fm.2021.103887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to investigate the distribution and specify the transmission and cross-contamination of Clostridium perfringens (C. perfringens) in the beef slaughtering and butchering process. The prevalence of 21.2% (150/708) yielded 208 isolates of C. perfringens, including 80.8% type A and 19.2% type D, 0.4% (3/708) samples carried both type A and D strains, and 72.5% type D isolates carried both cpe and atyp.cpb2 genes. C. perfringens were identified through the whole slaughtering process but no type F (cpe and cpa isolates) was found. 69 isolates were further analyzed and classified into 28 PFGE genotypes and clade I contained 94.2% isolates and 24 PFGE genotypes, which showed the genetic diversity and epidemic correlation. Our study traced C. perfringens contamination along the handling processes and showed a gradually ascending contamination rate during the whole process, revealing widespread cross-contamination from the feces and hides of slaughtered cattle to the carcass in the slaughtering workshop, so as from tools and personnel to meat of the cutting workshops. Strains from different slaughterhouses (regions) have high homology, and type A is the predominant toxinotype. It is necessary to monitor and control several key points of cross-contamination during slaughtering process to reduce a risk of C. perfringens infection.
Collapse
Affiliation(s)
- Yanfen Jiang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yinghui Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Qianqian Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Tianmei Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yiming Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Turcotte C, Thibodeau A, Quessy S, Topp E, Beauchamp G, Fravalo P, Archambault M, Gaucher ML. Impacts of Short-Term Antibiotic Withdrawal and Long-Term Judicious Antibiotic Use on Resistance Gene Abundance and Cecal Microbiota Composition on Commercial Broiler Chicken Farms in Québec. Front Vet Sci 2020; 7:547181. [PMID: 33409294 PMCID: PMC7779680 DOI: 10.3389/fvets.2020.547181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
The ever-increasing problem of antibiotic resistance makes routine use of antibiotics in animal production no longer considered as a reasonable and viable practice. The Chicken Farmers of Canada have developed and are implementing an Antimicrobial Use Reduction Strategy, which has the ultimate goal of eliminating the preventive use of medically important antibiotics in broiler chicken and turkey production. However, very little is known about the real overall impact of an antibiotic use reduction strategy in complex ecosystems, such as the bird intestine or the commercial broiler chicken farm. The main objectives of the present study were to compare the abundance of antibiotic resistance-encoding genes, characterize the intestinal microbiota composition, and evaluate the presence of Clostridium perfringens, in six commercial poultry farms adopting short-term antibiotic withdrawal and long-term judicious use strategy. Implementing an antibiotic-free program over a 15-months period did not reduce the abundance of many antibiotic resistance-encoding genes, whereas the judicious use of antibiotics over 6 years was found effective. The short-term antibiotic withdrawal and the long-term judicious use strategy altered the intestinal microbiota composition, with the Ruminococcaceae and Lachnospiraceae families being negatively impacted. These findings are in agreement with the lower production performance and with the increased C. perfringens populations observed for farms phasing out the use of antibiotics. Adopting a conventional rearing program on commercial broiler chicken farms selected for specific antibiotic resistance-encoding genes in many barns. This study highlights the potential impacts of different rearing programs in poultry production and will help guide future policies in order to reduce the use of antibiotics while maintaining production performance.
Collapse
Affiliation(s)
- Catherine Turcotte
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sylvain Quessy
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Guy Beauchamp
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Philippe Fravalo
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Pôle Agroalimentaire du Cnam, Conservatoire National des Arts et Métiers, Paris, France
| | - Marie Archambault
- Swine and Poultry Infectious Diseases Research Centre, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
3
|
Gaucher ML, Thibodeau A, Fravalo P, Archambault M, Arsenault J, Fournaise S, Letellier A, Quessy S. Broiler chicken carcasses and their associated abattoirs as a source of enterotoxigenic Clostridium perfringens: Prevalence and critical steps for contamination. AIMS Microbiol 2018; 4:439-454. [PMID: 31294226 PMCID: PMC6604940 DOI: 10.3934/microbiol.2018.3.439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/31/2018] [Indexed: 12/25/2022] Open
Abstract
Clostridium perfringens ranks among the three most frequent bacterial pathogens causing human foodborne diseases in Canada, and poultry meat products are identified as a source of infection for humans. The objective of the current study was to estimate the proportion of broiler chicken flocks, carcasses and various environmental samples from critical locations of the slaughter plant positive for the presence of C. perfringens enterotoxin encoding gene (cpe). From the 16 visits conducted, 25% of the 79 flocks sampled, 10% of the 379 carcasses sampled and 5% of the 217 environmental samples collected were found positive for cpe. The proportion of cpe-positive carcasses was statistically different between surveyed plants, with 17.0% for one abattoir and 2.2% for the other. For the most contaminated plant, cpe-positive carcasses were identified at each step of the processing line, with prevalence varying between 10.0% and 25.0%, whereas this prevalence varied between 0% and 25.0% for the environmental surfaces sampled. Based on the results obtained, enterotoxigenic C. perfringens strains could potentially represent a risk for the consumer.
Collapse
Affiliation(s)
- Marie-Lou Gaucher
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada
| | - Alexandre Thibodeau
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada
| | - Philippe Fravalo
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada
| | - Marie Archambault
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada
| | - Julie Arsenault
- Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada
| | - Sylvain Fournaise
- Olymel S.E.C./L.P., Québec, Canada, 2200 Avenue Léon-Pratte, St-Hyacinthe, Québec, Canada
| | - Ann Letellier
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada.,Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada
| | - Sylvain Quessy
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada
| |
Collapse
|