1
|
Li J, Sayeed S, McClane BA. The presence of differentiated C2C12 muscle cells enhances toxin production and growth by Clostridium perfringens type A strain ATCC3624. Virulence 2024; 15:2388219. [PMID: 39192628 PMCID: PMC11364075 DOI: 10.1080/21505594.2024.2388219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Clostridium perfringens type A causes gas gangrene, which involves muscle infection. Both alpha toxin (PLC), encoded by the plc gene, and perfringolysin O (PFO), encoded by the pfoA gene, are important when type A strains cause gas gangrene in a mouse model. This study used the differentiated C2C12 muscle cell line to test the hypothesis that one or both of those toxins contributes to gas gangrene pathogenesis by releasing growth nutrients from muscle cells. RT-qPCR analyses showed that the presence of differentiated C2C12 cells induces C. perfringens type A strain ATCC3624 to upregulate plc and pfoA expression, as well as increase expression of several regulatory genes, including virS/R, agrB/D, and eutV/W. The VirS/R two component regulatory system (TCRS) and its coupled Agr-like quorum sensing system, along with the EutV/W TCRS (which regulates expression of genes involved in ethanolamine [EA] utilization), were shown to mediate the C2C12 cell-induced increase in plc and pfoA expression. EA was demonstrated to increase toxin gene expression. ATCC3624 growth increased in the presence of differentiated C2C12 muscle cells and this effect was shown to involve both PFO and PLC. Those membrane-active toxins were each cytotoxic for differentiated C2C12 cells, suggesting they support ATCC3624 growth by releasing nutrients from differentiated C2C12 cells. These findings support a model where, during gas gangrene, increased production of PFO and PLC in the presence of muscle cells causes more damage to those host cells, which release nutrients like EA that are then used to support C. perfringens growth in muscle.
Collapse
Affiliation(s)
- Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sameera Sayeed
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Markowska K, Szymanek-Majchrzak K, Pituch H, Majewska A. Understanding Quorum-Sensing and Biofilm Forming in Anaerobic Bacterial Communities. Int J Mol Sci 2024; 25:12808. [PMID: 39684519 DOI: 10.3390/ijms252312808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Biofilms are complex, highly organized structures formed by microorganisms, with functional cell arrangements that allow for intricate communication. Severe clinical challenges occur when anaerobic bacterial species establish long-lasting infections, especially those involving biofilms. These infections can occur in device-related settings (e.g., implants) as well as in non-device-related conditions (e.g., inflammatory bowel disease). Within biofilms, bacterial cells communicate by producing and detecting extracellular signals, particularly through specific small signaling molecules known as autoinducers. These quorum-sensing signals are crucial in all steps of biofilm formation: initial adhesion, maturation, and dispersion, triggering gene expression that coordinates bacterial virulence factors, stimulates immune responses in host tissues, and contributes to antibiotic resistance development. Within anaerobic biofilms, bacteria communicate via quorum-sensing molecules such as N-Acyl homoserine lactones (AHLs), autoinducer-2 (AI-2), and antimicrobial molecules (autoinducing peptides, AIPs). To effectively combat pathogenic biofilms, understanding biofilm formation mechanisms and bacterial interactions is essential. The strategy to disrupt quorum sensing, termed quorum quenching, involves methods like inactivating or enzymatically degrading signaling molecules, competing with signaling molecules for binding sites, or noncompetitively binding to receptors, and blocking signal transduction pathways. In this review, we comprehensively analyzed the fundamental molecular mechanisms of quorum sensing in biofilms formed by anaerobic bacteria. We also highlight quorum quenching as a promising strategy to manage bacterial infections associated with anaerobic bacterial biofilms.
Collapse
Affiliation(s)
- Kinga Markowska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Ksenia Szymanek-Majchrzak
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chalubinski Str., 02-004 Warsaw, Poland
| |
Collapse
|
3
|
Kumon T, Oiki S, Hashimoto W. Molecular identification of hyaluronate lyase, not hyaluronidase, as an intrinsic hyaluronan-degrading enzyme in Clostridium perfringens strain ATCC 13124. Sci Rep 2024; 14:24266. [PMID: 39438475 PMCID: PMC11496695 DOI: 10.1038/s41598-024-73955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Clostridium perfringens, an opportunistic pathogen, produces mu-toxin hyaluronidases including endo-β-N-acetylglucosaminidases (Nags) as a virulence invasion factor. To clarify an intrinsic factor for degradation of host extracellular hyaluronan, we focused on hyaluronate lyase (HysA), distinct from endo-β-N-acetylglucosaminidases. C. perfringens strain ATCC 13124 was found to assimilate host-derived extracellular mucosubstances, hyaluronan and mucin, which induced expression of the hyaluronan-related genetic cluster, including hyaluronate lyase gene (hysA), but repressed endo-β-N-acetylglucosaminidase genes. This genetic cluster is conserved in some strains of C. perfringens. The recombinant strain ATCC 13124 hyaluronate lyase HysA showed an hyaluronan-degrading activity through β-elimination reaction. The hyaluronan-degrading enzyme in the culture supernatant of strain ATCC 13124 exhibited the lyase activity and was identical to the recombinant hyaluronate lyase on the native-PAGE gel, followed by activity straining. These results demonstrated that the intrinsic hyaluronan-degrading enzyme of C. perfringens strain ATCC 13124 is hyaluronate lyase HysA, but not hyaluronidases NagH, NagJ, and NagK.
Collapse
Affiliation(s)
- Tomoya Kumon
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sayoko Oiki
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
4
|
Hussain H, Fadel A, Garcia E, Hernandez RJ, Saadoon ZF, Naseer L, Casmartino E, Hamad M, Schnepp T, Sarfraz R, Angly S, Jayakumar AR. Clostridial Myonecrosis: A Comprehensive Review of Toxin Pathophysiology and Management Strategies. Microorganisms 2024; 12:1464. [PMID: 39065232 PMCID: PMC11278868 DOI: 10.3390/microorganisms12071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Clostridial myonecrosis, commonly known as gas gangrene (GG), is a rapidly progressing and potentially fatal bacterial infection that primarily affects muscle and soft tissue. In the United States, the incidence of GG is roughly 1000 cases per year, while, in developing countries, the incidence is higher. This condition is most often caused by Clostridium perfringens, a Gram-positive, spore-forming anaerobic bacterium widely distributed in the environment, although other Clostridium species have also been reported to cause GG. The CP genome contains over 200 transport-related genes, including ABC transporters, which facilitate the uptake of sugars, amino acids, nucleotides, and ions from the host environment. There are two main subtypes of GG: traumatic GG, resulting from injuries that introduce Clostridium spores into deep tissue, where anaerobic conditions allow for bacterial growth and toxin production, and spontaneous GG, which is rarer and often occurs in immunocompromised patients. Clostridium species produce various toxins (e.g., alpha, theta, beta) that induce specific downstream signaling changes in cellular pathways, causing apoptosis or severe, fatal immunological conditions. For example, the Clostridium perfringens alpha toxin (CPA) targets the host cell's plasma membrane, hydrolyzing sphingomyelin and phosphatidylcholine, which triggers necrosis and apoptosis. The clinical manifestations of clostridial myonecrosis vary. Some patients experience the sudden onset of severe pain, swelling, and muscle tenderness, with the infection progressing rapidly to widespread tissue necrosis, systemic toxicity, and, if untreated, death. Other patients present with discharge, pain, and features of cellulitis. The diagnosis of GG primarily involves clinical evaluation, imaging studies such as X-rays, computer tomography (CT) scans, and culture. The treatment of GG involves surgical exploration, broad-spectrum antibiotics, antitoxin, and hyperbaric oxygen therapy, which is considered an adjunctive treatment to inhibit anaerobic bacterial growth and enhance the antibiotic efficacy. Early recognition and prompt, comprehensive treatment are critical to improving the outcomes for patients affected by this severe and life-threatening condition.
Collapse
Affiliation(s)
- Hussain Hussain
- Department of Internal Medicine, Kendall Hospital-HCA Florida Healthcare, Miami, FL 33136, USA;
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Aya Fadel
- Department of Internal Medicine, Ocean University Medical Center—Hackensack Meridian Health, Brick, NJ 08724, USA;
| | - Efrain Garcia
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Robert J. Hernandez
- Department of Internal Medicine, Kendall Hospital-HCA Florida Healthcare, Miami, FL 33136, USA;
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Zahraa F. Saadoon
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Lamia Naseer
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Ekaterina Casmartino
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Mohammad Hamad
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Taylor Schnepp
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Rehan Sarfraz
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Sohair Angly
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA; (E.G.); (Z.F.S.); (L.N.); (E.C.); (M.H.); (T.S.); (R.S.); (S.A.)
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Gao S, Wang Y, Yuan S, Zuo J, Jin W, Shen Y, Grenier D, Yi L, Wang Y. Cooperation of quorum sensing and central carbon metabolism in the pathogenesis of Gram-positive bacteria. Microbiol Res 2024; 282:127655. [PMID: 38402726 DOI: 10.1016/j.micres.2024.127655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.
Collapse
Affiliation(s)
- Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Wenjie Jin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China; College of Life Science, Luoyang Normal University, Luoyang 471934, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, China; Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang 471003, China.
| |
Collapse
|
6
|
Mehdizadeh Gohari I, A. Navarro M, Li J, Shrestha A, Uzal F, A. McClane B. Pathogenicity and virulence of Clostridium perfringens. Virulence 2021; 12:723-753. [PMID: 33843463 PMCID: PMC8043184 DOI: 10.1080/21505594.2021.1886777] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Clostridium perfringens is an extremely versatile pathogen of humans and livestock, causing wound infections like gas gangrene (clostridial myonecrosis), enteritis/enterocolitis (including one of the most common human food-borne illnesses), and enterotoxemia (where toxins produced in the intestine are absorbed and damage distant organs such as the brain). The virulence of this Gram-positive, spore-forming, anaerobe is largely attributable to its copious toxin production; the diverse actions and roles in infection of these toxins are now becoming established. Most C. perfringens toxin genes are encoded on conjugative plasmids, including the pCW3-like and the recently discovered pCP13-like plasmid families. Production of C. perfringens toxins is highly regulated via processes involving two-component regulatory systems, quorum sensing and/or sporulation-related alternative sigma factors. Non-toxin factors, such as degradative enzymes like sialidases, are also now being implicated in the pathogenicity of this bacterium. These factors can promote toxin action in vitro and, perhaps in vivo, and also enhance C. perfringens intestinal colonization, e.g. NanI sialidase increases C. perfringens adherence to intestinal tissue and generates nutrients for its growth, at least in vitro. The possible virulence contributions of many other factors, such as adhesins, the capsule and biofilms, largely await future study.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Archana Shrestha
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francisco Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
A Novel PilR/PilS Two-Component System Regulates Necrotic Enteritis Pilus Production in Clostridium perfringens. J Bacteriol 2021; 203:e0009621. [PMID: 34152200 DOI: 10.1128/jb.00096-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens causes necrotic enteritis (NE) in poultry. A chromosomal locus (VR-10B) was previously identified in NE-causing C. perfringens strains that encodes an adhesive pilus (NE pilus), along with a two-component system (TCS) designated here as PilRS. While the NE pilus is important in pathogenesis, the role of PilRS remains to be determined. The current study investigated the function of PilRS, as well as the Agr-like quorum-sensing (QS) system and VirSR TCS in the regulation of pilin production. Isogenic pilR, agrB, and virR null mutants were generated from the parent strain CP1 by insertional inactivation using the ClosTron system, along with the respective complemented strains. Immunoblotting analyses showed no detectable pilus production in the CP1pilR mutant, while production in its complement (CP1pilR+) was greater than wild-type levels. In contrast, pilus production in the agrB and virR mutants was comparable or higher than the wild type but reduced in their respective complemented strains. When examined for collagen-binding activity, the pilR mutant showed significantly lower binding to most collagen types (types I to V) than parental CP1 (P ≤ 0.05), whereas this activity was restored in the complemented strain (P > 0.05). In contrast, binding of agrB and virR mutants to collagen showed no significant differences in collagen-binding activity compared to CP1 (P > 0.05), whereas the complemented strains exhibited significantly reduced binding (P ≤ 0.05). These data suggest the PilRS TCS positively regulates pilus production in C. perfringens, while the Agr-like QS system may serve as a negative regulator of this operon. IMPORTANCE Clostridium perfringens type G isolates cause necrotic enteritis (NE) in poultry, presenting a major challenge for poultry production in the postantibiotic era. Multiple factors in C. perfringens, including both virulent and nonvirulent, are involved in the development of the disease. We previously discovered a cluster of C. perfringens genes that encode a pilus involved in adherence and NE development, along with a predicted two-component regulatory system (TCS), designated PilRS. In the present study, we have demonstrated the role of PilRS in regulating pilus production and collagen binding of C. perfringens. In addition, the Agr-like quorum sensing signaling pathway was found to be involved in the regulation. These findings have identified additional targets for developing nonantibiotic strategies to control NE disease.
Collapse
|
8
|
Epigallocatechin gallate and Lactobacillus plantarum culture supernatants exert bactericidal activity and reduce biofilm formation in Clostridium perfringens. Folia Microbiol (Praha) 2021; 66:843-853. [PMID: 34170482 DOI: 10.1007/s12223-021-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
Clostridium perfringens forms biofilms and spores that are a source of food contamination. In this study, the antibacterial activities of Lactobacillus plantarum culture supernatants (LP-S), LP-S fractions, and the plant-derived compound epigallocatechin gallate (EG) were evaluated. Specifically, their effects on the viability and biofilm-forming ability of C. perfringens were assessed. Moreover, the expression of quorum sensing-regulated genes associated with the pathogenesis of this microorganism and that of genes involved in biofilm formation was also investigated. The results showed that both EG and the LP-S exerted bactericidal activity against all C. perfringens strains tested. The minimal bactericidal concentration (MBC) of EG was 75 µg/mL for all strains but ranged from 61 to 121 µg of total protein per mL for LP-S. EG exerted only minor effects on biofilm formation, whereas LP-S, particularly its 10 and 30 K fractions, significantly reduced the biofilm-forming ability of all the strains. The antibiofilm activity of LP-S was lost following preincubation with proteases, suggesting that it was mediated by a proteinaceous molecule. The treatment of C. perfringens with either EG or LP-S did not change the transcript levels of two CpAL (C. perfringens quorum-sensing Agr-like system)-related genes, agrB and agrD, which are known to be involved in the regulation of biofilms, suggesting that LP-S exerted its biofilm inhibitory activity downstream of CpAL signaling. In summary, we demonstrated the bactericidal activity of EG and LP-S against C. perfringens and antibiofilm activity of LP-S at a subinhibitory dose. Our results suggested that these compounds can be further explored for food safety applications to control agents such as C. perfringens.
Collapse
|
9
|
Tram G, Jennings MP, Blackall PJ, Atack JM. Streptococcus suis pathogenesis-A diverse array of virulence factors for a zoonotic lifestyle. Adv Microb Physiol 2021; 78:217-257. [PMID: 34147186 DOI: 10.1016/bs.ampbs.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus suis is a major cause of respiratory tract and invasive infections in pigs and is responsible for a substantial disease burden in the pig industry. S. suis is also a significant cause of bacterial meningitis in humans, particularly in South East Asia. S. suis expresses a wide array of virulence factors, and although many are described as being required for disease, no single factor has been demonstrated to be absolutely required. The lack of uniform distribution of known virulence factors among individual strains and lack of evidence that any particular virulence factor is essential for disease makes the development of vaccines and treatments challenging. Here we review the current understanding of S. suis virulence factors and their role in the pathogenesis of this important zoonotic pathogen.
Collapse
Affiliation(s)
- Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
10
|
Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production. mBio 2020; 11:mBio.03190-20. [PMID: 33443122 PMCID: PMC8534292 DOI: 10.1128/mbio.03190-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Clostridioides difficile accessory gene regulator 1 (agr1) locus consists of two genes, agrB1 and agrD1, that presumably constitute an autoinducing peptide (AIP) system. Typically, AIP systems function through the AgrB-mediated processing of AgrD to generate a processed form of the AIP that provides a concentration-dependent extracellular signal. Here, we show that the C. difficile 630 Agr1 system has multiple functions, not all of which depend on AgrB1. CRISPR-Cas9n deletion of agrB1, agrD1, or the entire locus resulted in changes in transcription of sporulation-related factors and an overall loss in spore formation. Sporulation was recovered in the mutants by providing supernatant from stationary-phase cultures of the parental strain. In contrast, C. difficile motility was reduced only when both AgrB1 and AgrD1 were disrupted. Finally, in the absence of AgrB1, the AgrD1 peptide accumulated within the cytoplasm and this correlated with increased expression of tcdR (15-fold), as well as tcdA (20-fold) and tcdB (5-fold), which encode the two major C. difficile toxins. The combined deletion of agrB1/agrD1 or deletion of only agrD1 did not significantly alter expression of tcdR or tcdB but did show a minor effect on tcdA expression. Overall, these data indicate that the Agr1-based system in C. difficile 630 carries out multiple functions, some of which are associated with prototypical AIP signaling and others of which involve previously undescribed mechanisms of action.IMPORTANCE C. difficile is a spore-forming, toxigenic, anaerobic bacterium that causes severe gastrointestinal illness. Understanding the ways in which C. difficile senses growth conditions to regulate toxin expression and sporulation is essential to advancing our understanding of this pathogen. The Agr1 system in C. difficile has been thought to function by generating an extracellular autoinducing peptide that accumulates and exogenously activates two-component signaling. The absence of the peptide or protease should, in theory, result in similar phenotypes. However, in contrast to longstanding assumptions about Agr, we found that mutants of individual agr1 genes exhibit distinct phenotypes in C. difficile These findings suggest that the Agr1 system may have other regulatory mechanisms independent of the typical Agr quorum sensing system. These data not only challenge models for Agr's mechanism of action in C. difficile but also may expand our conceptions of how this system works in other Gram-positive pathogens.
Collapse
|
11
|
Orellana CA, Zaragoza NE, Licona-Cassani C, Palfreyman RW, Cowie N, Moonen G, Moutafis G, Power J, Nielsen LK, Marcellin E. Time-course transcriptomics reveals that amino acids catabolism plays a key role in toxinogenesis and morphology in Clostridium tetani. ACTA ACUST UNITED AC 2020; 47:1059-1073. [DOI: 10.1007/s10295-020-02330-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
Abstract
Tetanus is a fatal disease caused by Clostridium tetani infections. To prevent infections, a toxoid vaccine, developed almost a century ago, is routinely used in humans and animals. The vaccine is listed in the World Health Organisation list of Essential Medicines and can be produced and administered very cheaply in the developing world for less than one US Dollar per dose. Recent developments in both analytical tools and frameworks for systems biology provide industry with an opportunity to gain a deeper understanding of the parameters that determine C. tetani virulence and physiological behaviour in bioreactors. Here, we compared a traditional fermentation process with a fermentation medium supplemented with five heavily consumed amino acids. The experiment demonstrated that amino acid catabolism plays a key role in the virulence of C. tetani. The addition of the five amino acids favoured growth, decreased toxin production and changed C. tetani morphology. Using time-course transcriptomics, we created a “fermentation map”, which shows that the tetanus toxin transcriptional regulator BotR, P21 and the tetanus toxin gene was downregulated. Moreover, this in-depth analysis revealed potential genes that might be involved in C. tetani virulence regulation. We observed differential expression of genes related to cell separation, surface/cell adhesion, pyrimidine biosynthesis and salvage, flagellar motility, and prophage genes. Overall, the fermentation map shows that, mediated by free amino acid concentrations, virulence in C. tetani is regulated at the transcriptional level and affects a plethora of metabolic functions.
Collapse
Affiliation(s)
- Camila A Orellana
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
- grid.7870.8 0000 0001 2157 0406 Department of Chemical and Bioprocess Engineering, School of Engineering Pontificia Universidad Católica de Chile Santiago Chile
| | - Nicolas E Zaragoza
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
| | - Cuauhtemoc Licona-Cassani
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
- grid.419886.a 0000 0001 2203 4701 Centro de Biotecnología FEMSA Tecnológico de Monterrey Nuevo León Mexico
| | - Robin W Palfreyman
- grid.1003.2 0000 0000 9320 7537 Metabolomics Australia The University of Queensland 4072 Brisbane QLD Australia
| | - Nicholas Cowie
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
| | - Glenn Moonen
- Zoetis. 45 Poplar Road 3052 Parkville VIC Australia
| | | | - John Power
- Zoetis. 45 Poplar Road 3052 Parkville VIC Australia
| | - Lars K Nielsen
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
- grid.1003.2 0000 0000 9320 7537 Metabolomics Australia The University of Queensland 4072 Brisbane QLD Australia
- grid.5170.3 0000 0001 2181 8870 The Novo Nordisk Foundation Centre for Biosustainability Technical University of Denmark Kgs. Lyngby Denmark
| | - Esteban Marcellin
- grid.1003.2 0000 0000 9320 7537 Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland 4072 Brisbane QLD Australia
- grid.1003.2 0000 0000 9320 7537 Metabolomics Australia The University of Queensland 4072 Brisbane QLD Australia
| |
Collapse
|
12
|
Piattelli E, Peltier J, Soutourina O. Interplay between Regulatory RNAs and Signal Transduction Systems during Bacterial Infection. Genes (Basel) 2020; 11:E1209. [PMID: 33081172 PMCID: PMC7602753 DOI: 10.3390/genes11101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of pathogenic bacteria to stably infect the host depends on their capacity to respond and adapt to the host environment and on the efficiency of their defensive mechanisms. Bacterial envelope provides a physical barrier protecting against environmental threats. It also constitutes an important sensory interface where numerous sensing systems are located. Signal transduction systems include Two-Component Systems (TCSs) and alternative sigma factors. These systems are able to sense and respond to the ever-changing environment inside the host, altering the bacterial transcriptome to mitigate the impact of the stress. The regulatory networks associated with signal transduction systems comprise small regulatory RNAs (sRNAs) that can be directly involved in the expression of virulence factors. The aim of this review is to describe the importance of TCS- and alternative sigma factor-associated sRNAs in human pathogens during infection. The currently available genome-wide approaches for studies of TCS-regulated sRNAs will be discussed. The differences in the signal transduction mediated by TCSs between bacteria and higher eukaryotes and the specificity of regulatory RNAs for their targets make them appealing targets for discovery of new strategies to fight against multi-resistant bacteria.
Collapse
Affiliation(s)
- Emma Piattelli
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
| | - Johann Peltier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 75015 Paris, France
| | - Olga Soutourina
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (E.P.); (J.P.)
- Institut Universitaire de France, CEDEX 05, 75231 Paris, France
| |
Collapse
|
13
|
Evidence That VirS Is a Receptor for the Signaling Peptide of the Clostridium perfringens Agr-like Quorum Sensing System. mBio 2020; 11:mBio.02219-20. [PMID: 32934089 PMCID: PMC7492741 DOI: 10.1128/mbio.02219-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
C. perfringens beta toxin (CPB) is essential for the virulence of type C strains, a common cause of fatal necrotizing enteritis and enterotoxemia in humans and domestic animals. Production of CPB, as well as several other C. perfringens toxins, is positively regulated by both the Agr-like QS system and the VirS/R two-component regulatory system. This study presents evidence that the VirS membrane sensor protein is a receptor for the AgrD-derived SP and that the second extracellular loop of VirS is important for SP binding. Understanding interactions between SP and VirS improves knowledge of C. perfringens pathogenicity and may provide insights for designing novel strategies to reduce C. perfringens toxin production during infections. Since both the Agr (accessory gene regulator)-like quorum sensing (QS) system and VirS/VirR (VirS/R) two-component regulatory system of Clostridium perfringens positively regulate production of several toxins, including C. perfringens beta toxin (CPB), it has been hypothesized the VirS membrane sensor protein is an Agr-like QS signaling peptide (SP) receptor. To begin evaluating whether VirS is an SP receptor, this study sequenced the virS gene in C. perfringens strains CN3685 and CN1795 because it was reported that agrB mutants of both strains increase CPB production in response to the pentapeptide 5R, likely the natural SP, but only the CN3685 agrB mutant responds to 8R, which is 5R plus a 3-amino-acid tail. This sequencing identified differences between the predicted VirS extracellular loop 2 (ECL2) of CN3685 versus that of CN1795. To explore if those ECL2 differences explain strain-related variations in SP sensitivity and support VirS as an SP receptor, virS agrB double-null mutants of each strain were complemented to swap which VirS protein they produce. CPB Western blotting showed that this complementation changed the natural responsiveness of each strain to 8R. A pulldown experiment using biotin-5R demonstrated that VirS can bind SP. To further support VirS:SP binding and to identify a VirS binding site for SP, a 14-mer peptide corresponding to VirS ECL2 was synthesized. This ECL2 peptide inhibited 5R signaling to agrB mutant and wild-type strains. This inhibition was specific, since a single N to D substitution in the ECL2 peptide abrogated these effects. Collectively, these results support VirS as an important SP receptor and may assist development of therapeutics.
Collapse
|
14
|
Profeta F, Di Francesco CE, Di Provvido A, Scacchia M, Alessiani A, Di Giannatale E, Marruchella G, Orsini M, Toscani T, Marsilio F. Prevalence of netB-positive Clostridium perfringens in Italian poultry flocks by environmental sampling. J Vet Diagn Invest 2019; 32:252-258. [PMID: 31650911 DOI: 10.1177/1040638719885841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens type G is one of the pathogens involved in enteric diseases in poultry. NetB, a pore-forming toxin, is considered the main virulence factor responsible for necrotic enteritis during C. perfringens infection. We carried out a field study involving 14 farms to evaluate the occurrence of netB-positive C. perfringens and the impact of infection in Italian poultry flocks. Environmental samples (n = 117) and 50 carcasses were screened by microbiologic and molecular methods. Microbiologic investigations yielded 82 C. perfringens isolates. DNA was extracted from all samples and screened for α-toxin and NetB encoding genes by real-time PCR. The C. perfringens α-toxin gene was detected in 151 of 167 extracts (90.4%), and 31 of 151 (20.5%) were netB gene positive also. Sixteen isolates from a turkey flock with mild enteric disorders were also netB positive, demonstrating their occurrence not only in broiler but also in turkey flocks. A pulsed-field gel electrophoresis protocol was optimized to evaluate the diversity among isolates and revealed high genetic heterogeneity. The complete NetB toxin-coding gene of 2 C. perfringens isolates from turkey and broiler flocks were analyzed and showed very high relatedness with analogous sequences worldwide.
Collapse
Affiliation(s)
- Francesca Profeta
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Cristina E Di Francesco
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Andrea Di Provvido
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Massimo Scacchia
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Alessandra Alessiani
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Elisabetta Di Giannatale
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Giuseppe Marruchella
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Massimiliano Orsini
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Tonino Toscani
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (Profeta, Di Francesco, Marruchella, Marsilio).,Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy (Di Provvido, Scacchia, Alessiani, Di Giannatale, Orsini).,Agricultural Social Cooperative "Gesco", Castellalto, Teramo, Italy (Toscani)
| |
Collapse
|
15
|
Nagahama M, Takehara M, Rood JI. Histotoxic Clostridial Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0024-2018. [PMID: 31350831 PMCID: PMC10957196 DOI: 10.1128/microbiolspec.gpp3-0024-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
The pathogenesis of clostridial myonecrosis or gas gangrene involves an interruption to the blood supply to the infected tissues, often via a traumatic wound, anaerobic growth of the infecting clostridial cells, the production of extracellular toxins, and toxin-mediated cell and tissue damage. This review focuses on host-pathogen interactions in Clostridium perfringens-mediated and Clostridium septicum-mediated myonecrosis. The major toxins involved are C. perfringens α-toxin, which has phospholipase C and sphingomyelinase activity, and C. septicum α-toxin, a β-pore-forming toxin that belongs to the aerolysin family. Although these toxins are cytotoxic, their effects on host cells are quite complex, with a range of intracellular cell signaling pathways induced by their action on host cell membranes.
Collapse
Affiliation(s)
- Masahiro Nagahama
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Masaya Takehara
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
|
17
|
Zheng C, Li L, Ge H, Meng H, Li Y, Bei W, Zhou X. Role of two-component regulatory systems in the virulence of Streptococcus suis. Microbiol Res 2018; 214:123-128. [PMID: 30031474 DOI: 10.1016/j.micres.2018.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/19/2018] [Accepted: 07/07/2018] [Indexed: 01/01/2023]
Abstract
Streptococcus suis is an important zoonotic pathogen that causes severe infections and great economic losses worldwide. Understanding how this pathogen senses and responds to environmental signals during the infectious process can offer insight into its pathogenesis and may be helpful in the development of drug targets. Two-component regulatory systems (TCSs) play an essential role in this environmental response. In S. suis, at least 15 groups of TCSs have been predicted. Among them, several have been demonstrated to be involved in virulence and/or stress response. In this review, we discuss the progress in the study of TCSs in S. suis, focusing on the role of these systems in the virulence of this bacterium.
Collapse
Affiliation(s)
- Chengkun Zheng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; State Key Laboratory of Agricultural Microbiology/The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingzhi Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Haojie Ge
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Hongmei Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yang Li
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology/The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaohui Zhou
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety/Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China; Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
18
|
Park M, Rafii F. Exposure to β-lactams results in the alteration of penicillin-binding proteins in Clostridium perfringens. Anaerobe 2017; 45:78-85. [PMID: 28185856 DOI: 10.1016/j.anaerobe.2017.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|