1
|
Zhang C, Liu H, Jiang X, Zhang Z, Hou X, Wang Y, Wang D, Li Z, Cao Y, Wu S, Huws SA, Yao J. An integrated microbiome- and metabolome-genome-wide association study reveals the role of heritable ruminal microbial carbohydrate metabolism in lactation performance in Holstein dairy cows. MICROBIOME 2024; 12:232. [PMID: 39529146 PMCID: PMC11555892 DOI: 10.1186/s40168-024-01937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Despite the growing number of studies investigating the connection between host genetics and the rumen microbiota, there remains a dearth of systematic research exploring the composition, function, and metabolic traits of highly heritable rumen microbiota influenced by host genetics. Furthermore, the impact of these highly heritable subsets on lactation performance in cows remains unknown. To address this gap, we collected and analyzed whole-genome resequencing data, rumen metagenomes, rumen metabolomes and short-chain fatty acids (SCFAs) content, and lactation performance phenotypes from a cohort of 304 dairy cows. RESULTS The results indicated that the proportions of highly heritable subsets (h2 ≥ 0.2) of the rumen microbial composition (55%), function (39% KEGG and 28% CAZy), and metabolites (18%) decreased sequentially. Moreover, the highly heritable microbes can increase energy-corrected milk (ECM) production by reducing the rumen acetate/propionate ratio, according to the structural equation model (SEM) analysis (CFI = 0.898). Furthermore, the highly heritable enzymes involved in the SCFA synthesis metabolic pathway can promote the synthesis of propionate and inhibit the acetate synthesis. Next, the same significant SNP variants were used to integrate information from genome-wide association studies (GWASs), microbiome-GWASs, metabolome-GWASs, and microbiome-wide association studies (mWASs). The identified single nucleotide polymorphisms (SNPs) of rs43470227 and rs43472732 on SLC30A9 (Zn2+ transport) (P < 0.05/nSNPs) can affect the abundance of rumen microbes such as Prevotella_sp., Prevotella_sp._E15-22, Prevotella_sp._E13-27, which have the oligosaccharide-degradation enzymes genes, including the GH10, GH13, GH43, GH95, and GH115 families. The identified SNPs of chr25:11,177 on 5s_rRNA (small ribosomal RNA) (P < 0.05/nSNPs) were linked to ECM, the abundance alteration of Pseudobutyrivibrio_sp. (a genus that was also showed to be linked to the ECM production via the mWASs analysis), GH24 (lysozyme), and 9,10,13-TriHOME (linoleic acid metabolism). Moreover, ECM, and the abundances of Pseudobutyrivibrio sp., GH24, and 9,10,13-TRIHOME were significantly greater in the GG genotype than in the AG genotype at chr25:11,177 (P < 0.05). By further the SEM analysis, GH24 was positively correlated with Pseudobutyrivibrio sp., which was positively correlated with 9,10,13-triHOME and subsequently positively correlated with ECM (CFI = 0.942). CONCLUSION Our comprehensive study revealed the distinct heritability patterns of rumen microbial composition, function, and metabolism. Additionally, we shed light on the influence of host SNP variants on the rumen microbes with carbohydrate metabolism and their subsequent effects on lactation performance. Collectively, these findings offer compelling evidence for the host-microbe interactions, wherein cows actively modulate their rumen microbiota through SNP variants to regulate their own lactation performance. Video Abstract.
Collapse
Affiliation(s)
- Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Huifeng Liu
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Xingwei Jiang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Zhihong Zhang
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- JUNLEBAO-Northwest A&F University Cooperation Dairy Research Institute, Leyuan Animal Husbandry, JUNLEBAO Company, Shijiazhuang, Hebei, China
| | - Xinfeng Hou
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- JUNLEBAO-Northwest A&F University Cooperation Dairy Research Institute, Leyuan Animal Husbandry, JUNLEBAO Company, Shijiazhuang, Hebei, China
| | - Yue Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Dangdang Wang
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Zongjun Li
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
| | - Sharon A Huws
- Institute of Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, BT9 5DL, UK.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, 22 Nt, Xinong Road, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Jia Y, Zhao S, Guo W, Peng L, Zhao F, Wang L, Fan G, Zhu Y, Xu D, Liu G, Wang R, Fang X, Zhang H, Kristiansen K, Zhang W, Chen J. Sequencing introduced false positive rare taxa lead to biased microbial community diversity, assembly, and interaction interpretation in amplicon studies. ENVIRONMENTAL MICROBIOME 2022; 17:43. [PMID: 35978448 PMCID: PMC9387074 DOI: 10.1186/s40793-022-00436-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Increasing studies have demonstrated potential disproportionate functional and ecological contributions of rare taxa in a microbial community. However, the study of the microbial rare biosphere is hampered by their inherent scarcity and the deficiency of currently available techniques. Sample-wise cross contaminations might be introduced by sample index misassignment in the most widely used metabarcoding amplicon sequencing approach. Although downstream bioinformatic quality control and clustering or denoising algorithms could remove sequencing errors and non-biological artifact reads, no algorithm could eliminate high quality reads from sample-wise cross contaminations introduced by index misassignment, making it difficult to distinguish between bona fide rare taxa and potential false positives in metabarcoding studies. RESULTS We thoroughly evaluated the rate of index misassignment of the widely used NovaSeq 6000 and DNBSEQ-G400 sequencing platforms using both commercial and customized mock communities, and observed significant lower (0.08% vs. 5.68%) fraction of potential false positive reads for DNBSEQ-G400 as compared to NovaSeq 6000. Significant batch effects could be caused by stochastically introduced false positive or false negative rare taxa. These false detections could also lead to inflated alpha diversity of relatively simple microbial communities and underestimated that of complex ones. Further test using a set of cow rumen samples reported differential rare taxa by different sequencing platforms. Correlation analysis of the rare taxa detected by each sequencing platform demonstrated that the rare taxa identified by DNBSEQ-G400 platform had a much higher possibility to be correlated with the physiochemical properties of rumen fluid as compared to NovaSeq 6000 platform. Community assembly mechanism and microbial network correlation analysis indicated that false positive or negative rare taxa detection could lead to biased community assembly mechanism and identification of fake keystone species of the community. CONCLUSIONS We highly suggest proper positive/negative/blank controls, technical replicate settings, and proper sequencing platform selection in future amplicon studies, especially when the microbial rare biosphere would be focused.
Collapse
Affiliation(s)
- Yangyang Jia
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenjie Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Ling Peng
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Fang Zhao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Guangyi Fan
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Yuanfang Zhu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Dayou Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Guilin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Ruoqing Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | | | - He Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China.
| | - Wenwei Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
| | - Jianwei Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, 266555, China.
| |
Collapse
|
3
|
Dubé L, Spahis S, Lachaîne K, Lemieux A, Monhem H, Poulin SM, Randoll C, Travaillaud E, Ould-Chikh NEH, Marcil V, Delvin E, Levy E. Specialized Pro-Resolving Mediators Derived from N-3 Polyunsaturated Fatty Acids: Role in Metabolic Syndrome and Related Complications. Antioxid Redox Signal 2022; 37:54-83. [PMID: 35072542 DOI: 10.1089/ars.2021.0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Metabolic syndrome (MetS) prevalence continues to grow and represents a serious public health issue worldwide. This multifactorial condition carries the risk of hastening the development of type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). Another troubling aspect of MetS is the requirement of poly-pharmacological therapy not devoid of side effects. Therefore, there is an urgent need for prospecting alternative nutraceuticals as effective therapeutic agents for MetS. Recent Advances: Currently, there is an increased interest in understanding the regulation of metabolic derangements by specialized pro-resolving lipid mediators (SPMs), especially those derived from the long chain n-3 polyunsaturated fatty acids. Critical Issues: The SPMs are recognized as efficient modulators that are capable of inhibiting the production of pro-inflammatory cytokines, blocking neutrophil activation/recruitment, and inducing non-phlogistic (anti-inflammatory) activation of macrophage engulfment and removal of apoptotic inflammatory cells and debris. The aim of the present review is precisely to first underline key concepts relative to SPM functions before focusing on their status and actions on MetS components (e.g., obesity, glucose dysmetabolism, hyperlipidemia, hypertension) and complications such as T2D, NAFLD, and CVD. Future Directions: Valuable data from preclinical and clinical investigations have emphasized the SPM functions and influence on oxidative stress- and inflammation-related MetS. Despite these promising findings obtained without compromising host defense, additional efforts are needed to evaluate their potential therapeutic applications and further develop practical tools to monitor their bioavailability to cope with cardiometabolic disorders. Antioxid. Redox Signal. 37, 54-83.
Collapse
Affiliation(s)
- Laurent Dubé
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Schohraya Spahis
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Karelle Lachaîne
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Hanine Monhem
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Carolane Randoll
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | - Eva Travaillaud
- Department of Nutrition, Université de Montréal, Montreal, Canada
| | | | - Valérie Marcil
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Edgard Delvin
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Biochemistry, Université de Montréal, Montreal, Canada
| | - Emile Levy
- Research Centre, Sainte-Justine Hospital, Université de Montréal, Montreal, Canada.,Department of Nutrition, Université de Montréal, Montreal, Canada.,Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.,Department of Pediatrics, Gastroenterology & Hepatology Unit, Université de Montréal, Montreal, Canada
| |
Collapse
|
4
|
Shen X, Zhang B, Hu X, Li J, Wu M, Yan C, Yang Y, Li Y. Neisseria sicca and Corynebacterium matruchotii inhibited oral squamous cell carcinomas by regulating genome stability. Bioengineered 2022; 13:14094-14106. [PMID: 35734856 PMCID: PMC9342423 DOI: 10.1080/21655979.2022.2078556] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Periodontitis is a risk factor for the development of oral squamous cell carcinomas (OSCC). Both DNA damage response (DDR) and activation of inflammasomes induced by the microbiome might play important roles in the development of tumors, in relation to genome stability of tumor cells. Herein, we explored whether periodontitis negative-associated bacteria (Neisseria sicca and Corynebacterium matruchotii, namely called ‘PNB’), which were highly abundant in healthy populations, could inhibit OSCC by promoting genome stability. Firstly, a murine SCC-7 tumor-bearing model that colonized with PNB was designed and used in this study. Then, cyclin D1 was detected by immunohistochemistry. Levels of DDR, NLRP3 inflammasomes and pro-inflammatory cytokines in tumors were detected by RT-qPCR or Western blot. Immune cells in spleens were detected by immunohistochemistry or immunofluorescence. Finally, the anti-cancer activity of PNB was assessed in vitro using CCK-8 assays and flow cystometry. Compared with the control, PNB decreased tumor weights from 0.77 ± 0.26 g to 0.42 ± 0.15 g and downregulated the expression of Cyclin D1. PNB activated the DDR by up-regulating γ-H2AX, p-ATR, and p-CHK1. PNB activated NLRP3 inflammasome-mediated pyroptosis via increases of NLRP3, gasdermin D, and mRNA levels of apoptosis-associated speck-like protein, Caspase-1. PNB suppressed the inflammatory response by down-regulating mRNA levels of NF-κΒ and IL-6 in tumors as well as the populations of CD4+ T cells and CD206+ immune cells in spleens. PNB inhibited proliferation and promoted cell death of HSC-3 cells. In conclusion, Neisseria sicca and Corynebacterium matruchotii showed a ‘probiotic bacterial’ potential to inhibit OSCC by regulating genome stability.
Collapse
Affiliation(s)
- Xin Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bo Zhang
- Department of Stomatology, Minda Hospital of Hubei Minzu University, Enshi, Hubei, China
| | - Xiaoyu Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jia Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Miaomiao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Caixia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yutao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Yao Y, Shen X, Zhou M, Tang B. Periodontal Pathogens Promote Oral Squamous Cell Carcinoma by Regulating ATR and NLRP3 Inflammasome. Front Oncol 2021; 11:722797. [PMID: 34660289 PMCID: PMC8514820 DOI: 10.3389/fonc.2021.722797] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is closely related to oral cancer, but the molecular mechanism of periodontal pathogens involved in the occurrence and development of oral cancer is still inconclusive. Here, we demonstrate that, in vitro, the cell proliferation ability and S phase cells of the periodontitis group (colonized by Porphyromonas gingivalis and Fusobacterium nucleatum, P+) significantly increased, but the G1 cells were obviously reduced. The animal models with an in situ oral squamous cell carcinoma (OSCC) and periodontitis-associated bacteria treatment were constructed, and micro-CT showed that the alveolar bone resorption of mice in the P+ group (75.3 ± 4.0 μm) increased by about 53% compared with that in the control group (48.8 ± 1.3 μm). The tumor mass and tumor growth rate in the P+ group were all higher than those in the blank control group. Hematoxylin-eosin (H&E) staining of isolated tumor tissues showed that large-scale flaky necrosis was found in the tumor tissue of the P+ group, with lots of damaged vascular profile and cell debris. Immunohistochemistry (IHC) of isolated tumor tissues showed that the expression of Ki67 and the positive rate of cyclin D1 were significantly higher in tumor tissues of the P+ group. The qRT-PCR results of the expression of inflammatory cytokines in oral cancer showed that periodontitis-associated bacteria significantly upregulated interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-18, apoptosis-associated speck-like protein containing a CARD (ASC) (up to six times), and caspase-1 (up to four times), but it downregulated nuclear factor (NF)-κB, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), and IL-1β (less than 0.5 times). In addition, the volume of spleen tissue and the number of CD4+ T cells, CD8+ T cells, and CD206+ macrophages in the P+ group increased significantly. IHC and Western blotting in tumor tissues showed that expression levels of γ-H2AX, p-ATR, RPA32, CHK1, and RAD51 were upregulated, and the phosphorylation level of CHK1 (p-chk1) was downregulated. Together, we identify that the periodontitis-related bacteria could promote tumor growth and proliferation, initiate the overexpressed NLRP3, and activate upstream signal molecules of ATR-CHK1. It is expected to develop a new molecular mechanism between periodontitis-related bacteria and OSCC.
Collapse
Affiliation(s)
- Yufei Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maolin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Effects of Maresin 1 (MaR1) on Colonic Inflammation and Gut Dysbiosis in Diet-Induced Obese Mice. Microorganisms 2020; 8:microorganisms8081156. [PMID: 32751593 PMCID: PMC7465372 DOI: 10.3390/microorganisms8081156] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of this study was to characterize the effects of Maresin 1 (MaR1), a DHA-derived pro-resolving lipid mediator, on obesity-related colonic inflammation and gut dysbiosis in diet-induced obese (DIO) mice. In colonic mucosa of DIO mice, the MaR1 treatment decreased the expression of inflammatory genes, such as Tnf-α and Il-1β. As expected, the DIO mice exhibited significant changes in gut microbiota composition at the phylum, genus, and species levels, with a trend to a higher Firmicutes/Bacteroidetes ratio. Deferribacteres and Synergistetes also increased in the DIO animals. In contrast, these animals exhibited a significant decrease in the content of Cyanobacteria and Actinobacteria. Treatment with MaR1 was not able to reverse the dysbiosis caused by obesity on the most abundant phyla. However, the MaR1 treatment increased the content of P. xylanivorans, which have been considered to be a promising probiotic with healthy effects on gut inflammation. Finally, a positive association was found between the Deferribacteres and Il-1β expression, suggesting that the increase in Deferribacteres observed in obesity could contribute to the overexpression of inflammatory cytokines in the colonic mucosa. In conclusion, MaR1 administration ameliorates the inflammatory state in the colonic mucosa and partially compensates changes on gut microbiota caused by obesity.
Collapse
|
7
|
A Multi-Scale Approach to Investigate Adhesion Properties of Pseudomonas aeruginosa PAO1 to Geotrichum candidum LG-8, a Potential Probiotic Yeast. Foods 2020; 9:foods9070912. [PMID: 32664462 PMCID: PMC7405016 DOI: 10.3390/foods9070912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 01/18/2023] Open
Abstract
This study investigated properties of Pseudomonas aeruginosa PAO1 adhesion to Geotrichum candidum LG-8 cells in variable pH and salt conditions. The primary mechanism was revealed by multi-scale microscopy technics. The adhesion of PAO1 to the living fungus occurred within 1 h and was limited at concentrations of bile salts higher than 0.5%. The adhesion efficiency gradually increased to 58.1% with the pH increasing from 2.0 to 7.0 and then decreased to 48.2% at pH 9.0. However, the dead LG-8 has an advantage over the living ones to adhere PAO1 in same pH and bile salt conditions. Optical microscopy showed that both unsterilized and sterilized G. candidum LG-8 cells removed approximately one hundred fold bacteria in 4 h. Laser scanning confocal microscopy (LSCM) analysis indicated that polysaccharides of the fungus contributed to adhesion. Scanning electron microscopy (SEM) analysis proved that syrup-like EPS (extracellular polymeric substances) of LG-8 coating PAO1 was in part a mechanism. Atomic force microscopy (AFM) showed roughness of the LG-8 surface changed in the adhesion process. Furthermore, a pedestal-like structure of bacteria was observed by transmission electron microscopy (TEM) analysis, indicating that the bacteria were also actively involved in the adhesion process. G. candidum LG-8 is a potential candidate for the control of P. aeruginosa PAO1 in the food industry and immunodeficiency patients.
Collapse
|